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ABSTRACT

A technique is described which explicitly uses mformatlon about the geostrophlcally-balanced
dynamical instabilities of the flow to construct initial perturbations for ensemble prediction.
Preliminary results from earlier experimentation are summarised. The technique is applied in the
construction of a set of 24 15-day ensemble forecasts, where each ensemble comprises 32 individual
integrations of the T63L.19 Cycle 36 model.

The set of ensemble forecasts is validated using Brier and Ranked Probability Scores on the 500 hPa
height and 850 hPa temperature fields. It is found that the ensemble forecasts are more skilful than
the control (or deterministic) forecasts beyend about day 2. However, beyond day 7, the ensemble
forecasts do not consistently beat a (probability) forecast of climatology. The more conventional
spread/skill correlations are examined. These indicate that the ensemble spread is a good predictor
of skill in the short-range.” A number of practical probability forecast products are shown,
concentrating on days 5-7 where they may have most impact on operational practice.

Improvements to the technique are described, including the'calculation of the dynamical instabilities
in the same primitive equation model used for the nonlinear integrations, and use of an estimate of
initial error covariances as a constraint in the calculation of these instabilities.

Outlines of a real-time ensemble prediction experiment planned to begm in the winter of 1992/93 are
given.

1. ~ INTRODUCTION
Ensemble prediction is a potent1a1 method of estunaung forecast predlctablhty beyond the range, typically

3 days, in which error gxowth can be described by linearised dynaxnlcs. The ensemble forecast is a set of
integrations of a deterministic numerical weather prediction (NWP) 'nklodel; these integrations differ only in
their initial states, reflecting uncertainties irt such starting conditions. In essence, the ensemble prediction
is an attempt to estimate the nonlinear evolutlon of the forecast error probablhty dlstnbutlon function (PDF)

through a finite sample of deterministic forecast 1ntegratxons

One of the fundamental difficulties in this approach lies ’in the choice of initial conditions for the individual
members of the ensemble. From the definition above, these must reflect an adequate sampling of the
probability distribution function of analysis error. However, the phase-space dimension of current NWP
models is well in excess of a million; this can be cotrtpared with a maximum practicable ensemble size,
currently less than one hundred. Hence, without some strategy for determining ensemble initial conditions;

sampling error will be too large to make ensemble prediction useful.



Among the consequences of inadequate sampling are an underestimation in ensemble dispersion, and an
overestimation of forecast predictability. In such a situation the individual members of an ensemble might
each forecast a common but unrealistic flow type. An example of this can be seen in earlier studies (e.g.
Hollingsworth, 1980) where perturbations to an operational analysis did not survive initialisation, though

‘the problem remains endemic (e.g. Brankovic et al., 1990).

During the linear phase of error growth, an initial isotropic error ball will evolve into an ellipsoid. Initial
phase-space directions can be characterised according to whether they map onto the amplifying or decaying
axes of the elhpsmd Further evolutlon of the elhpsord into the medium range w1ll be nonllnear, and will
ultunately reﬂect the mult1 modal nature of the weather-regnne structure of mld-latltude ﬂow (Moltem et
al., 1990).

With a limited ensemble sxze 1t is 1mpoxtant, for medtum=range predrctton, to sample those trajectories
starting w1thm the initial error ball whtch evolve to s1gmﬁcantly different large-scale ﬂow patterns, such
as weather reglmes Our results suggest that a promising strategy for plckmg the trajectones ‘which define
these fundamental medlum-range forecast alternatives is: first to calculate the initial phase-space directions
which are associated with the dominant major axes of the short-range forecast error ellipsoid, and then to
integrate, nonlinearly, the members of the ensemble from the initial conditions associated with these
directions. In estimating the forecast error PDF with such a procedure, larger weight should in principle
be given to the control forecast from the centre of the error ball, since this trajectory will be representative
of all the decaying (or weakly growing) phase-space directions, not chosen for explicit integration in the

ensemble.

The techmques to calculate the growmg perturbations from both composrte and reahstlc 1mt1a1 states has
been descnbed in Moltem and Palmer (1992) usmg a 3-1evel quasr-geostrophlc (QG) model A lnnlted
study of the use of such perturbatrons m a set of ensemble forecasts camed out w1th the ECMWF T63

'model was descnbed by Mureau et al (1992) Results from these two papers are summansed in sectton 2

In practtce, the 1mual error dlstnbutmn isnot 1sotroprc 1n phase space The spatrally 1nhomogeneous nature
of data coverage makes the structure of the PDF of 1mt1a1 error rather complex Nevertheless, for reahstlc
ensemble predtctton studtes, some account of these mhomogenemes must be taken The study descnbed
in this paper uses the QG instability calculatrons, modulated by knowledge of the Opt1ma1 Interpolatton (OD
"analys1s error vanance fields, to generate a set of 24 ensembles of integrations of the ECMWF T63 model
Each ensemble forecast comprises 32 individual 1ntegratlons Details of the techmque used to generate the

1mt1a1 condrtlons for the ensembles are descnbed in sectton 3



A second difﬁcul;y with the ensemble technique lies in the post-processing of forecast products. With tens
of individual iritegrations, the choice of appropriate and manageable post-processed fields is problematic.
There are two (somewhat differing) demands - firstly the need to verify objectively the ensemble forecast,
and secondly the requirement to provide useful forecast products. Attempts to fulfil these different needs

are described in sections 4 and 5 respectively.

The ensemble technique described in this paper is still preliminary. Two further developments are currently
being tested: firstly, linearised calculations of the semi-major axes with the same primitive equation model
used for the ensemble forecasts, and secondly the incorporation of initial error covariance estimates into the
calculation of the semi-major axes. Some preliminary results are included in section 6. Plans for a real-time

ensemble-forecast experiment are described in section 7.

2. SUMMARY OF EARLIER RESULTS

The formulation of the experimental procedure described in this paper follows studies of finite-time linear

. instabilities in a T21L3 QG model. Experiments were made to assess how these instabilities grow when
interpolated onto the T63L19 grid and integrated nonlinearly in a primitive equation model beyond the range
in which linearised dynamics is applicable. These earlier studies are documented in Molteni and Palmer

(1992) and Mureau et al. (1992), results from which are briefly summarised here.

