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A reduced rank estimate of forecast error variance

Abstract

A new tool for planning adaptive observations is introduced. Different modifications of the observing net-
work can be compared prior to the time when the modification takes place. The method predicts the variance
of forecast errors projected into a low-dimensional subspace. Tangent-linear error evolution is assumed and
the contribution of model errors to the forecast error is neglected. Singular vectors of the propagator of the
tangent-linear version of the forecast model are used to define a relevant subspace. The method employs the
Hessian of the cost function of a variational assimilation scheme to obtain information on the distribution
of initial errors. Thus, this technique for planning adaptive observations can be made consistent with oper-
ational variational assimilation schemes. The application of the method is currently limited to intermittent
modifications of the observing network as changes of the background error distribution due to modifications
of the network in previous assimilation cycles are not accounted for. The predicted changes of forecast error
variance are identical to those that the ensemble transform Kalman filter method would yield if applied to a
set of Hessian singular vectors.

The reduced rank estimate has been implemented in the Integrated Forecasting System of the European
Centre for Medium-Range Weather Forecasts. To illustrate the scope of the method, it is applied to the
2-day forecast of an extra-tropical cyclone. The expected reduction of the total energy of forecast error is
computed for various hypothetical adaptive networks that differ by spatial coverage, observation density and
the type of observation.

1 Introduction

Adaptive observations have been proposed to reduce the risk of large forecast errors. Even in the short range
of 1–3 days initial errors can evolve into large forecast errors on the synoptic scale. One can hope to improve
the forecast for a certain region and forecast range by taking additional observations in those places where
the forecast is particularly sensitive to errors in the initial condition. Ideally, one would like to determine the
optimal sites for the supplementary observations and additionally obtain an estimate of the expected reduction
of the magnitude of forecast error due to the use of the additional observations. Only with such an estimate
it is actually possible to define the meaning of ‘optimal’ sites for supplementary observations (Berlineret al.
1999). In principle, changes of the forecast error covariance matrix due to modifications of the observing
network could be evaluated with an extended Kalman filter. However, this is computationally not feasible as
the dimension of the state space of realistic NWP models is too large.

The ensemble transform method (Bishop and Toth 1999) and the ensemble transform Kalman filter method
(Bishopet al. 2001) obtain approximations of the forecast error covariance matrices associated with modifica-
tions of the observing network. Both methods analyze the perturbations of the members of an ensemble forecast
about the ensemble mean or an unperturbed control forecast assuming that the evolution of these perturbations
is essentially linear. In the ensemble transform method, a guessed diagonal matrix represents the analysis er-
ror covariance matrix associated with a modification of the observing network. The guess matrix has smaller
variance in the vicinity of the sites where the supplementary observations are taken. In the ensemble transform
Kalman filter (ETKF) method, the analysis error covariance matrix for the modified network is consistent with
the statistics of an ETKF assimilation scheme. The current operational version predicts forecast error variance
reductions that deviate substantially from the actual average reductions of the magnitude of the forecast error
(Majumdaret al. 2001). While recent research (C. Bishop, personal communication) shows that the error of
the ETKF forecast error variance prediction is significantly reduced by improving the technique’s routine anal-
ysis error covariance estimate, the skill of the ETKF is limited by small ensemble sizes and the inconsistency
between the covariance estimates of the ETKF and the operational assimilation scheme.

Recently, Bergot and Doerenbecher (2002) have proposed a technique for planning adaptive observations that
uses analysis error covariances consistent with the error estimates of an operational variational data assimilation
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scheme. They consider the variance of a forecast aspect that is due to a distribution of initial errors; the
reduction of this variance resulting from an observing network upgrade is computed. The variance is calculated
by evaluating the analysis error covariance estimate in the direction of the sensitivity of the forecast aspect to
the initial conditions. Therefore, they call this techniqueKalman filter sensitivity. For the adaptive observing
problem, the goal is to identify a set of supplementary observations that minimizes this variance. The Kalman
filter sensitivity is related but not identical to the recently proposed sensitivity with respect to observations
(Baker and Daley 2000; Doerenbecher and Bergot 2001). The sensitivity with respect to observations and the
Kalman filter sensitivity are the only techniques so far that take the properties of an operational assimilation
scheme into account.

