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1. INTRODUCTION

ECMWF has been producing medium range forecast products on an operational basis
since August 1979. All numerical products become avaiiable to the Member States as-
grid point values on standard pressure levels for the upper air data and on the
model's surface in an equidistant horizontal latitude and longitude grid. The model
runs with a 1.875 degree grid interval but, for the user and for aréhiving purposes,
the values may be interpolated to other grid intervals. The catalogue of products
available directly from the model contains a wide range of parameters, including

the traditional upper air fields like wind, height, temperature, humidity.
Additionally, there are surface fields available, such as temperature at 2m above
the model surface, wind at 10m, precipitation and model-predicted cloud. These

can be used directly as guidance to predict near surface weather conditions.

After three years of operational forecasting, the Centre and the Member States have
gained some experience with the ECMWF products. Initially the objective and
subjective evaluation of the forecast was focussed on the large and synoptic

scale features of the circulation. This traditional approach of assessing the
forecast quality in terms of the differences between predicted fields and analysed
fields gives valuable information related to the model's ability to forecast

circulation patterns.

There is a further need to assess the model's ability to forecast surface or near
surface weather parameters, and regional and local verification of such direct model
output has been performed (Rkesson, Johannessen,'gkesson et al). The results show
that forecasts of many parameters are subject to systematic biasses and other errors
which could be reduced substantially through the use of statistical interpretation

models.

Such methods are widely used in short range weather prediction. They quantify the
uncertainties in the forecast and thereby increase the information content and
usefulness of the products. Further, the methods could be used to estimate weather
parameters not currently predicted by the model and thus the requirements of the

ultimate users of forecasts could be taken into account.

There is so far little experience with interpretation methods in medium range fore-
casting. The results of the regional and local verification studies already
mentioned indicate that different kinds of errors, including systematic errors like
phase errors, contaminate the verification results when a typical short range
approach i1s assumed in the verification. Useful forecast information will still

be present, but new forms and modes of presentation are needed. In terms of
statistical interpretations, this means that useful predictands and predictors have

to be defined.



The present study may be considered as a pilot study in using interpretation methods
in medium range forecasting. Compared to many previous models, the ECMWF model contains
a reasonable resolution in the boundary level with four sigma levels between sea level
and 700mb and a comprehensive physical package is used. One objective is therefore to
evaluate the usefulness of boundary layer parameters as predictors for surface weather
forecasting. As a by-product, verification of direct model output at the local site
will enable modellers to check the impact of model changes on parameters which are

widely used as guidance in local and regional weather forecasting.

The local temperature forecasts at two different locations in central Europe are
investigated and only data from two and three month periods respectively are used. By
an optimal regression technique, which is explained in Appendix A, the linear
relationship between the observed surface temperature and several model predictors is
explored. 2ll the model predictors which are used are either temperature values
at different levels or are parameters which are known to affect locally observed
temperatures, including precipitation, cloud amount and surface wind. We found
that at the two locations chosen for ‘this study, Hannover and De Bilt, the model
temperature in the boundary layer is highly correlated to the observed value and
that other parameters contribute very little to improve this correlation. We
therefore put our emphasis on possible corrections for phase errors in the model

by using time offset predictors. This is described in the first paragfaph of the
results. In the next chapter, the question is then raised of whether time and
space averaging have any beneficial effect on the guidance that can be obtained from
the direct model output for predicting the local temperature in the medium range.
We then finally outline in the results what is potentially achievable, when using
multiple predictor equations. T+ should be stressed, however, that this is a
dependent data sample. Derivation of stable prognostic equations to be used on

independent data was not intended.