For chaotic systems, trajectories which are initially sufficiently close, diverge asymptotically at an
exponential rate given by the positive Lyapunov exponents characterising the average predictability of the
whole attractor set. The divergence rate for finite segments of a trajectory are given by the singular values
of the "propagator’ R(t,,t,) of the linearised equations of the dynamical system, integrated over a nonlinear
trajectory segment between time ¢, and #,. For finite ¢,-2,, the divergence rates need not be exponential. The
corresponding phase-space directions associated with the divergence rates are the singular vectors (SVs) of
R, equivalent to the eigenvectors of R'R (Lorenz, 1965; Noble and Daniel, 1977; Lacarra and Talagrand,
1988). Here "™ denotes the adjoint operation, defined in the work below with respect to a kinetic energy
(QG model) or total energy (primitive equation model) inner product. ‘

In Molteni and Palmer (1992), the optimal SVs were calculated in both barotropic and QG models, for a
number of basic state flows, including both composite circulation patterns representative of observed weather
regimes, and particular realisations of such regimes. The main conclusions can be summarised as follows:
i) For integration times up to about 15 days, the growth rates of the optimal SVs are up to an order

of magnitude larger than the most unstable normal mode instability. The amplitude of such SVs

can double in less than 12 hours.



ii) - Optimal SVs in a'barotropic model grew significantly faster in a weather regime which has a
+- negative Pacific/North American (PNA) teleconnection index (anticyclonic flow in the NE Pacific),
‘compared to-one which had a positive index (cyclonic flow in NE Pacific), consistent with earlier
~studies on relationships between medium-range forecast skill and the PNA index (Palmer, 1988).
iii) Unlike in the barotropic model, the linear evolution of optimal baroclinic SVs on a smooth basic
state with only planetary-scale structure has little upscale energy cascade from synoptic to planetary
- scales. However, such upscale energy transfer occurs in the baroclinic model when the basic state
has : synoptic-scale structure (using basic state averages over short periods of time or; moie
. "appropriately, unsmoothed time-evolving basic states). After a few days on a time-evolving basic
state, initially small-scale linear baroclinic SVs develop a large-scale equivalent barotropic structure.
iv) If baroclinic SVs with initial amplitudes comparable to-analysis errors are allowed to evolve non-
linearly on a time-dependent basic state, then the non-linear Self interactions also involve upscale
barotropic energy transfer to large-scale equivalent barotropic structures.. These interactions tend

to damp the optimal linear growth described in iii).

Baroclinic SVs optimised for short time intervals, developed in an efficient and realistic way when
superimposed on time-evolving basic states. This suggested a strategy for the use of SV§ in non-linear

ensemble predictions with the primitive equation model.

In a test of this strategy (Mureau et al., 1992), four wintertime initial states were chosen, three at random,
and one because of substantial development in the large-scale flow within four days, which the control
forecast completely missed.. A set of SVs was created using the QG model linearised about basic states
taken from data close to the chosen initial dates. These SVs were interpolated onto the primitive equation
model grid, and used as perturbations-to the initial state. An ensemble forecast comprising 40 members was
made from the perturbed initial states. : o ’ ‘

Theé dispersion of this ensemble was compared, for each date, with that from a second ensemble with initial
perturbations constructed from 6-hour forecast errors (FEs) from days immediately preceding the initial date.
All perturbations were normalised to have a 10m rms amplitude of 500 hPa height, averaged around the

northern hemisphere. = - - R S o ;

The main findings of Mureau et al. (1992) were: -

i) -~ Throughout the (5-day) forecast period, the amplitude of the perturbations was noticeably larger
" using the SVs than using the FEs. o e

ii) In the case with substantial development, the dispersion of the ensembles using the FE perturbations

did not indicate that the control forecast was likely to be poor. Indeed the synoptic development



in all elements of the FE ensemble was similar at day 4. By contrast, the dispersion of the
ensemble using the SVs was notably larger for this case than the other three. A number of members
of the SV ensemble were particularly skilful in predlctmg weather-related elements of the flow, such
as 850 hPa temperature change.

iii) The overall rms dispersion of an ensemble integrated with the QG was better correlated with skill
than the T63 ensemble. The T63 spread/skill correlation was improved if the envelope or maximum
dispersion was used. It was concluded that these T63 problems were associated with inconsistencies
between the QG and T63 models, particularly with regard to vertical resolution and orography.

iv) It was found that the evolution of perturbations, initially localised over the western Pacific, or
western Atlantic, developed blocking-like structures several days later, over the eastern oceans.
Case studies of blocking development in the real atmospher'e have indicated similar development
(U et al., 1992). L

3. EXPERIMENTAL DESIGN ,

Based on the results in section 2, a more exiensive set of ekpeﬁments,was devised to study the role of SVs
for generating initial conditions for ensemble forecasts. Further development of the technique enabled the
initial perturbations to be more compatible with analysis error statistics. The technique used to generate the

initial perturbations for this study can be summarised as follows (see also the flow diagram on the next

page):-

3.1 Perform 15-day integration for each of 24 chosen initial dates with the T63L.19 CY36 and with the
T211L.3 QG model

The initial dates (see Table 1) were chosen on the basis of some significant development (e.g. blocking, cut-

off low etc) in large-scale flow occurring around day 5-7 of the forecast. The control QG forecast was made
relaxing the QG integration towards the T63 control. These relaxation tendencies were stored for use in step
6 below. ' '

32 Calculate 12-hour optimal SVs using the QG model

Following Mureau et al. (1992), the 12 hour optimisation time was partly chosen to minimise
inconsistencies between the QG and T63 models. However, as found in Molteni and Palmer (1992), the
difference in the QG model between a 12-hour optimal SV and a 2-day optimal SV, both evaluated at day 2,
is not very great. Using the QG model at T21L3 re‘solution, the entire spectrum of SVs was available.
Some 500 hPa height perturbations from a selection of SVs are shown in Fig. 1 from data from 17 January
1989.
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33 SVs with maxima over orography and over the Southem Hemisphere were rejected.
The rejection of SVs over orography was necessary because of severe inconsistencies between the QG and

primitive equation model formulations. Rejection of SVs over the Southern Hemisphere was based on the
assumption that the effects of initial errors in the Southern Hemisphere on the Northern Hemisphere forecast

were relatively unimportant over the medium-range forecast period.

