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Predicting Uncertainty

Abstract

The predictability of weather and climate forecasts is determined by the projection of uncer-
tainties in both initial conditions and model formulation onto flow-dependent instabilities of
the chaotic climate attractor. Since it is essential to be able to estimate the impact of such
uncertainties on forecast accuracy, no weather or climate prediction can be considered complete
without a forecast of the associated flow-dependent predictability. The problem of predicting
uncertainty can be posed in terms of the Liouville equation for the growth of initial uncertainty,
or a form of Fokker-Planck equation if model uncertainties are also taken into account. How-
ever, in practice, the problem is approached using ensembles of integrations of comprehensive
weather and climate prediction models, with explicit perturbations to both initial conditions
and model formulation; the resulting ensemble of forecasts can be interpreted as a probabilistic
prediction. '

Many of the difficulties in forecasting predictability arise from the large dimensionality of the
climate system, and special techniques to generate ensemble perturbations have been developed.
Special emphasis is placed on the use of singular-vector methods to determine the linearly-
unstable component of the initial probability density function. Methods to sample uncertainties
in model formulation are also described. Practical ensemble prediction systems for prediction
on timescales of days (weather forecasts), seasons (including predictions of El Nifio) and decades
(including climate change projections) are described, and examples of resulting probabilistic
forecast products shown. Methods to evaluate the skill of these probabilistic forecasts are
outlined. By using ensemble forecasts as input to a simple decision-model analysis, it is shown
that that probability forecasts of weather and climate have greater potential economic value
than corresponding single deterministic forecasts with uncertain accuracy.
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1 Introduction

1.1 Overview

A desirable if not necessary characteristic of any physical model is an ability to make falsifiable
predictions. Such predictions are the life blood of meteorology and climate science. Predictions
from vast computer models of the atmosphere, integrating the Navier-Stokes equations for a
three dimensional multi-constituent multi-phase rotating fluid, and coupled to a representa-
tion of the land surface, are continually put to the test through the daily weather forecast
(eg Bengtsson, 1999; see also http://www.ecmwf.int). On seasonal to interannual timescales, .
these same models, with 2-way coupling to similar mathematical representations of the global
oceans, predict the development of phenomena such as El Nifno, with consequences for seasonal
rainfall and temperature patterns around much of the globe (eg Stockdale et al, 1998; see also
http://www.iges.org/ellfh)). Coupled ocean-atinosphere models are also widely used to make
predictions of possible changes in climate over the next century as a result of anthropogenic
influence on the composition of the atmosphere (eg IPCC, 1996).

However, there is little sense in making predictions without having some prior sense of the
accuracy of those predictions (Tennekes, 1991); quantification of error is a basic tenet in exper-
imental physics. Earth’s climate is a prototypical chaotic system (Lorenz, 1993), implying that
its evolution is sensitive to the specification of the initial state; however, an appreciation of the
importance of quantifying the role that inital error plays in limiting the accuracy of Wcathel
predictions pre-dates the development of chaotic models (Thompson, 1957).

How would one go about making an a priori assessment of the accuracy of a weather forecast,
or a prediction of El Nino? Of course, a ‘climatological-mean’ error can be derived by verifying
a past set of predictions, and averaging the resulting forecast errors. However, such a crude
estimate may not be particularly useful. Chaotic dynamics implies not only that a forecast is
sensitive to initial error, but also that the rate of growth of initial error is itself a function of
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the initial state (see section 2). Weather forecasters have a practical sense of this dependence
of error growth on initial state; certain types of atmospheric flow are known to be rather stable
and hence predictable, others to be unstable and unpredictable. As such, a key to predicting
forecast uncertainty lies in the estimation of the effects of local instabilities in regions of phase
space through which a forecast trajectory is likely to pass.

In addition to error in initial conditions, the accuracy of weather and climate forecasts are
influenced by our ability to represent computationally the full equations of that govern climate.
For example, there will be inevitable errors in representing circulations on scales comparable
with or smaller than a model’s truncation scale. These errors can propagate upscale and influ-
ence weather and climate phenomena with characteristic size much larger than the truncation
scale. Uncertainty in model formulation is certainly one of the most important factors which
undermine confidence in climate forecasts - representation of cloud systems (in models which
cannot resolve individual clouds) being a particular manifestation of this problem. As with ini-
tial error, uncertainties in model formulation impact on climatic circulation patterns through
the projection of these uncertainties onto flow-dependent dynamical instabilities of the climate
system.