2. THE DATA

The ECMWF operational numerical weather prediction system uses the observations
exchanged world-wide via the Global Telecommunications System.' The data assimilation
at ECMWF runs in a cycle providing four analyses per day for 00, 06, 12 and 18BZ.
Once a day, starting from 12z, a 10-day forecast is run operationally. The model
computations are performed on 15 o-coordinate levels in the vertical and on a staggered
horizontal grid of 1.875 x 1.875 degrees of latitude and longitude. The predicted
free atmospheric variables are interpolated in a postprocessing to standard pressure
levels and to a non-staggered horizontal grid of 1.5 x 1.5 degrees, in which form
they become available to the Member States. All surface parameters are interpolated
to the same grid. Out to 84 hours of forecast time every 6 hours and thereafter
out to 240 hours every 12 hours, the model output is postprocessed but only the
12-hourly steps are available from the archive. Further information on ECMWF

products is available through the ECMWF Meteorological Bulletins,
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All observations and fields are stored in the EEMWF reporgs and fields data base, an
archive which is comprehensive, global and accessible via the GETDATA retrieval
facility, However, the quality of the observational data is not satisfactory for
detailed verification and interpretation studies. It is real-time synoptic data
which has undergone only crude quality_control checks against climatological limits
before being stored in the reports data base. No spatial cross checks or time

consistency checks are carried out at that stage.

It is, therefore, recommended(that studies, using the observational data from

ECMWF, are confined to stations known for their reliability.

In this preliminary study, we used two stations, De Bilt in the Netherlands

and Hannover in the Federal Republic of Germany. They are both situated in flat
homogeneous terrain with a strong maritime influence at De Bilt which decreases
towards Hannover, situated at the southern part of the North German plains. For

De Bilt, we retrieved 2 winter months,,January and February 19é2, of surface
observations (SYNOPS), the corresponding ECMWF forecasts of near-surface parameters(l)
and the forecasts of upper air parameters for the four levels 1000, 850, 700 and

500 mbf(z)‘

out to 168 hours and to only one grid point which is a few kilometres away from

In the De Bilt study, we limited ourselves to forecasts every 12 hours

the geographical location of the observing site. For the Hannover study! we
extracted the same set of observation and foreqast parameters, but for 3 winter
months, January to March 1981, and for the complete length of 10 day forecasts out
to 240 hours. Further, an array of 11 x 11 grid points was extracted around the
location of Hannover instead of using only one gridpoint, thus allowing various
space averages to be taken in the course of the investigation. At the time of
this study, a new European archive was under development but was not yet available.

All computations were carried out in the original model grid interval of 1.875 degrees.

1.  Temperature at 2m and wind at 10m above the model surface (for their

definition, see the ECMWF Meteorological Bulletin M3.4/1(3)).

2. It should be pointed out that the 1000mb parameters are extrapolated

below the model's surface, if the surface pressure is below 1000mb.



3. VERIFICATION OF SURFACE TEMPERATURE FOR HANNOVER AND DE BILT

3.1 Temperature as a predictand

We are primarily interested in investigating a verification of ECMWF temperature
forecasts. As the diurnal cycle at present is not simulated in the ECMWEF fore-
casting system, it seems reasonable to verify temperature forecasts against

observed daily mean temperatures. In the early stage of the forecast, the one-day
mean temperature will be of prime interest. After day 4 of the forecast, the model
errors become substantial énd any spot verification in space and time will be
contaminated by errors in phase and amplitude of the migratory waves (wavenumber > 7).
All verification results show (e.g. ECMWF Forecast Reports) that a‘higher
predictability is achieved in the long wave domain. This broad scale flow pattern
determines the prevailing weather type, providing valuable forecast information in

the medium range.

Phase errors can be cancelled out by averaging the predictand in timé or space.
This will result in a loss of information for day to day forecasting at given
locations but, by compressing the infofmation from several gridpoints and forecast
steps, the reliability and, for some purposes, the usefulness of the forecast l

will be increased.

In this study, we have chosen to verify the three-day and five-day mean temperature
together with the daily mean temperature at two locations. No averaging in space
of the predictand is applied. This seems to be more important for discontinuoﬁs
parameters like precipitation (Rkesson, 1981), wﬁere the inhomogenity in the
observations has to be smoothed in order to achieve meaningful verification results

in accordance with the model's resolution.