34 Set amplitude of 1st 32 remaining SVs to be consistent with the Optimal Interpolation (OI) estimate
: of analysis error

Details of the calculation are given in the appendix, but can be summarised as follows Let E; denote the
500 hPa height components of the set of SVs, then we find coefficients o, such that —E (o,E',)2 is as close
as possible to a stat1st1cal estlmate of mmal error of 500 hPa hexght The set o‘ are then given by a variant

of standard linear regression analysis methods. In practice, since it is widely felt that the OI estimate of
analysis error is not particularly reliable, the estimate of initial error variance was chosen to be the

maximum at any grid point of the OI estimate, and the magnitude of recent short-range forecast errors.

3.5 Perform phase-space rotation to_delocalise individual perturbations

As shown in Fig. 1 individual SVs can be somewhat localised. Such SVs are not representative of
hemispheric-wide analysis énor. Without some delocalisation, ensemble dispersion on a regional scale could
be dependent on the time taken for SVs to disperse into thé region of interest. In practice delocalisation
was achieved by making a lmear combination of SVs, equivalent to a phase space rotation (see appendix).

500 hPa height perturbations from a selection of normalised rotated SVs are shown in Fig. 2.

3.6 Make 64-member 15-day ensemble with the QG model

Positive and negative perturbations of the analysis A were chosen, so that the ensemble of initial states is

given by A+f, A-f;, j=1,32 (where A is the analysis and f; is the perturbation). The relaxation tendencies
from the control QG integration were applied as a prescribed time-dependent forcing for each of the
perturbed QG integrations. The tendencies can be thought of as a crude "physics" parametrization, ensuring
that the QG model fields were not too dissimilar to those in the T63 model.

3.7 Use cluster analysis on day 5 QG forecast fields to identify 32 representative perturbations

As it is currently impracticable to run a 64-member ensemble With the T63 model, it was necessary to
choose a subset of representative perturbations. This was done on the basis of their impact on the medium-
range forecast using the QG model. The Ward hierarchical clustering algorithm (Anderberg, 1973) was
applied to the northern hemisphere fields to reduce the perturbations to 32. ’



3.8 Make 32-member 15-day ensemble with T63 model, and archive selected fields

Only a small set of fields was archived because of storage constraints.

4. VERIFICATION

4.1 Spread-skill correlations
Perhaps the most familiar measure of the success or otherwise of an ensemble prediction is its ability to

determine the skill of the deterministic control forecast through the -overall dispersion of the ensemble. -

Fig. 3 shows the correlation between the skill of the control forecast, and both the 64-member QG ensemble
spread and 32-member T63 ensemble spread as a function of forecast range. The correlations are calculated
from 500 hPa helght over the whole northem hemlsphere, and are presented for both anomaly correlatron
coefficient (ACC) and RMS error.

Before discussing these’ correlations it should be remarked that, even for a perfect model the correlation
~ between ensemble spread and skill of the control will not necessarily equal unity (Murphy, 1988). In using
the ensemble spread to forecast the skill of the control there is an implied sampling error; the spread could
just as well be used to forecast the skill of some otheér members of the ensemble. In a perfeet model we
can assume that one element of the ensemble is identical to the verifying analysis. Results from our

ensembles suggest a maximum spread/skrll correlatlon of 0.8 throughout the forecast range

For ACC (Fig. 3a) correlations between day 1.5 and 4 are around 0.6 in both models. Thereafter the QG
correlations drop to zero, whilst the T63 correlations only drop below 0.5 by about day 6. For RMS
correlations (Fig. 3b), the QG model appears more skilful than the T63 out to about day 10. At day 3 the
QG RMS correlatlons are not far from the maximum value attamable ' ’

Inevitably, the curves in Figs: 3 a,b show some day-to-day noise. These are effectively filtered out in
Fig. 3c, which illustrates the ACC spread/skill correlations for 5-day mean fields. Again the QG model
correlations appear superior in the medium range, whilst the T63 model résults are fairly independent of

forecast range.

Tests (using 32-member QG ensembles) have shown that the apparent superiority of the QG model in the
medium range does not arise from its larger ensemble size. ‘Rather, we believe, it is associated with the
conmstency of the nonlinear integrating model with the initial perturbations. It is anticipated that the use
of the pnmltlve equation model to calculate the SVs in future expenments (see sections 6,7) will enhance

the T63 spread/skill correlatlons above those shown here.



The measure of spread used in these calculations involves the calculation of the RMS distance from the

control of the individual forecast elements. This could be referred to as an I2 measure of spread. We have
also calculated spread/skill correlations using the [* (or envelope) measure, defined as the maximum

distance between ensemble members and the control. The ACC [* spread/skill correlation calculated on 5-
day running mean fields is shown in Fig. 3d. It can be seen, beyond about day 5, that these correlations
are not as high as those in Fig. 3c. However, in the short range, there is some improvement, particularly
for the T63 ensembles (e.g. at day 3 the /2 correlation is .62, whilst the [* correlation is .68, corresponding

to an 8% increase in explained variance). This result is consistent with earlier studies from Mureau et al

(1992) again suggesting problems interpolating some of the QG SV perturbations onto the T63 grid.

4.2 Ranked Probability Score
‘In order to validate the ensemble forecasts without specific reference to ihe conirol, we have calculated
Ranked Probability Scores (RPS) on 850 hPa tEmperature anomaly”categories over Europe. Three

* categories, defined as less than -2 K below chmatology, within 2 K of chmatology, and greater than 2 K
above climatology were chosen. Chmatologlcally, each category is approx1mately equxprobable

The RPS (Epstein, 1969) is a derivative of the Brier score, and is more iapp'ropriate then the latter in
situations where the given categories can be oArderedk. The Brier score is obtained as the sum over the given
categories of the mean square difference between the ensemble forecast probability for that category, and
the a posteriori probability: 1 for the observed cluster, 0 for the others. (The control forecast probabilities
equal 1 for the predicted category, O for the others,) The Brier score for climatology is given using the
climatological probabilities for the forecast Categories. - The RPS is defined in a similar way to the Brier
score, except that instead of being based on the categorical 7pr0babilities, they are based on the cumulative
probabilities that the ensemble forecast lies in a category equal to or less than a given category. The mean
square difference between forecast and analysis is then calculated on these cumulative probabilities.
Compared with the Brier score, the RPS does not penalise a forecast which_is one category in error as much

as a forecast which is two categories in error.

Fig. 4-5 .shows maps of RPS over Europe 'for days 5 and 7 respectively. In these Figures, the top map
shows the RPS score for the ensemble forecast, the bottom shows the RPS score for the control forecast.
Where the map is unshaded (RPS>44), the forecast is inferior to a probability forecast of climatology.
Otherwise, the heavier the shading, the better the RPS score.