In the body of this paper, results are shown from a number of numerical models of the climate
system. It is useful to consider three types of model, distinguished by their degree of complexity.
The first could be thought of as ‘toy’ models; they are used primarily to illustrate particular
paradigms. Examples are the Lorenz (1963) model and the delayed oscillator model (see sections
2 and 7). The second type of model could be described as ‘intermediate’; it certainly has
‘prognostic value, but is based on simplified equations of motion where terms which are second
order in some small parameter are ignored. For many examples discussed in this paper, the
so-called Rossby number Ro = U/fL (eg Gill, 1982) is such a parameter. Here, U, L denote
a typical horizontal velocity and length scale associated with a particular climatic or weather
phenomenon, f = 2Qsin ¢ is the Coriolis parameter, where €2 is the angular speed of the Earth
and ¢ denotes latitude. Examples of intermediate models, are the atmospheric quasigeostrophic
model (eg Marshall and Molteni, 1993: see sections 3 and 7), and a simplified coupled ocean-
atmosphere model of El Nifio (eg Zebiak and Cane, 1987: see sections 5 and 7). Intermediate
models are generally truncated to have O(10?) or less degrees of freedom, which makes numerical
integration and stability analysis extremely tractable by modern computing standards.

The final type of model in the hierarchy of complexity are the comprehensive global climate and
weather prediction models; these typically have O(10°—107) degres of freedom. At national (and
international) meteorological and climate centres, quantitative weather and climate predictions
are now almost universally based on output from these types of model. The models are formu-
lated using finite (Galerkin) truncations of fluid-dynamic partial differential equations where (at
most) only the hydrostatic assumption is applied to filter meteorologically-unimportant modes.
A possible (and easily visualised) representation is in terms of grid points in physical space; a
typical resolution would be about 100km in the horizontal and 1km in the vertical (somewhat
finer for weather prediction models, somewhat coarser for climate prediction models with longer
integration times). These equations describe the local evolution of mass, energy, momentum
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and composition, with suitable source and sink terms. The most important atmospheric com-
position variable is water, represented in each of its different phases. Details of these equations
can be found in many references (eg Trenberth, 1992). Such comprehensive models are inte-
grated on supercomputers, with (at the time of writing) typical sustained speeds of O(10'!)
floating point operations per second. In practice, the difference between the atmosphere com-
ponent of weather and climate prediction models is not great - and in some instances there is
no difference; however, weather prediction models do not generally have an interactive ocean,
whilst climate models do. An example of this third type of comprehensive model, discussed
below, is the European Centre for Medium-Range Weather Forecasts (ECMWF') weather and
climate prediction model (Bengtsson, 1999).

In this paper, we consider two types of prediction. Following Lorenz (1975), we refer to initial
value problems as ‘predictions of the first kind’. By contrast, forecasts which are not dependent
on initial conditions, for example predicting changes in the statistics of climate as a result of
some prescribed imposed perturbation, would constitute a ‘prediction of the second kind’. A
weather forecast is clearly a prediction of the first kind; so is a forecast of El Nifio, referred
to as a climate prediction of the first kind. By contrast, estimating the effects on climate of a
prescribed volcanic emission, prescribed variations in Earth’s orbit (thought to cause ice ages)
or prescribed anthropogenic changes in atmospheric composition, would constitute a climate
prediction of the second kind. '

1.2 Scope

This paper deals with the problem of forecasting uncertainty in weather and climate prediction
from its theoretical basis, through an outline of practical methodologies, to an analysis of
validation techniques including estimates of potential economic value. The author hopes that
the mathematical description of these components will be of some help to readers wishing to
gain some introduction to the quantitative methods used in the subject. However, at the least,
the reader will be able to deduce that the topic of weather and climate prediction is quantitative
and objective. (The days are over, of hanging out the seaweed, examining the size of molehills,
or studying animal entrails for portents of coming tempests - that is, unless the computers are
down!) On the other hand, readers not interested in the details of the mathematics should be
able to appreciate many of the results given without dwelling on the equations at any length.