Here, a new technique will be described to evaluate the variance of forecast error projected in an-dimensional
subspace. A norm, such as total energy, has to be chosen to normalize the variances. The variance measure
can be interpreted as the expected value of the square norm of the projected forecast error due to a distribution
of initial errors evolved tangent-linearly. Like the Kalman filter sensitivity, the method uses estimates of the
analysis error covariances that are consistent with the statistical assumptions of a variational data assimilation
scheme. In order to reduce the rank of the problem, forecast errors are projected on a subspace spanned by the
leading Hessian singular vectors (Barkmeijeret al. 1998, Palmeret al. 1998). They evolve into the leading
eigenvectors of the forecast error covariance matrix — assuming tangent-linear dynamics, no model error as
well as covariance estimates for background error and observation error that agree with the true covariances. It
is suggested to call this method the Hessian Reduced Rank estimate (HRR). The Hessian of the cost function of
the variational assimilation scheme enters at two stages. First, singular vectors are computed with the Hessian
metric for the routine observing network to define then-dimensional subspace. Second, the Hessian metric for
the modified observing network is computed in the subspace. In the limit, where the subspace dimensionn
approaches the dimension of the state space of the modelN, the HRR estimate converges towards the estimate
that an extended Kalman filter would give, which had been initialized with the background error covariance
matrix used in the variational assimilation scheme. However, the potential advantage of the HRR estimate is
the application with a subspace dimensionn� N, butn being still sufficiently large to capture a relevant part
of the forecast error variance.

The outline of the paper is as follows. In section 2, the methodology of the HRR is described. In section 3,
the HRR is applied to a case of an extratropical cyclone; several different upgrades of the routine observing
network are compared. Discussion and conclusions follow in sections 4 and 5, respectively. The appendices
contain details about the projections and the approximation of the analysis error covariance matrix.

2 The Hessian reduced rank estimate

At the beginning of this section, the subspace and the projections required for the definition of the reduced rank
estimate are introduced. The subspace is spanned by the Hessian singular vectors associated with the routine
observing network. Next, the change of the analysis error covariance metric resulting from the modification of
the observing network is considered. An eigenvalue problem restricted to the subspace is formulated using the
modified metric. Its solution are a set of new vectors that are linear combinations of the routine Hessian singular
vectors. The new vectors will be referred to assubspace singular vectorscomputed with the modified Hessian
metric. The relation to the usual singular vectors obtained for the modified Hessian metric will be discussed in
section 4. Then, it is shown that the difference between the eigenvalue spectra of the routine Hessian singular
vectors and the subspace singular vectors yields an approximation for the expected change of the magnitude
of the projected forecast error. The implementation of the HRR in a variational assimilation framework is
discussed next. Then, it is shown that the HRR yields the same forecast error variance changes as the ensemble
transform Kalman filter technique if the latter is applied to a set of Hessian singular vectors. In the last part

2 Technical Memorandum No. 384



A reduced rank estimate of forecast error variance

of this section, an alternative approximation for the analysis error covariances associated with the modified
observing network is presented. With the latter approximation, the HRR estimate appears as straightforward
generalization of the Kalman filter sensitivity.

2.1 Subspace and projections

Let L denote theN-dimensional state space of the tangent-linear version of the forecast model andM its
propagator from the initial timet0 to a forecast verification timet1. Further, letP denote the projection operator
onto the verification region. We assume that forecast errors are quantified with a norm‖ ‖E that derives from
an inner product induced by the symmetric matrixE. In the application, this will be the total energy metric but
other choices forE may be considered also. LetA denote the estimate of the analysis error covariance matrix
associated with the routine observing network. It is assumed thatA has full rank. For the HRR estimate, the
n-dimensional subspaceLn ⊂ L that is spanned by the leading eigenvectorsv1, . . . ,vn solving the following
generalized eigenproblem