3.2 The predictors

With today's high speed computers, the derivation of statistical relationships
between numerical prediction products and near-surface weather parameters is a
straight forward procedure. Any reasonable amount of predictors can be offered and
the statistical Fforecast model will emerge from the computer within the preset
limits of the significance level. 1In order to establish a statistically significant
relationship between direct model output and observed weather parameters (Model
Qutput Statistics technique) numerical forecasts covering at least two years of

data are needed. Even then, the selection of predictors can depend very much on
events typical of this relatively short period and the derived prognostic equation

might become unstable when applied to independent data.



Given the limitations of the short data sample used in this study, ‘it is not
intended to derive any prognostic equations for prediction of local temperature
conditions. Instead, by verifying different physically meaningful parameters
related to surface temperature conditions and‘predicted directly by the large scale
model, the attempt is made to find the best single predictor to forecést the surface

temperature.

In a previous verification study of direct model output of near-surface weather
parameters carried out for 17 locations in Europe (gkesson et al, 1981), it was
shown that the model develops a strong bias for the temperature and wind in the
boundary layer and, when using the forecast as spot values in space and time,
hardly any skill is left after day 3 or 4 of the forecast time. Meanwhile, this
study for the 17 stations has been extended and time averaging proved to be a useful
tool to eliminate some of the effects of phase errors in migratory short waves.
Additionally, the verification of predicted tendencies gave promising results and
eliminated largely the bias effects. 1In this current study, the use of averaging
in space and time will be evaluated and, by offering the predicted values from all
12 hourly forecast steps in one specific verification, the effect of phase errors

in the model is explored.

3.3 Results

Verification of the temperature forecast for De Bilt for January and February 1981
is given in Figure 1. The direct model output of temperature at 2m above the model
surface is compared to the observed l-day mean temperature calculated from the

four synoptic times 00Z, 06%Z, 12Z and 18%.

Figure 1 shows the explained variance of the observed temperature variation at
De Bilt for the day 1, day 2, etc. out to the day 6 forecast. Each of the six
graphs gives the fraction of variance explained from all 12 hourly forecast steps

out to 144 hours for the specific time of verification.

For the day 1 and the day 2 forecast, the 2m_temperature predicted for the De Bilt
gridpoint for 24 and 48 hours of forecast time respectively gives the best
explanation of the observed variance, while the previous and the following forecast
steps clearly contain less information. For the subsequent forecast times, day 3,
day 4, day 5 and day 6, the curves get flatter and, apart from some irregularities
which might be specific to this particular data sample, there is a tendency that
towards day 5 and day 6, the forecasts from earlier timesteps than those valid at
the time of the verification contain as much or even more information and thus

explain a larger fraction of the observed variance. In other words, when forecasting
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Fig. 1 Verification of l-day mean temperature forecasts for De Bilt,
January and February 1981, valid for day 1 to day 6. The predictor
is the temperature at 2m above the model surface.



beyond day 4-5, persistence taken from the model forecast of day 4% and day 5 seems to be
a good predictor. The overall quality of the forecast drops sharply towards day 6
when only about 25% of the variance can be explained by the predicted 2m temperature.
The forecast quality can be compared with a persistence forecast quality indicated
in the figure for forecast day 0. It indicates the amount of variance that can

be explained by using the observed daily mean temperature as a forecast for each

of the six'verifying times. As can be expected, the persistence gives high scores
as a predictor for the first and even for the second day, but for forecasts beyond
day 2, the persistence hardly shows any skill at all. The persistence forecast

for day 1 and day 2 is used as a standard of comparison to assess the quality of

the forecast. 1In the short range, the model output shows considerable skill
compared to the day 1 persistence. By day 3, the quality of the forecast corresponds
to that of a persistence forecast for day 1, and by day 6, the forecast quality

drops to the level of a persistence forecast for day 2.