In section 2, we consider how to forecast uncertainty in a prediction of the first kind, assuming
a perfect deterministic forecast model. The evolution equation for the probability density
function (pdf) of the climate state vector is the Liouville equation; an example of its solution
is given for illustration. However, application to the real climate system is severely hampered
by two fundamental problems. The first is directly associated with the dimensionality of the
climate equations; as mentioned above, current numerical weather prediction models comprise
O(107) individual scalar variables. The second problem (not unrelated to the first) is that, in
practice, the initial pdf is not itself well known.

[}
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To amplify on this last remark, a description of current (variational) meteorological data assim-
ilation schemes is described in section 3. These schemes are used to determine initial conditions
for weather and climate forecasts, given a sct of atmospheric and oceanic observations whose
density is heterogeneous in both space and time. Such data assimilation schemes are based on
minimising a cost function which combines these observations with a background estimate of
the initial state provided by a short-range model forecast from an earlier set of initial condi-
tions. In principle, given Gaussian error statistics, the Hessian or second derivative of the cost
function determines the initial pdf. In practice, there are significant shortcomings in our ability
to estimate this pdf.

The number of degrees of freedom in comprehensive climate and weather prediction models is
not determined by any scientific constraint (there is no obvious ‘gap’ in the energy spectrum
of atmospheric motions), but rather by the degree of complexity than can be accommodated
using current computer technology. As such, there are inevitably processes occurring in the
atmosphere and oceans which are partially resolved or unresolved and must be represented
by some parametrised closure approximation. Examples are associated with cloud formation
and dissipation, and momentum transfer to the solid earth by topography. However, there
is a fundamental indeterminacy in the formulation of these parametrisations since there is
no meaningful scale separation between resolved and unresolved scales in the climate system.
Section 4 describes two recent attempts to represent the pdf associated with this uncertainty
in the computational representation of the equations of motion of climate: the multi-model
ensemble, and stochastic parametrisation.

A theoretical framework for describing error growth is developed in section 5. Two common
measures of perturbation amplification used in different branches of physics and mathematics
are normal mode growth and Lyapunov exponent growth. Neither is well suited to describing
error growth in the climate system. Firstly, because of the advective nonlinearity in the gov-
erning equations of motion, the linearised dynamical operators are not normal; as such, over
finite times, perturbation growth need not be bounded by the fastest eigenmode growth. Also,
dominant Lyapunov or eigenmode growth in a comprehensive multi-scale model may refer to
fast instabilities (such as convective instabilities) whose spatial scales are much smaller than
those describing weather or climate phenomena. To address these problems, we discuss in sec-
tion 5 a general formulation of perturbation growth in the linearised approximation, in terms
of a singular value decomposition of the linearised dynamics (building on the developments in
section 3). Examples of singular vectors for weather and climate prediction problems are shown,
and their fundamental non-modality is discussed. Because of the nonlinearity of the underly-
ing dynamics, the appropriate singular values vary on the attractor; this variation describes
why forecast error can fluctuate for fixed initial error. The variation of singular values on the
attractor is also relevant for understanding the amplification of model error by flow dependent
instabilities. The relationship between singular values, cigevalues and Lyapunov exponents is
discussed.

Section 6 discusses some applications of the singular vector analysis. In one application (‘chaotic
control of the observing system’) singular vectors are used to determine locations where addi-
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tional ‘targeted’ observations might significantly improve a forecast’s initial state.

Section 7 describes the basis behind attempts to predict uncertainty in daily, seasonal and
climate change forecasts using ensembles of atmosphere or coupled ocean-atmosphere model
integrations. In practice such ensembles are interpreted in probabilistic form. If the ensemble of
forecast phase-space trajectories evolve though a relatively stable part of the climate attractor,
then resulting probability forecasts will be relatively sharp. Conversely, if the ensemble passes
through a particularly unstable part of the attractor, then the corresponding forecast probability
may be little different from a long-term climatological frequency.