MTPTEPMv i = σ2
i A−1vi (1)

is selected. These vectorsvi are known as Hessian singular vectors for the case whereA−1 is obtained from
the Hessian of the cost function of a variational assimilation scheme (Barkmeijeret al. 1998). The subspaceLn

is well suited for the reduced rank estimate as the evolved subspaceMLn is then-dimensional subspace inL
that explains most of the forecast error variance under the previously mentioned assumptions. The leading Hes-
sian singular vectors yield the dominating part of the complete singular value decomposition of the projected
propagator

PM = UΣΣΣVTA−1. (2)

Here, theN×N matrix V = (v1 . . .vN) contains the initial time singular vectors as columns. The matrix
ΣΣΣ = diag(σ1, . . . ,σN) holds the monotonically decreasing singular valuesσ1≥ σ2≥ . . .≥ σN ≥ 0. Letr denote
the rank ofΣΣΣ; thenσi > 0 for all i ≤ r. TheN×N matrixU = (u1 . . .uN) contains the final time singular vectors
as columns. Fori ≤ r, these are obtained from the evolved and normalized singular vectorsu′i ≡ σ−1

i Mv i via
the projectionui = Pu′i . For i > r, theui are an arbitraryE-orthonormal basis in theE-orthogonal complement
of PML . The singular vectors satisfy the orthonormality relations

VTA−1V = IN and (3)

UTEU = IN, (4)

whereIN denotes theN×N identity matrix. [Note, that (2) is equivalent to the singular value decomposi-
tion E1/2PMA1/2 = (E1/2U)ΣΣΣ(A−1/2V)T, in which the non-dimensionalized singular vectors(A−1/2V) and
(E1/2U) are orthonormal in the Euclidean metric. This version of writing the singular value decomposition is
consistent with the definition found in linear algebra textbooks.] The complete decomposition (2) will be used
in the derivation of the HRR but only the leadingn singular vectors need to be known in the application of the
HRR.

The definition of projections on the initial and evolved subspaces requires the use of the same inner products
as for the singular vectors. By choosingA−1 at initial time andE at final time, it is ensured that it does not
matter whether initial errors are projected intoLn or evolved errors are projected intoPMLn. Let ΠΠΠn denote the
A−1-orthogonal projection into the initial subspaceLn. The projection is given by

ΠΠΠn = VnVT
nA−1, (5)
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whereVn is theN×n matrix(v1 . . .vn). Furthermore, let̂ΠΠΠn denote theE-orthogonal projection on the evolved
and projected subspacePMLn. This projection is given by

Π̂ΠΠn = UnUT
nE, (6)

whereUn ≡ (u1 . . .un). Then, the projection witĥΠΠΠn at final time is equivalent to the projection withΠΠΠn at
initial time via

Π̂ΠΠnPM = PMΠΠΠn (7)

as shown in appendix A. The reduced rank estimate will be defined as the expected value of the square norm
of the forecast error projected witĥΠΠΠn. Due to the commutativity property (7), the expected value can be
computed by neglecting initial errors in theA−1-orthogonal complement of the subspaceLn.

2.2 Modification of the analysis error covariance metric

A modification of the routine observing network results in a change of the analysis error covariance matrix. Let
Ã denote the estimate of the analysis error covariance matrix associated with the modified observing network.
The key step of the HRR estimate is a linear transformation of the routine Hessian singular vectors into vectors
ṽ1, . . . ṽn in the subspaceLn that are orthonormal with respect to the modified Hessian metricÃ−1. Let ΓΓΓ denote
an×n transformation matrix

Ṽn ≡ (ṽ1 . . . ṽn) = VnΓΓΓ (8)

that satisfies
ΓΓΓTVT

nÃ−1 VnΓΓΓ = ṼT
nÃ−1Ṽn = In. (9)

As C ≡ VT
nÃ−1Vn is symmetric, there is an orthogonal matrixD that transformsC into a diagonal matrix

DTCD = ΘΘΘ. Thus, for the transformationΓΓΓ = DΘΘΘ−1/2 equation (9) holds. The transformation matrix is
only determined up to a rotation. Another transformationΓΓΓ′ = ΓΓΓT satisfies (9) if and only if the matrixT
is orthogonal. The choice ofT does not affect the forecast error variance estimate as will be shown in the next
subsection.