When correlating the predicted temperature at 1000mb with the observed 1-day mean
temperature at De Bilt, the results are very similar. In Figure 2, the verification
results for both predictors respectively are given but for the forecast days 2, 4
and 6 only. In the short range out to day 3, the 2m temperature gives slightly
better results, while for day 4 and thereafter, the 1000mb.temperature is the
predictor to be preferred. During both months, the average mean sea level pressure
at De Bilt was close to 1020mb. As the elevationsof both the observing site and the
gridpoint in question are close to the mean sea level, the height of the 1000mb
surface was on average above the model ground. It might therefore be suggested that,
towards the medium range forecast period, predictors from even higher up in the
atmosphere, e.g. 850mb or thickness values, might give more useful results. in
explaining near-surface temperature variations than the model values from these

levels themselves. This, however, did not verify as later results will show.

The temperature verification at De Bilt was limited to using the predicted values
at one gridpoint only. When verifying the temperature at Hannover, all the
surrounding gridpoints over an area of 20 degrees latitude by 20 degrees longitude
were available. It turned out that an average in space over the four gridpoints
next to the observing site yields the best correlation with the observed daily mean
temperature. Only for the first 48 hours of the forecast may the predicted value,
interpolated linearly to the location of the station, have some advantage over the
space average, but the difference is negligible and in the order of one or two per

cent of explained variance.

The verification for Hannover, using the 4 point mean temperature as a predictor, is

given in Figure 3. For the first six days of the forecast, the results are in good
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Verification of l-day mean temperature forecasts for Hannover,

January to March 1981, valid for days 1, 3, 5, 7 and 9. The predictor
is the temperature at 2m above the model surface, averaged over four
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agreement with those obtained for De Bilt. In general, a }arger fraction of
variance can be explained by the forecast but this is due to the fact that, between
January and March 1981, the seasonal trend becomes very pronounced in the data set.
Persistence alone exélains a larger part of the variance than during January and
February at De Bilt. Still, using persistence as a standard of comparison, the
quality of the D+5 forecast at Hannover is just below the level of a persistence
forecast. for D+1. This is an improvement against the De Bilt verification and it
is generally supported by a more comprehensive verification study (ptimpel,

BSttger and Geleyn, 1982) at 17 stations in Europe, where the best verification
results are achieved at central European stations under continental influence and

in homogeneous terrain.

The verification of the 120 hour forecast in Fig. 3 confirms the result from De Bilt
that previous timesteps may explain a larger fraction of the observed temperature
variance than the 120 hour forecast itself. After D+5, the gquality of the forecast
drops sharply. The results seem to indicate that only the predicted temperature of
the first five days of the forecast period should be used and kept as persistence

forecasts for the later stage of the forecast period.

A secondary peak can be detected in some curves, but it is most pronounced in the
graph, showing the D+1 correlation. It improves significantly after another six
days of forecast time. This upswing can also be detected in the results for De
Bilt (Fig. 1). It seems to indicate a weather type cycle repeating itself after

a period of around six days, a phenomenon which can just be particular to this data
set. This cycle gives an explanation of the peculiar verification result for the
D+9 forecast where the best correlation is obtained between day 3 and day 4, a time

lag of approximately six days to the actual verification time of D+9.

The verification of the daily mean temperature at two different locations (both over
homogeneous terrain) gives evidence that the ECMWF model captures the temperature
variations in the atmospheric layers close to the surface quite satisfactorily during
the first 96 to 120 hours of forecast time. Both the temperature at 2m above the
model surface and the 1000mb temperature are predictors of nearly equal quality in
the early stage of the forecast.. In the medium range forecast period around day 5,
instantaneous forecast values verified against the daily mean temperature exhibit

a time lag and an overall drop in the quality of the forecast. With increasing
forecast errors, the spot values in time and space might not be the optimum choice
of predictors, and further, upper air predictors like the 85(mb temperature or
thickness values might give better results than predictors from the model boundary

layer.
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Figure 4 gives the verification of thé 3-day mean temperafure observed at Hannover

in January to March 1981 using the 1000mb temperature averaged over 16 surrounding {
gridpoints and over 3 forecast days as a predictor. After applying the time k
averaging, a corresponding space averaging over a larger area than previously gives

the bést result, but the difference to the 4 point average is not significant.