The question of how to validate probability forecasts is discussed in section 8. Two particular
techniques are described. The first is based on a root mean square distance between the proba-
bility forecast of a dichotomous event and the corresponding verification. This measure allows
one to formulate the notion of reliability of probability forecasts. The second quantity measures
the so-called hit and false alarm rate of the forecast of a dichotomous event, assuming that the
event is forecast if the predicted probability exceeds some prescribed probability threshold.

A fundamental question when assessing probability forecasts is whether a useful level of skill has
been attained. Obviously, different users have different criteria for judging usefulness. For some,
probability forecasts might be deemed useless unless they are sharp and quasi-deterministic.
For others, who might be looking to accrue benefit over a long time, forecast probabilities which
are only marginally different from climatological frequencies, may be useful. To assess this issue
more quantitatively, a simple cost/loss decision model is applied in section 9 based on the hit
and false alarm rates discussed in section 8. It is shown, that the (potential) economic value
of probability weather forecasts for a variety of users, is higher than the corresponding value
from single deterministic forecasts.

Concluding remarks are made in section 10.

2 The Liouville equation

The evolution equations in a climate or weather prediction model are conventionally treated
as deterministic. These (N dimensional) equations, based on spatially-truncated momenturm,
energy, mass and composition conservation equations will be written schematically as

X = F[X] (1)
where X describes an instantaneous state of the climate sytem in N-dimensional phase space.
Equation 1 is fundamentally nonlinear and deterministic in the sense that, for any initial
state X, the equation determines a unique forecast state X;. (As described in section 3
below, information from meteorological observations are combined with a prior background
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state through a process called data analysis and assimilation. In meteorology, the initial state
is often referred to as the initial ‘analysis’ - hence the subscript ‘a’.)

The meteorological and oceanic observing network is sparse over many parts of the world,
and the observations themselves are obviously subject to measurement error. The resulting
uncertainty in the initial state can be represented by the pdf p(X,t,); given a volume V' of
phase space, then [, p(X,t,)dV is the probability that the true initial state ... at time ¢,
lies in V. If V is bounded by an isopleth of p (ie co-moving in phase space), then, from the
determinism of equation 1, the probability that X, lies in V is time invariant. Hence, (similar
to the mass continuity equation in physical space), the evolution of p is given by the Liouville
conservation equation (introduced in a meteorological context by Gleeson, 1966, and Epstein,
1969)

dp 0

ot 90X

(Xp) = Lp (2)

where X is given by equation 1. In the second term of equation 2, there is an implied summation
over all the components of X .

Fig 1 illustrates schematically the evolution of an isopleth of p(.X, ). For simplicity we assume
the initial pdf is isotropic (eg by applying a suitable coordinate transformation). In the early
part of the forecast, the isopleth evolves in a way consistent with linearised dynamics; the
N-ball at initial time has evolved to an N-ellipsoid at forecast time ¢;. For weather scales of
0(10%) km, this linear phase lasts for about 1-2 days into the forecast. Beyond this time, the
isopleth starts to deform nonlinearly. The third schematic shows the isopleth at a forecast
range in which errors are growing nonlinearly. Predictability is finally lost when the forecast
pdf p(X, 1) has evolved irreversibly to the invariant distribution pjy, of the attractor. This is
shown schematically in Fig 1 using the Lorenz (1963) attractor - a ‘toy-model’ surrogate of the
real climate attractor (Palmer, 1993a).

As mentioned in the introduction, the growth of the pdf through the forecast range is a function
of the initial state. This can be seen by considering a small perturbation dx to the initial state
X,. From equation 1, the evolution equation for dz is given by

8t = Jox (3)

where the Jacobian is defined as

J=dF/dX (4)

Since F[X] is at least quadratic in X, then J is at least linearly dependent on X. This
dependency is illustrated in Fig 2 showing the growth of an initial isopleth of an idealised pdf
at three different positions on the Lorenz (1963) attractor. In the first position, there is little
growth, and hence large local predictability. In the second position there is some growth as the
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(a) {b) (© (d

Figure 1: Schematic evolution of an isopleth of the probability density function (pdf) of initial
and forecast error in N-dimensional phase space. (a) At initial time, (b) during the linearised
stage of evolution. A (singular) vector pointing along the major axis of the pdf ellipsoid is shown
in (b), and its pre-image at initial time is shown in (a). (c) The evolution of the isopleth during
the nonlinear phase is shown in (c); there is still predictability, though the pdf is no longer
Gaussian. (d) Total loss of predictability, occurring when the forecast pdf is indistinguishable
from the attractor’s invariant pdf.

pdf evolves towards the lower middle half of the attractor. In the third position, initial growth
is large, and the resulting predictability is correspondingly small.