It can be seen at day 5, that whilst the RPS score from the ensemble forecast is almost everywhere better

than climatology, the RPS score for the control is worse than climatology over about half the area shown.



Moreover, the ensemble forecast is more (RPS) skilful than the control almost everywhere. - At day 7, whilst
the ensemble RPS score is more skilful than climatology over most of Europe, the deterministic forecast is

less skilful than climatology over most of the area.

The mean RPS scores, averaged over Europe (30-80N, 30W-30E), are shown in Fig. 6, as a function of
forecast time. Consistent with the results above, the ensemble is always more skilful than the control, but
more skilful than climate up to day 7 (beyond which the score has effectively -asymptoted). -Some -
improvement in the RPS score of both control and ensemble, relative to climatology, could be made if the
forecasts were corrected by the mean bias of the model at each grid point. Such a bias correction, however,

would not change the relative skill of the ensemble forecast compared with the control.

4.3 Categorical prediction of climatological "Grosswetterlagen”

The Ward hierarchical clustering algorithm was applied to 12 winters of 500 hPa height analyées to define
a set of 12 basic climatologicel types over Europe. These 12 clusters together explain 41% of the total daily
- variance over the 12 winters. These clusters are illustrated in Fig. 7, together with the cluster frequeney
determined firstly from the analySis (top left hand of each panel) and secondly from a set of 15 120-day
integrations of the T63 Cy 36 model (top right hand of each model). There are substantial biases in the
model climatic frequency distn'butions. Note for example the model’s overestimation of the frequencies of
cluster 1 (zonal flow) and the Scandinavian ridge (clusrer 12), and the underestimation of frequencies of east
Atlantic blocking (e.g. clusters 8, 9, 10). These are consistent with known errors in the .cli_mate of the

model.

Categorical forecasts were made from the 14 winter (DJF) ensemble cases. Fig. 8 shows the Brier score
of the control (dashed line), the ensemble (solid line), and climatology, as categorical forecests of these
12 clusters. The Brier score assessment for these clusters tests the ensemble in a different way to the RPS
scores given above; firstly because itkis not possible to order the clusters, secondly because the mrnrber of
categories is much larger, and finally because only winter cases are chosen. (There is some evidence -
Ferranti et al., 1992 - that the model climatology of low-frequency ‘variabi_ylity over the Euro/Atlantic sector
is more accurately represented in the transition seasons than in winter.) Results show that up to day 2, both
control and the ensemble are essentially perfect. Beyond day 2, the ensemble ‘foreca‘s't is superior to the

control. However, at day 6 and beyond, neither forecast beats climatology.

We have studied the correlation betWeen the skill of the most populated forecast cluster, and its population.
Consider a forecaster who issues a deterministic forecast based on the cluster with largest ensemble
population, but only provided that population exceeds some threshold (and issues no forecast if the largest -
ensemble population does not exceed‘ this threshold). In order to detexmine whet this threshold should be,

10



there are two criteria that he will have to trade off against one another. The first is that the forecasts he

issues are as skilful as possible. The second is that he issues as many skilful forecasts as possible.

Fig. 9 shows these two criteria plotted for forecast days 3-6, as a function of the threshold. The light line
shows the percentage of those issued forecasts that are correct. The heavy line shows the percentage of all
the correct forecasts in the total sample of ensembles that will be issued. For example, for day 3, if the
threshold was chosen to be 33, then every forecast issued would be correct, however, the forecaster would
issue only 22% of the total number of correct forecasts, ie 78% of forecasts which turned out to be correct
would remain unissued. For day 3, however, the forecaster could use a much lower threshold of 24, such
that all his forecasts were still correct, and 90% of all correct forecasts would be issued. Altematively, if
he decided to use a threshold of 23, all the correct forecasts would be issued, though only 82% of the issued
forecasts would be correct. (With a threshold lower than 23 all the correct forecasts would continue to be

issued, though a smaller fraction of the issued forecasts would be correct.)

. At day 4, the trade-off between the two criteria becomes more important. If the forecaster wanted his
forecasts to be totally correct, he would choose a threshold of 28, but only issue 38% of correct forecasts.
If he was prepared to tolerate a 70% accuracy of issued forecasts, then all of the correct forecasts would
be issued. Similarly at day 5, a 70% accuracy of issued forecasts would ensure about 90% of correct
forecasts were issued. At days 6 and 7 (not shown), the relationship becomes more difficult to interpret.
For example, accepting 70% accuracy of issued forecasts at this range implies a minimum threshold of 29,

which means that less than half of the correct forecasts would be issued.

Essentially these results confirm the Brier scores above, that useful skill (in predicting these clusters) is
limited to about day 5. However, it is worth commenting that significant ensemble failures at day 7
occurred when the verifying analysis cluster was one whose climatological frequency was underestimated
by the model. For example, at day 7, with a threshold of 27, only one of three issued forecasts would be
correct. That correct forecast was for the zonal cluster 1, whilst the verifying analyses for the two incorrect
forecasts were the "blocking" clusters 8 and 9. This suggests that model error limits the overall skill of the

ensemble forecast towards the end of the medium range.

5. SOME ENSEMBLE PRODUCTS
Fig. 10 shows 850 hPa temperature from individual members of an ensemble at day 5 of the forecast from

3 January 1987. The ensemble includes not only the T63 control forecast (1st row, 1st column), but also
the T106 operational forecast (3rd row, last column). The verifying analysis is shown in the last row, last
column. In general, forecast dispersion on this European scale starts to become significant at about day 5.

/
(For example, the forecasts in the third and fourth columns of the last row give a very different forecast of

11



temperature over western Europe.) Whilst the eye makes a reasonably good attempt at assimilating the
common elements of such forecasts, it is necessary to process objectively the information from the ensemble
in a more digestible form. The probability forecast product appears to be the most suitable tool. We give

some examples of such forecast products below.