Compared to the l-day mean temperature, the curves are smoother. For day 3 and

day 5, an increase in explained variance is achieved, but the quality of the fore-

cast still drops rapidly for day 7 and day 9. The use of day 3 or day 4 as a k
persistence forecast gives the best indication of the temperature conditions towards

the end of the forecast period.

In Figure 5, the verification result of the 3-day mean temperature for one forecast
step, 96 hours, but for varioﬁs predictors, is displayed. The temperature at 2m
above the model surface is averaged over 4 and 16 gridpoints respectively but no
éveraging in time is appliéd, while for the predictor temperature at 1000mb, both
averaging in time and space is used. As noted before, the differences to space
averagiﬂg over 4 or 16 gridpoints are minor but, in general, one can state from
various trials that, in the medium range forecast period around days 4, 5 and 6,
the best results are achieved with an area averaged predictor for the 3~-day and the
5-day mean temperature forecast. Further, for the prediction of a time averaged

temperature, the predictors should be averaged over consecutive forecast days, accordingly

Figure 5 also shows that the temperature at 850mb and the thickness 700/1000mb are
clearly not as useful as those near surface predictors. The best correlation is
achieved 12 to 24 hours before the actual forecast time and there is a significant
gap betweenithe low level predictors and those representing the free atmospheric
flow. This is underlined by the results given in Figure 6 where the explained
variance is displayed after correlating the 5-day mean temperature at Hannover with
the ECMWF' model forecast of T at 1000mb and 850mb, both averaged over 16 gridpoints
and 5 forecast days. Again, the temperature close to the model surface is to be
preferred as a predictor. The 120 hour forecast is better than a day 3 persistence
forecast, and the 168 hour forecast improves on persistence used for day 5. The
850mb temperature does not reach the quality of a persistence forecast. In common
with all predictors is the fact that the best use of them will be made by applying
earlier timesteps than the actual verification time to predict the temperature

conditions five or seven days ahead.
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3.3.3 Meteograms of temperature

The quality of the temperature forecast can best be demonstrated by considering
meteograms of predicted and observed values. . In Figure 7, the 120 hour forecast

of the 2m~£eﬁperatures averaged over four gridpoints around the loéation of the
observing siﬁe and averaged over 3 days (direct model output). Warm and cold spells
are captured as well as the seasonal trend. Note the predicted temperatures below
0°¢c for a period of 10 days or so at the beginning of Febfuary and the verification.
Such information five days in advance and the predicted warming afterwards is of
extreme value for example to energy, construction, transport or the tourist industry.
The meteogram exhibits a tendency of the model to be too slow in capturing extreme
changes; instead, it maintains the extreme situations. The dashed curve in the

graph is the interpreted temperature forecast Y by just using predictor X.

a and b are determined through linear regression and the best relation is chosen.
In this case, the predictor turns out to be the 1000mb temperature valid at 96 hours
averaged over 16 gridpoints and 3 forecast days (one predictor case). The variance
of this interpreted temperature forecast is reduced but, as it can be expected in

one predictor case, it follows closely the model forecast.

Figure 8 gives the same meteogram for the day 7 forecast (168 hours). The model
errors are clearly growing and especially in January, when northern Germany was
snow covered, the model forecast at 2m above the>surface is positively biased.

Using the one predictor equation with the 1000mb temperature valid at 108 hours, the
bias is reduced but it cannot improve on model forecast errors in March. As can be
seen from Figure 9, averaging over 5 férecast days gives an improvement but the
tendency of the model to be slow in predicting major changes in temperature

conditions remains.

So far, temperature forecasts have been verified using the best single predictors.
In the multiple predictor case, which will be considered next, many predictors are
offered to the multiple linear regression program (see Appendix) and several optimal
equations for up to 4 predictors are obtained. The application of the optimal

regression program is documented in Technical Memorandum No. 55 (Grgnaas, 1982).