The nonlinear phase of pdf evolution can be much longer than the linear phase. For example,
Smith et al (1999) have studied the evolution of an initial pdf on the Lorenz (1963) attractor
using a Monte Carlo process. The initial pdf was obtained by adding some notional prescribed
‘observation’ error to points on the attractor. The initial pdf is sharp, consistent with a small
‘observation’ error, and initially spreads out in a way consistént with linear theory. The pdf
resharpens as it enters the region of phase space where small perturbations decay with time
(cf Fig 2), and then bifurcates, leading to a highly non-normal distribution. The existence of
such bimodal behaviour indicates that it may not be sufficient to describe forecast uncertainty
in terms of a simple ‘error bar’.

As shown in Ehrendorfer (1994a), the Liouville equation can be formally solved to give the
value of p at a given point X in phase space at forecast time t. Specifically

pX,1) = p(X, 1) exp [ wrlJ(®)]at} )

where ‘tr’ denotes the trace operation. The point X' in this equation corresponds to that initial
point, which, under the action of equation 1 evolves to the given point X at time ¢.

Using the identity det exp A = exp tr A, then equation 5, can be written as
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Figure 2: Phase-space evolution of an ensemble of initial points on the Lorenz (1963) attractor,
for three different sets of intial conditions. Predictability is a function of inital state.
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p (X;t)

-il0 9 -8 -7 6 -5 4 -3 -2 -
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Figure 3: An analytical solution to the Liouville equation for an initial Gaussian pdf (shown
peaked on the right-hand side of the figure) evolved using the Riccati equation (see text). From
Ehrendorfer (1994a).

p(X,8) = p(X',8,)/ det M (t,,) (6)

where )

M(t,t,) =exp [ J(t')dt (7)
[
is the so-called forward tangent propagator, mapping a perturbation 0z (t,), along the nonlinear
trajectory from X to X', to ' :
Sz (t) = M(t,t,)0x(ts) (8)

A simple example which illustrates this solution to the Liouville equation is given in Fig 3, for
a 1 dimensional Riccati equation (Ehrendorfer, 1994a)

X =aX?+bX +c¢ 9)

where b? > 4ac, based on an initial Gaussian pdf. The pdf evolves away from the unstable
equilibrium point at X = —1 and therefore reflects the dynamical properties of equation 9.
Within the integration period, this pdf has evolved to the nonlinear phase.

The forward tangent propagator plays an important role in meteorological data assimilation
systems; see section 3 below. However, even though the forward tangent propagator may exist
as a piece of computer code, this does not mean that the Liouville equation can be readily solved
for the weather prediction problem. Firstly, the determinant of the forward tangent propagator
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is determined by the product of all its singular values (see section 5). For a comprehensive
weather prediction model, a determination of the full set of O(107) singular values is currently
impossible. Secondly, the inversion of 1 to find an initial state X’; given a forecast state X,
is itself problematic. Even on timescales of a day or so, decaying phase-space directions (as
determined by the existence of small singular values of the propagator, see section 5) will lead
to the inversion being poorly conditioned (Reynolds and Palmer, 1998). Thirdly, a particular
type of weather at a particular location is not related 1-1 with a state X of the climate system.
For example, to estimate the probability of it raining in London two days from now, we would
have to apply equation 6 and the inversion to find X’, to each staté on the climate attractor,
for which it is raining in London.