A particular choice forΓΓΓ arises if the transformed vectors are required to be the optimal perturbationsx in the
subspaceLn that maximize the ratio

σ̃2 =
xTMTPTEPMx

xTÃ−1x
. (10)

This particular set of transformed vectors will be referred to assubspace singular vectors. The leading subspace
singular vector̃v1 is the structure inLn that maximizes (10). The j-th subspace singular vectorṽ j optimizes
(10) in the subspace ofLn, that isÃ−1-orthogonal to span

{
ṽ1, . . . ṽ j−1

}
. In order to obtain the subspace singular

vectors the transformation matrixΓΓΓ has to solve then-dimensional eigenproblem

VT
nMTPTEPMVnΓΓΓ = VT

nÃ−1VnΓΓΓΛ̃ΛΛ, (11)

where the diagonal matrix̃ΛΛΛ≡ diag(σ̃2
1, . . . , σ̃2

n) contains the eigenvalues. This can be simplified to

ΓΓΓTΛΛΛΓΓΓ = Λ̃ΛΛ (12)

by making use of (2), (4) and (9). An orthogonal matrixT can be determined such thatΓΓΓ = DΘΘΘ−1/2T satisfies
both (9) and (12).

Next, it will be shown how the change of the forecast error variance is linked to the difference between the
singular valuesσi of the routine Hessian singular vectors and the singular valuesσ̃i of the subspace singular
vectors that are computed with the modified Hessian metric.
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2.3 Reduction of forecast error variance

We measure forecast uncertainty with the expected value of the square of theE-norm of the forecast error in
the verification region. The expected value of the square norm is equal to the total forecast error variance in the
verification region normalized with the metricE according to

E(‖PMx‖2
E) = tr

(
E1/2PME(xxT)MTPTE1/2

)
. (13)

Here,E( ) denotes the expectation operator with respect to a distribution of initial errorsx and tr( ) the trace of
a matrix. Equation (13) itself is computationally too expensive to evaluate for realistic NWP models. However,
it is feasible to compute the variance of forecast errors projected withΠ̂ΠΠn into the subspace spanned by the
leadingn routine Hessian singular vectors. Thus, the rank-n estimate is defined as

εn ≡ E(‖Π̂ΠΠnPMx‖2
E). (14)

Using the commutativity relation (7), the expected value of the square norm of the projected forecast error
becomes

εn = E(‖PMΠΠΠnx‖2
E) = tr

(
E1/2PMΠΠΠnE(xxT)ΠΠΠT

nMTPTE1/2
)

. (15)

The expectationE(xxT) is equal to the analysis error covariance matrixA if the routine observing network is
used and to the covariance matrixÃ if the modified observing network is used.

From (3), it follows that the estimate of the analysis error covariance matrix associated with the routine observ-
ing network can be represented byA = VVT. Therefore, the covariance matrix of analysis errors projected on
the subspaceLn is given by

ΠΠΠnAΠΠΠT
n = VnVT

nA−1VVTA−1VnVT
n = VnVT

n . (16)

With (16), the reduced rank estimate of forecast error variance becomes

εn = tr(E1/2PMVnVT
nMTPTE1/2) = tr(VT

nMTPTEPMVn) = tr(ΛΛΛ) =
n

∑
i=1

σ2
i . (17)