5.1 Probability forecasts at fixed locations

Fig. 11 shows forecasts of 850 hPa temperature confidence interval for three gridpoints of the forecast from
3 January 1987, throughout the forecast range (15 days). At any foreCast.ﬁme the probability contours
(99%, 90%, 70% and 50%) bound a range of temperature values. So, for example, 70% of the ensemble
forecast temperatures fall within the range (or possibly ranges, see below) bounded by the 70% contours.
The dispersion of the ensemble can therefore be judged by the spreading of the probability contours with
forecast time. Superimposed is the control forecast (solid line) and the verifying analysis (dashed line).
It should be remarked that in the calculation of these probability estimates, a Gaussian smoother was
applied, for each forecast time, over the range of values at each grid point. The width of this smoother was

. such that the confidence interval in the first couple of days of the forecast is artificially broad..

Fig. 11a indicates a region in which the forecast dispersion is relatively small up to day 5. Here the
forecaster for this particular region could predict with confidence the cooling trend, within a possible error
bar of about three degrees. Beyond day 5 the ensemble clearly indicates a warming trend, though the
magnitude of this trend is now much more uncertain. For this region, up to day 5, the most likely evolution
according to the ensemble is close to the control, and also close to the verifying analysis. Between day 5
and day 9 it appears that the most likely evolution according to the ensemble is more skilful than the

control.

Fig. 11b shows the forecast evolution at a second gridpoint. Up to day 6 the falling, rising and falling
temperature trend of the control forecast is supported by the ensemble. At day 7 there is a bifurcation in
the probability distribution. This bimodal distribution suggests that there is no single "most likely" forecast
evolution, but two distinct almost equiprobable possibilities - a continuation of the cooling trend, and a
return to warmer conditions. In this case the control forecast followed the path of one of the forks, and the

verifying analysis took the other.

By definition, a probability forecast cannot be considered wrong if the verifying analysis lies in a region
of low probability. An example of this is shown in Fig. 11c. Between day 6 and day 9 at this gridpoint,
there was a strong cooling trend in the verifying analysis. Only one member of the ensemble captured this

development well, and this is indicated by the 99% contour line dipping down at day 9. In practice a
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forecaster would need to examine more recent forecasts to see whether the probability of this strong cooling

increased or decreased.

Fig. 12 shows the estimated forecast PDF at various points at day 6 of the forecast from 3 January 1987.
The control forecast (dark bar) and verifying analysis (light bar) are also shown. For cities such as Madrid
or London (or an oceanic point such as the north Atlantic), the PDF is reasonably gaussian with relatively
small standard deviation, and the ensemble supports the control. By contrast, for Oslo and Berlin, the
distribution is multi-modal. For Oslo, the control forecast indicates a temperature of about -9 C, whilst the
ensemble forecast indicates a maximum probability of -11 C, a distinct secondary maximum of -16 C, and
a low probability of colder temperatures. The verifying temperature for Oslo was about -19 C (falling to -
23C at day 7). For Berlin, there is a secondary maximum at -19 C which, at day 6, does not appear to
verify. However, on the next day, Berlin temperatures dropped to -18 C. In this case the ensemble

forecasts for Oslo and Berlin gave useful indications for the forecaster, absent in the control.

.52 Probability maps

The ability to give some warning of possible extreme weather is clearly an important test of the ensemble.
Fig. 13 shows a map giving the probability at day 7 that the 850 hPa temperature is either at least 10 K
warmer than climatology, or at least 10 K colder than climatology. The anomaly of the control and the
verifying analysis is also given. Note that whilst the control forecast missed the westward extension of the
cold pool over parts of Scandinavia, the ensemble prediction indicates a 10% probability of extreme cold
conditions for this area. As above the forecaster would have to wait for tomorrow’s forecast to assess

whether this small risk of extreme temperature was increasing or decreasing,.

5.3 Probability forecasts of flow-dependent clusters

In this section we give examples of the application of clustering algorithms to the ensemble members, to
produce a reduced set of possible forecast alternatives. Whilst probability forecasts based on this type of
cluster analysis are likely to be more useful in an operational environment than those based on the
climatological "Grosswetterlagen" clusters above, it is less straightforward to derive meaningful Brier Scores

from them, since the climatological probabilities of the clusters are flow dependent.
In one approach we have applied the Ward hierarchical clustering technique over the European region (30-
70N, 30W-30E) using 850 hPa temperature fields, reducing the fields to four clusters, which on average

account for about 50% of the original variance within the ensemble.

The four clusters at day 5 of the forecast from 3 January 1987 are shown in Fig. 14, with the cluster

population shown in brackets in the top right hand side of the cluster map. The rms error of the cluster is
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shown at the bottom right side of each cluster map. In this case (not always true!) the error of the clusters
increases as the population decreases, so that cluster 4, with the cold tongue, has just one member and

largest rms error.

In this case, the synoptic difference between clusters 1 and 2 is not very great. Colléctively this pattern is
overwhelmingly more probable than the "northward-pushing warm tongue" of cluster 3, or the "south-
westward plunging cold tongue" of cluster 4. The forecaster would be able to issue a forecast based.on
clusters 1 and 2 with reasonable confidence, though he should keep an eye on later forecasts for evidence

that either cluster 3 or 4 was in fact developing.

Overall, at day 5, one of the four clusters was more skilful than the control forecast in 18 of the 24 cases.
At day 7 one of the four clusters was more skilful than the control in 22 of the 24 cases. The histograms
in Fig. 15 show the percentage of times a cluster is more skilful than the control, compared with the cluster
. probability (based on 6 clusters of 500 hPa height over Europe). For days 3 and 5 the relationship is clear,

- the more populated the cluster, the greater the chance it will be more skilful than the control, though for
day 7 no relationship is apparent.

At every step in the Ward clustering algorithm, the increment in the squared distance summed over all -
individual members within each cluster, is as small as possible. (As such, the technique might well merge
a cluster with small population into a cluster with large population, rather than merge together two blusters
with large populations, even though the distance between the centroids of the large-population clusters was.
smaller). A second method has been studied (based on S00 hPa height fields) in which the increment in
the maximum distance between elements in a cluster is as small as possible at every step. In this method
the clustering algorithm is halted when this maximum distance exceeds 170 metres (approximately the
distance between randomly chosen 500 hPa height fields). Moreover, in order to ensure consistency between
different forecast days, the distance between two forecasts, used in the cluster algorithm, is taken to be the

maximum distance from days 4 - 7.