An alternative to using the solution form 6 is to integrate the partial differential equation 2 by
randomly sampling the initial pdf, and integrating each sampled point using 1; the Monte-Carlo
solution. However, the problem of dimensionality continues to be a significant issue. If phase-
space is N dimensional, then, even in the linear phase, O(N?) integrations will be needed to
determine the forecast error covariance matrix. In the nonlinear phase, many more integrations
are needed to determine the pdf, as it begins to wrap itself around the attractor. Ehrendorfer
(1994b) has shown that even for a 3-dimensional dynamical system, a Monte-Carlo sampling
of O(10?) points can be insufficient to determine the pdf within the nonlinear range.

Yet another method of solution of the Liouville equation is possible, writing equation 2 in terms
of an infinite hierarchy of equations for the moments of p, and applying some closure to this
set of moments (Epstein, 1969). This method is certainly useful for evolving the pdf within the
linearised phase, and indeed forms the basis of the so-called Kalman filter approaches to data
assimilation (see section 3 below). Ehrendorfer (1994b) has shown that in the nonlinear phase,
substantial errors in estimating the first and second moments of p can arise from neglecting
third and higher order moments. A more sophisticated approach to closure is to use arguments
from turbulence theory (see section 5) to seek scaling relations between moments (Frisch, 1995).
Nicolis and Nicolis (1998) have studied an approach in which high order moments are expressed
as time-independent functionals of low-order moments, based on a study of dynamical systems
which showed that subsets of moments vary on a timescale given by the dominant eigenvalues
of the Liouville operator L, defined in equation 2. In general, however, this method of moment
decomposition has not yet been studied in the context of realistic weather and climate systems.

In conclusion, whilst a formal analytic solution can be found to the problem of predicting
the forecast pdf, there are practical problems associated with the dimension of the underlying
dynamical system. However, the issue of dimensionality affects the problem in other, more
insidious, ways. These are discussed in the next two sections.
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3 The probability density function of initial error

In order to discuss how the pdf of initial error can be estimated in weather and climate pre-
diction, it is necessary to outline the method by which observations are used to determine the
initial conditions for a deterministic weather or climate forecast.

In meteorology and oceanography, data assimilation is a means of obtaining a forecast initial
state which in some well-defined sense optimally combines the available observations for a
particular time with an independent background state (Daley, 1991). This background state
is usually a short-range forecast (eg 6 hour) from an estimate of the initial state valid at an
earlier time, and this carries forward information from observations from earlier times. A very
simple example of the basic notion can be illustrated by considering two different independent
estimates, s, and sy, of a scalar s. Suppose that the errors associated with these two estimates
are random, unbiased and normally distributed, with standard deviations o, and oy, respectively.
Then the maximum-likelihood estimate of s is the state s, which minimises the cost function

(s —50)" | (s—50)°

J(s) = 10
(5) 207 202 (10)
The least-squares solution
2
gy
8, = —— 8, — 11
a Sp + Ug T o_g [50 Sb] ( )

s easily found. The error associated with s, is normally distributed with variance given by

0*J)8s* = 0,2+ 0% = 0.2 (12)

a

The data assimilation technique used in weather prediction (eg at ECMWTF) is a multi-dimensional
generalisation of this technique (Courtier et al, 1994, 1998). The analysed state X, of the at-
mospheric state vector is found by minimising the cost function

J(X) = —;—(X - X)) 'B7HX - X)) + %
where X, is the background state, B and O are covariance matrices for the pdfs of background
error and observation error respectively, H is the so-called observation operator, and Y denotes
the vector of available observations. For example, if ¥ includes a radiance measurement taken
by an infrared radiometer onboard a satellite orbiting the earth then H.X includes an estimate
of the infrared radiance that would be emitted by a model atmosphere as represented by the
state vector X. Similarly, if ¥ includes a surface pressure measurement taken at some point p
on the earth’s surface, then H.X includes the surface pressure at p given X. Since X is finite

(HX ~-YV)TO™YHX ~-Y) (13)
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dimensional, the operator H inevitably involves an interpolation to p. Similar to equation 12,
the Hessian of J is given by (Fisher and Courtier, 1995)

VVJ =B+ H'O'H=4" (14)

We refer to A as the analysis error covariance matrix.

In the current ECMWF operational data assimilation system, the background error covariance
matrix B is not dependent on the present state of the atmospheric circulation. This is believed
to introduce considerable imprecisio