For the modified observing network, the representation of the covariance matrix of projected analysis errors
is slightly more complex as the inner product used for the projection is not based on the modified metricÃ−1

but the routine metricA−1. The projection on the subspace of routine Hessian singular vectors needs to be
orthogonal with respect to the routine metric in order to ensure the commutativity property (7). In order to find
an approximate representation ofΠΠΠnÃΠΠΠT

n we proceed as follows. First, the vectorsṽ1, . . . , ṽn ∈ Ln are extended
with vectorsṽn+1, . . . , ṽN ∈ L⊥n , theA−1-orthogonal complement ofLn, to a basis ofL , such that

ṽT
i Ã−1ṽ j = δi j for all i, j ∈ {n+1, . . . ,N}. (18)

This assumes that̃A−1 has full rank. Let̃V = (ṽ1 . . . ṽN) denote the matrix of column vectors of the entire basis.
Vectors inL⊥n are not necessarilỹA−1-orthogonal to vectors inLn. Therefore, the modified metric expressed in
the basis̃V is

ṼTÃ−1Ṽ =
(

In F
FT IN−n

)
, (19)

whereF represents an unknownn× (N−n) matrix. Inverting (19) yields

Ã = Ṽ
(

(In−FFT)−1 −(In−FFT)−1F
−FT(In−FFT)−1 IN−n +FT(In−FFT)−1F

)
ṼT. (20)
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Now, the covariance matrix of projected analysis errors can be written as

ΠΠΠnÃΠΠΠT
n = Ṽn(In−FFT)−1ṼT

n . (21)

If the modification of the observing network is not too drastic, vectors inL⊥n should remain nearlỹA−1-
orthogonal to vectors inLn. Thus, the quadratic term inF will be a small perturbation of the identity matrix
In in (21). An obvious approximation in this context is to neglect the contribution fromF to the projected
covariance matrix by using

ΠΠΠnÃΠΠΠT
n ≈ ṼnṼT

n . (22)

In appendix B, an improved approximation of (21) is introduced that uses a truncatedF computed in a higher-
dimensional subspaceLn′ ⊃ Ln. This improved approximation is then used to assess the less accurate ap-
proximation (22). The comparison indicates, that the estimate of forecast error variance based on the cruder
approximation (22) is already quite accurate for subspace dimensionn > 5. Only for lower dimensional sub-
spaces the use of the improved approximation seems to be required. Before proceeding further, we observe that
the covariance matrix̃VnṼT

n would arise without approximation if the projectionΠΠΠn was replaced by thẽA−1-
orthogonal projection on the subspaceLn of routine Hessian singular vectors. However, the latter projection
violates the commutativity property (7).

With (22), the reduced rank estimate of forecast error variance is approximated by

ε̃n ≈ tr(E1/2PMṼnṼT
nMTPTE1/2) = tr(ΓΓΓTΛΛΛΓΓΓ) (23)

for the modified observing network. The estimate of forecast error variance is invariant if the transformationΓΓΓ
is replaced byΓΓΓT, with an orthogonal matrixT. If ΓΓΓ is chosen so that the transformed vectors are the subspace
singular vectors, the forecast error variance is given by their singular values

tr(ΓΓΓTΛΛΛΓΓΓ) = tr(Λ̃ΛΛ) =
n

∑
i=1

σ̃2
i . (24)

The differencern ≡ εn− ε̃n is the expected value of the change of the square norm of the projected forecast
error due to a modification of the observing network. Using (23) and (24) the difference is approximated by

rn ≈
n

∑
i=1

σ2
i −

n

∑
i=1

σ̃2
i . (25)

We will refer to rn as thereduction of forecast error variancefor short becausern is positive if the forecast
error variance decreases due to the network modification.