An example of this method is shown in Fig. 16 using the ensemble from 15 April 1990. Here three separate
clusters are identified. They are shown at days 5 and 7. Here the first two clusters have equal populations
of 15 members, the third has a much smaller population. Compared with the verifying analyses for days
5 and 7, the second cluster is quite skilful with cut-off low at day 5, and tilted trough/ridge system over
Europe at day 7. The cluster with just 3 members is noticeably less skilful.
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6. FUTURE DEVELOPMENTS

6.1 Calculation of SVs in a primitive equation model

The calculation of the SVs in the QG model enabled the whole spectrum to be estimated by conventional
matrix inversion algorithms. However, interpolation of the SVs into the full primitive equation model
destroyed some of the phase relationship that generated optimal growth. Problems associated with
interpolation were particularly severe in the vicinity of orography whose representation in the QG and

primitive equation models is completely different. -

Calculation of the primitive equation SVs ‘by matrix methods is not practi(':able; iargely‘because of computer
memory requirements. However, we have obtained from the Numerical Algoﬁﬂnn's ”Gro‘up',.‘ a bre releaSe ,
copy of the Lanzcos algorithm for finding the dommant eigenfunctions of symmetnc operatom The
algorithm does not require the matrix elements of R°R, but works by iteration on an mlual random vector '
The structure of the Lanczos algorithm is such that the extreme eigenvalues tend to emerge after only a 1ewj ,
iterations (Buizza, 1992). : ;

The Lanczos algorithm has been coded into the Integrated Forecasting System (I}FS),F‘and SVsof the T21L19
primitive equation have been calculated. Fig, 17 shows the amplification factdr for the specn'nm of growing
SVs evaluated at the optimisation time, here 12, 24 and 36 hours. ‘In order to' avoid estimating non-
meteorological SVs, the Lanzcos code was applied to N'R'"RN where N is the nornlal modefinitialisation'-
operator (here applied to the first 5 normal modes in the vertioal). It is interesting to note that therev é'reover :
60 SVs with an amplitude doubling time of 1 day or less. | SR '

Fig. 18 shows a number of streamfunction perturbations at about 500 hPa associated with SVs optimised
for 24 hours, calculated for a trajectory from 17 January 1989. It can be seen that the structure.of the SVs
are qualitatively similar to those in the QG calculations shown in Fig. 1. Both-calculations generate

perturbations near the entrance of the Pacific and Atlantic storm tracks.

Fig. 19 illustrates a problem encountered with the primitive equation caloulations. It shows the second SV
at levels 17, 18 and 19 at time O and after 24 hours of integration with the forward tangent,model._ It can
be seen that the perturbation amplitude is concentrated in a very thin layer near the surface of the model
reversing in sign between levels 19 and 18. If these low-level structures are mtegrated m the full IFS
model, they rapidly lose amplitude through damping by the boundary layer physics. Smce the version of |
the tangent model used to calculate these SVs is adiabatic, they are not damped by the Lanczos calculatlon

Work is currently underway to mtroduce a boundary layer scheme into the tangent model
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On the basis of results obtained so far, it is likely that future ensemble prediction will be made using the
IFS system' both for the nonlinear trajectory calculations, and for the calculation of the SVs. It is hoped that
the consistency obtained in the two calculations will lead to a superior forecast product. Full details of the
SV calculations in the IFS system using the Lanczos algorithm are given in Buizza (1992).

6.2 Incorporation of analysis error covariance into SV calculation

In the experimentation described in the main body of this paper, the OI estimate of analysis error variance
was used to determine the amplitude of the SV perturbations. = With the transition to variational data
assimilation, estimates of analysis error covariances are becoming available. It is possible to build into the

- eigenvector calculations, information about such covariances.

Let C be an estimate of analysis error covariance, then it is straightforward to show that this evolves at time
t, 1o RCR". The semi-major axes of the ellipsoid at ¢, are given by eigenvectors of this product operator.
At analysis time these are associated with the eigenvectors of CR'R. The analysis can be formulated to give

the SVs of R with initial normalisation constrained by C.

6.3  Product Development

We have given some examples of possible products in this paper. »Meny others, both for instantaneous and
time-average states are possible Probabilistic precipitation forecasts are examples of products being

developed at present Further work will refine the choice of products, for this feedback from Member State

- . forecasters will be crucral

One aspect we have nOt discussed in this paper is the time-evolution of the probability forecast estimates
from ensemble forecasts initialised one day apart. One would hope that if a particular event was indicated
with some small probablhty towards the end of the forecast range, then that probability would either increase
or decrease falrly smoothly as more recent forecasts become available. The ability of the ensemble to avoid
: mconsrstent predrctrons from forecasts initialised from consecutive days could well give it an important
advantage over the _convenhonal deterministic forecast. However, the extent to which this is true will have

to be determined from future experiments.

64 - Ensemble size

The number of growmg phase-space directions indicated in Flg 17 suggests that ensemble forecasts with
"more than a 150 members may be required to sample adequately the short-range forecast error PDF. As

computer power increases, and numerical techniques become more efficient, it will therefore be necessary

to consrder whether it would be more beneficial to integrate the ensemble with a higher resolution model,

or to mcrease the size of the ensemble. Whilst PDF estimates will in general become more rehable wrth .
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a larger ensemble size, estimates of the probability of extreme wind speeds and extreme precipitation rates

may become more reliable with a higher resolution model.

6.5 Model resolution for SV calculations

If the SV calculations were performed with a higher resolution model, the enhanced number of degrees of
freedom would probably increase the size of the growing spectrum, generating faster growing SVs with
smaller initial scale. However, given the results of Molteni and Palmer (1992) (see also section 2 above),
it is possible that such a high-resolution linear SV, optimised over a couple of days, say, Wonld"ev'oNe with
upscale energy transfer towards the synoptic pattems resolvable, at the end of the opt1m1sat10n period, with
the current T21 model. In practice, the growth of initial errors projectmg onto the 1mt1a1 structure of such
an SV would become nonlinear before the end of the optlmlsatlon time. From Moltem and Palmer (1992)
these nonlinear self interactions also involve upscale energy transfer, which tends to damp the final SV
amplitude compared with purely linear growth, As such the overall structure of the hlgh resolution
pelturbatxon at the end of the two-day period, may be describable by the linear SV of a lower-resolutlon

model.

These results suggest that the resolution of the model used for generating initial perturbations need not
necessarily be finer than the scale necessary to represent forecast ‘errors of interest. As such, for the
medium-range, the T21L19 resolution may well be satisfactory. Further work is necessary to clanfy these

1mportant issues.