The addition of more predictors will improve the result in terms of explained
variance but, with this small sample, it is difficult to obtain stable solutions

and it is necessary to test the equations on an independent data set.
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HANNOVER TEMPERATURE FORECAST
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Meteogram of observed and predicted 3-day mean temperature for Hannover,
January to March 1981, The forecast is valid on day 7 and averaged
over four gridpoints. See text for further details.
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The following example demonstrates what can be obtained by using more than one
predictor in our data sample. Figure 10 shows the resul% derived for Hannover in
the verification of the three day mean surface temperature. Four curves are shown, (i)
the explained variance of the persistence forecast, (ii) the direct model output of the
four point average 1000mb temperature (T at 1000mb), (iii) the best single predictor
(T(lOOO)fime off set) revealing, what we have called the model persistence temperature
forecast, and (iv) the result using four predictors (RMAX). It is clearly

shown that, after day 5, the model persistence gives a better score than the direct
model output. The curve for the explained variance using four predictors runs

nearly parallel to the curve for the model persisteﬁce and only approximately 5%

more variance is explained for all forecasts up to nine days. The choice of
predictors seems to indicate that the regression equations try to correct for

typical flow errors but it is otherwise hard to interpret the results any furthér.
One can look upon the upper curve as a potential that might be achieved using

regression methods.

A potential increase of 5% in the explained variance using 4 predictors compared
with the simple result using one predictor seems to be modest and indicates that
model correction will be difficult to do using regression methods. In more '
Eomplicated terrain, more than one predictor will often be necessary just to correct
for sub-scale influences but, otherwise, good results should be achievable using

one or two predictors.

4. SUMMARY AND CONCLUDING REMARKS

In this study, local temperature forecasting in the medium range by the ECMWF
operational model has been investigated for two central European stations, De Bilt
and Hannover. Linear regression technique has been used to find optimal predictors
to forecast the daily mean temperature, the 3-day mean temperature and the 5-day
mean temperature. As potential predictors, forecasts of all surface parameters and
upper air forecasts of temperature, wind, height and humidity for the pressure
levels 1000, 850, 700 and 500 mb have been offered. For De Bilt,only forecasts
from the closest gridpoint have been used, while for Hannover, averaged over 4 and
16 surrounding gridpoints have been offered additionally. The data samples were
small, comprising just two months, January and February 1981 for De Bilt and three

months, including March 1981, for Hannover.

Temperature forecasts from the model's boundary layer were found to be the

best predictors for observed surface temperatures. As expected at both

stations, the temperature conditions are closely related to the synoptic flow, and
just one predictor explains a large fraction of the observed variance of the

temperature. The predicted surface temperature and the 1000mb temperature are by

20
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far the best single predictors and better than any of the other upper air temperature
predictors that were offered. The 1000mb temperature proves to be the somewhat
better predictor in the medium range, while the model's 2m temperature has some
advantage in the short range. The use of area mean predictors has rglatively little
effect on the forecast, compared to the benefits from the use of ‘time averaged

predictors.

In the medium range, time averaging reduces the effect of phase errors in the
migratory waves. The 3-day mean temperature has shown to be a suitable predictand
for medium range forecasting, and the model revealed considerable skill in predicting

this 3-day mean temperature at the two stations even out to forecast day 7.

For temperature forecasts beyond day 5, best results are achieved by using the

model persistence from day 4% or day 5. These 3-day mean time off-set predictors
ine reasonably good results even out to day 9. This does not necessarily mean that
there is no useful information left in the model after day 5 or day 6. The data

sample was not large enough to come to any general conclusions.

Optimal regression equations were derived with up to four predictors.

Little seems to be gained by using more than one predictor for these stations and
equations with three or four predictors were difficult to interpret. With data

from short time periods, any regression will tend to overfit the data and predictors
might just be selected at random and the equations will be valid only for the
dependent sample. The verification results for Hannover and De Bilt show that
statistical interpretation of ECMWF model output can be kept relatively simple

and should mainly be confined to correction of biasses and some sub-grid scale

influences.
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Appendix A

The optimal regression method

The starting point for this method is the theory of linear multiple regression

analyses which is thoroughly described in textbooks on statistics.