6.6 Model development , ,
Probability forecasts from ensemble predictions are espec1a11y susceptlble to model systematic error. On

the one hand, simple biases can be handled; for by an a posteriori adJustment of proba_bll_tttes. However,
errors associated with failure to simulate certain types of flow regimes correctly are much more difficult to
correct for. As such, development and testing of physxcal parametrizations will contmue to be an essenual

component of research for ensemble forecasting.

7. A REAL-TIME EXPERIMENT v '
Starting winter 1992/93, an ensemble forecast will be run in real tirne. The SVs will be estimated using
the Lanczos algorithm in the T21L19 IFS system. These will be projected onto a 6-hr forecast error
covariance matrix, giving an amplitude for the individual SVs. Lmear cOmbi_nationsof SVs Will be used
to delocalise the perturbations. It is anticipated that each ensemble will comprise between 30 'and 40
integrations. The ensemble will be run for 10 days several times per week, with longer integrations fmm' ‘

time to time.
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APPENDIX 1

DEFINITION OF PERTURBATIONS AS LINEAR COMBINATIONS OF SVs

In order to define the amplitude and spatial structure of the N initial perturbations (in our ensembles, N =

32), we_proceed as follows.

a)

b)

c)-

d)

We select the N fastest growing SVs of the 12-h linear resolvent operator, ‘eliminating' those vectors ‘
which have more than 50% of their spatial variance over areas w1th latltude < 10°S or mean
orographic height > 1000 m. ' ' |

We assume that these N SVs are the leading eigenvectors of the éovaﬁance matrix C, of the initial

error at the QG-model levels, and neglect the variance explained by the otherv'veig'en‘vectors., In this

way, we can write C, as: ‘ ' e | |
C,=EXIE S Q:7Q»1 Al

where E is the matrix which has the N normalised SVs E; as columns, E‘ its transpose (equal to its
inverse) and X the dxagonal matrix of the vanances ol explamed by the SVs |

We assign appropriate values to the variances oi’ using mean-square-eﬁor ﬁelds]obtained from

optimum-interpolation estimates and very-short-range forecast errors (see below for more details).

We construct a set of N perturbations (which may have either positive or negative sign) in such a

~way that the covariance matrix generated by the perturbations coincides with C,. If P is'.the_mat'rix'

having the perturbations as columns, then it must be:

N-IPPt=C0 ‘ ' : . . ‘ i A.2

If we define the diagonal matrix W with elements:

from Egs. A.1 and A.2 we have:

Al



PP'=EWWE - A4
Eq. A4 is satisfied for any choice of
P=EWR | | A5

where R is an orthogonal rotation matrix such that R R' = I, Since the 12-h SVs have spatially localised

patterns, we can use the rotation matrix R to obtain perturbations with a more homogeneons spatial structure

-over the northern hemisphere.

In summary, once the SVs are computed from the linear resolvent operator, the final perturbations P, depend
on the values assigned to the error variances o;” and on the definition of the rotation matrix R. We shall

now discuss these points in more detail.

In order to define the o?, firstly we compute an upper bound for the error variance of 500 hPa

streamfunction in physical space x:
V(%) = max [ OI(x), FE(x) | : | A6

where Ol is an estimate produced by the optimum-interpolation analysis scheme, and FE is the mean-square
error of 12-h forecasts in the 5 days preceding the initial date of a given ensemble forecast. From Eq. A.1,

the variance in physical space corresponding to the diagonal of the C; matrix is given by:
Vo® = %, 6 EX®) k A7
Appropriate values for 62 can be chosen so that V,(X) is as close as possible to V(x).

In theory, this problem can be easily solvéd by least-square techniques. However, given the truncation of
the SV series to only N = 32 terms and the uncertainties in the estimate of V(x), direct least-square estimates
of the variances often provided unrealistic values for some of the SVs. Therefore, a mbre empirical
approach has been chosen, which is based on the concept of equipartition of variance between SV that cover
overlappihg areas. To do so, we fix an amplitude threshold €, and define for each SV the localisation
function:

H(x) =1 if EXx) > & A8

=0 otherwise
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Fromf‘these functions, we compute an overlap factor which, for each point, counts the number of SVs with
significant amplitude:

o) = Z, H(x) | , A9
For each SV, a ’local’ average of any spatial function f(x) can be defined as:
<f@>=/H® @&/ H®a A

and a realistic value for o, is computed as: -

(jl=<lE!|'\lV(é)/Iq‘!>l/<Ei2(L)>l : : - A.ll
- where
| Ni='mai<<0®>t.4) LT T e I e g

is an estimate of the number of perturbatlons covermg the same area as Ei. which takes mto account the
truncation of the SV series. ‘ ' o

Finally, the rotation matrix is defined by requiring that each perturbation P isa linear combinatiou of up

to 8 SVs. Since SVs with very s1m11ar eigenvalues ofien cover the same area with a phase shlft of about
1/4 of the dommant wavelength we lelded the 32 SVs in 4 submatnces Ek as follows

‘ Ek= { Ek,’ Ek+4',Ek+s' one y Ek+28 }l . ‘ } . k‘=',1:-q4v"., " e ‘:_ v' ‘ A.13
Then we computed the submatrices P, of the final perturbations as:
P, = E W, R, | o o AN

where the rows of the 8x8 rotation matrix R, are glven by dlscretlsed orthogonal tngonometnc functlons‘

of wavenumber 0 to 4.
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‘Table 1: Flow charactenstlcs of the 24 selected cases. Llsted are the flow types at day 0 and day
5 over 2 areas (m: meridional flow; z: zonal flow; tr: transient flow)