It deals with data containing two or more variables measured for a set of events ox
set of objects. For example, we may have varlables consisting of observed and
forecast temperatures at a station and for a set of each day in a season. In
general, we have p variables and n events, so that the data matrix contains n x p
pleces of information. The method of least squares is used to establish the
statistically best linear relation between one of the variables, called the
predictand, and the remaining variables i called the predictors. From the method,
weights are computed giving the relation

p-1

y=1 a,x + e,
i=1

where e is the residual not explained by the predictors. A multiple correlation
coefficient can be computed, giving the fraction R2 of explained variance of the

predictand by the predictors in the relation
’ 2 .2 2
var(y) = R var(y) + var(e) = R” var(y) + (1-R) var (y)

Very often, the number of predictors is high, and we are interested in a small
subset which explains an optimal amount of the variance of the predictand. For
this purpose, certain screening methods are available and the optimal regression
method is one of them. It may be considered as an extension of the most common

screening procedure, the stepwise regression procedure.

In the stepwise regression procedure, the best single predictor is first found.
Then a second predictor, which together with the first predictor, explains the
highest amount of the variance, will be picked out. The procedure will then
contimie to find a third predictor which, together with the first two, gives the

best result and so on, until a regression equation of n predictors is found.

In the optimal regression method, all possible linear combinations on one, two,
three, four, ... variables are investigated and several of the best relations for
each step are picked out. 1In this way, we may keep the number of predictors on a

low level and get the simplest possible relations.
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Let, for 1nstance, the amount of precipitation at a synoptic station in a
mountainous area be the predictand, and the surface bressure at that station and the
surrounding stations be the predictors. The cloudiness at the station itself might
possibly be the best single predictor, but the best pair of predictors could be
properly scaled east-west and north-south pressure gradients given by the surrounding
stations, indicating a wind component towards the mountain slope. This would be
found by the optimal method, whereas the stepwise regression procedure will keep

the cloudiness-as the first predictor.

The optimal method will, in addition, give several equations, which may be important
when we try to understand the relations.  However, the method is, as explained

later, relatively expensive.

A computer program for the optimal regression technique was first written by
J. Nord8 at the Norwegian Meteorological Institute, and the application éf the
method is described by J. Nord8 (1966). A description of a computer program
available at ECMWF is written by S. Grgnaas (1982).

The theoretical foundations may be found in textbooks on statistics, for instance,

G. Udny Yule (1949).

As mentioned, the explained variance, expressed by the square of the multiple
correlation coefficient, is computed for each combination of 1,2,...,n predictors,
and a certain number of the very best combinations are selected on each level.

In order to compute the variance, a recursion formula is used. It gives the impact
in terms of explained variance by adding a new predictor. By introducing a notation,
which expresses the effect of predictor m on the predictand 1 when the predictors

2 to m-1 are already taken into consideration, the following orthogonal recursion

formula can be written:

2 _‘__2 _2 _.2 _2

Rz, .m0 ) (o g ) (e o)) e e s )
2 2 2

= (1=

Ri,234. -1 TRy 0340 mer) Fim, 234, L met

where

2

fim,23...m-2 " Tim-1,23...m-2 Fmm-1,23. . .;m-2

r =
1m,234...m-1 / -
=T 1,23, . w2

2

mm—1,23...m—2)

) (1-r
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The corresponding regression equations can easily be computed once the correlations

are present.

In the program used in this study, cembinations of i, 2, 3 and 4 predidtors are

investigated and a list of the five best relations at each step is given.

p(p-1) (p-2) (p-3)
1.2.3.4

For p predictors,
different residuals have to be inspected and, therefore, the computer time increases

considerably with the amount of predictors. The program allows for 100 predictors

and smaller subsets can be selected for each run.
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