Atlantic/Europe Pacific/USA
870103 dO m (ridge) m (weak ridge)
d5 m (block at day 9) m (ridge)
870122 d0 m (block) m
d10 z (transition) z
870225 dO m m (ridge)
d5 m m (block, transition)
880214 dO m (ridge) = |z - B
» ds m. (ridge, varying) ‘I'm - - (ridge, transition)
880306 d0 m (ridge) m (ridge) '
da7 z (transition) m (ridge)
881111 do z lz s
d5 m (trans. to ridge) z
881202 doO m (block over Europe) z
ds m (trough over Europe) m (ridge over USA)
890117 doO z ' K3
ds tr z
890127 d0 m (ridge over Europe) m (block over USA)
d5 m (ridge over Europe) m (ridge over PAC)
890205 doO z m (block)
ds m (block, transition) m (block)
890301 d0 z . m (block)
: ds m (ridge, transition) m (block)
890325 doO m (ridge) v m '
‘ d5 \m ~ (amplifying ridge): "~ '|m"
890425 d0 z (trough over Europe) m
d5 tr (cutoff low, then m) m
891110 doO m (trough) z
d5 m (block, transition) Jzfm  {weak ridge) -
891204 do m (block) . z (weak ridge) ‘
T o a5 m (weak ridge) - ' * (intense ridge):
900117 do z Lt , m .. (ridge)
d5 m (ridge, cutoff low) z
900311 d0 m (weak ridge) m (trough)
d5 z . (weaker ridge) m (wavenumber 7)
900145 do0 z m
d5 m (cutoff low) z
901015 do m * (rough/ridge) . 1z
d5 m (block) z
901027 do m (block over Europe) m
ds m (ridge over Atlantic) m »
901213 dO m (ridge/trough) m (weak ridge)
ds m (block) m (intense ridge)
910106 do0 {1z . (block over Europe) z
ds5 m (block) z
910117 do m (intense ridge) m (ridge)
ds m (block) m (block)
910219 doO m (cutoff low) m (intense ridge)
d5 m (ridge, transition) m ‘(block)




Fig. 1 Example of 500 hPa height perturbations from 12-hour singular vectors (numbers 1,2,3,4,9, 10) calculated from
' .the Quasi-Geostrophic model from data for 17 January 1989. Contour interval 10m.



Fig. 2 Example of initial perturbations .in 500 hPa height calculated from the singular vectors for 17 January 1989.
Contour interval 10m. o ' : ‘ N . :
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T850 RPS Ensemble; contour interval: 10
Day: 5.0

-::;.{.3.7 B4 " Ao N

T850 RPS Control; contour interval: 10

- Fig. 4  Spatial distribution of Ranked Probability Scores for day 5. Based on three equiprobable categories for 850 hPa
temperature. Top diagram ensemble forecast. Botiom diagram control forecast. RPS contours 10, 20, 30 ...
shown as solid lines. RPS contour of 44, associated with the skill of a climatological probability forecast, shown
as dashed line. Forecast is superior to climatology where shaded. The heavier the shading the more skifful the

forecast.



T850 RPS Ensemble; contour interval: 10

T850 RPS'Coniroil;w:con'iour interval: 10
| Day: 70

Fig. 5 As Fig. 4 but for day 7.
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Fig. 6 Ranked probability scores as a function of forecast time, averaged over European reglon The dashed curve
indicates the score of the control, the solid curve the score of the ensembie. :



8.7 CLUSTER CENTROID 119-1 0 CLUSTER CENTROID 4 5.6

10_5CLUSTER CENTROID 212.4 8.1 CLUSTER CENTROID 5 6.5

Fig. 7 Clusters of 500 hPa height calculated from 12 winters of data. Above each panel is the observed frequency (top
left) and simulated frequency from a set of 120-day integrations with the T63 model (top right).
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Fig. 8 Brier score of control forecast (dashed), ensemble forecast (solid) and climatology (dotted) from clusters shown

in Fig. 7.
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870103 278 day: 5.0

B70103 280 day: 5.0 870103 283 day: 5.0
: i | |

%

Fig. 10 850 hPa temperature from an ensemble of T63L19 integrations at day 5, initialised on date of 3 January 1987.
The black contour is 0C, and the (colour) contour interval is 5C.
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Fig. 11 a-c. Confidence intervals for the ensemble forecast from 3 January 1987 of 850 hPa temperature. Shown at
three grid points throughout the forecast range. Contours shown are 99%, 90%, 70% and 50%.
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870103 12z day: 7.0 - 7.0 870103 12z day: 7.0 — 7.0
a) 71850 +10K above Clim cont.: 10 b) T850 —10K below Clim cont.: 10
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870103 12z day: 7.0 — 7.0 870103 12z day: 7.0 — 7.0
Cc) T850 Anomaly control CONT.: 2 d) T850 Obs Anomaly CONT.: 2
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Fig. 13 Day 7 forecast of 850 hPa temperature from 3 January 1987. -
a) the probability that temperatures are at least 10K above climatology
b) the probability that temperatures are at least 10K below climatology
c) the forecast anomaly of the control
d) the observed anomaly



Clusters day 5.0 870103

(explained variance: 54.1 %)
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Error: 2.5
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Fig. 14 a-d Four day 5 clusters of 850 hPa temperature defined by reducing the variance of the ensemble shown in
Fig. 10 using the Ward hierarchical clustering algorithm. The probability associated with each cluster can be
obtained from the clusfer density, respectively 15/32, 14/32, 4/32 and 1/32.



a) 6 clusters RMS Eur Z 500hPa T63 Day: 3.0 b) 6 clusters RMS Eur Z 500hPa T63 Day: 5.0
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c) 6 clusters RMS Eur Z 500hPa T63 Day: 7.0
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Fig. 15 Histograms showing the number of occasions that a cluster was more skilful than the control, as a function of
the fractional population of the cluster: a) day 3, b) day 5, c) day 7.
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7 DAY FORECAST THRESHOLD : 175m
15 ELEMENTS
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5 DAY FORECAST ~ THRESHOLD : 175m DATE : 900415
15 ELEMENTS
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' Fig. 16 continued...



7 DAY FORECAST  THRESHOLD : 175m
3 ELEMENTS

5 DAY FORECAST THRESHOLD : 175m DATE : 900415
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Fig. 16 continued....



900415 900420 122 Analysis day: 5.0
Z cont. int.: 10

900415 900422 122 Analysis day: 7.0 -
Z cont. int.: 10

Fig. 16  continued....



AMPL FACTOR

SVs = IFS model T21L19
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Fig. 17 Amplification fac(érs of singular vectors in the IFS (T21). : ‘



SINGULAR VECTOR NUMBER: 1 SINGULAR VECTOR NUMBER: 7
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Fig. 18 Streamfunction of 24-hour singular vectors (1,3,6,7,9,12) at model level 11 ( about 500 hPa) in the IFS model
from data for 17 January 1989 (cf Fig. 1).



MODEL LEVEL: 17 T= @ MODEL LEVEL: 17 T= 24H
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Fig. 19 Time evolution of second 24-hour singular vector (streamfunction) at model levels 17, 18, 19 inthe IFS from data
for 17 January 1989. The left-hand sude panel shows the perturbation of the initial state, the right- hand side
panel after 24 hours. .