2.4 Implementation

In order to compute the transformationΓΓΓ the matrixC = VT
nÃ−1Vn is required. Its computation is described

now. The HRR estimate is based on a variational assimilation framework. It is assumed that the assimilation
scheme uses the incremental formulation which results in a quadratic cost function. That is the difference
between analysis and first guess is obtained as that perturbation of the first guess that minimizes a quadratic
cost function. As outlined in Barkmeijeret al. (1998) the Hessian of the cost function provides an estimate of
the inverse of the analysis error covariance matrix:∇∇J = A−1 (see also Rabier and Courtier 1992). Only the
routine observations are used in the cost functionJ to get the metricA−1 associated with the routine observing
network.
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The modified analysis error covariance metricÃ−1 is obtained by computing the Hessian with a modified
cost functionJ̃, which measures the departure of the trajectory from the modified observing network. Then,
∇∇J̃ = Ã−1. The matrixC = VT

nÃ−1Vn can be calculated via the two following steps. First, the action of the
inverse of the analysis error covariance matrix on the basis vectors of the subspace is computed using

Ã−1vi = ∇J̃(vi +x0)−∇J̃(x0) for i = 1, . . .n. (26)

The latter relation holds because the cost function is quadratic. For subspace dimensionn, n+1 computations
of the gradient of the cost function are required. Then, then(n+ 1)/2 inner productsvT

j (Ã
−1vi), i = 1, . . . ,n

and j = i, . . . ,n are computed. The additional cost of diagonalizingC is marginal as long as the dimensionn is
moderate, say less than 100. The computational cost of determiningC this way is considerably lower than the
cost of computing the subspaceLn itself.

Before proceeding further, let us consider the effect of a set of supplementary observations on the analysis error
covariance metric. The modified cost function can be written as

J̃(x) = J(x)+ 1
2 (ds−Hsx)TR−1

s (ds−Hsx), (27)

whereds,Hs andRs denote the departure of the observed values from the background, the observation oper-
ator and the observation error covariance matrix for the supplementary observations, respectively. Taking the
Hessian of (27) yields

Ã−1 = A−1 +HT
s R−1

s Hs. (28)

Note that (28) is independent of the observed values. By using (28) and the orthonormality of the routine
Hessian singular vectors (3), the matrixC can be expressed as

C = In +VT
nHT

s R−1
s HsVn. (29)

This method of determiningC requires only the evaluation of the observation operatorHs for the leadingn
routine Hessian singular vectorsvi . This latter approach is computationally significantly more efficient than the
former approach based on the gradient of the cost function.

2.5 Relationship to the Ensemble Transform Kalman Filter

The specification of the analysis error covariances by the outer product of singular vectors is reminiscent of
the formulation used in the ensemble transform methods. In the latter, the routine covariances are represented
as outer product of a set of ensemble perturbations. The analysis error covariances associated with the mod-
ified observing network are written as outer product of the transformed ensemble perturbations. Formally,
the approach in the HRR estimate is identical as it uses the outer product of the transformed singular vectors
(22) to represent the modified covariance matrix. A difference between the two methods can be hidden in the
transformation. In the ensemble transform method proposed by Bishop and Toth (1999), the transformation is
consistent with a guessed diagonal analysis error covariance matrix and therefore certainly different from the
transformation of the HRR, which is consistent with the analysis error covariance estimate of the variational
assimilation scheme. In the ensemble transform Kalman filter method (ETKF, Bishopet al. 2001), a trans-
formation is used that is consistent with the statistics of the ETKF assimilation scheme. Therefore, one would
expect to obtain a different transformation. However, it will be shown now that there is an equivalence between
the transformation of the HRR and the transformation of the ETKF applied to the set of routine Hessian singular
vectors instead of an ensemble.

The ensemble transform Kalman filter is based on transformations of the matrix of ensemble perturbations
Z = (z1 . . .zn) about the ensemble mean. The perturbationszi , valid at the time of the network modification,

Technical Memorandum No. 384 7
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are typically obtained from an evolved ensemble and are suitably scaled so thatZZT yields a useful estimate
of the analysis error covariance matrix associated with the routine observing network. Then, an augmentation
of the routine observing network is considered. In the ETKF approach an×n transformation matrixΓΓΓETKF is
determined such thatZΓΓΓETKFΓΓΓT

ETKFZT is the analysis error covariance estimate associated with the modified
observing network. This estimate assumes that the supplementary observations are assimilated with an ETKF
and that the ensemble based error covariances are accurate. The transformation matrix is given by

ΓΓΓETKF = T(ΦΦΦ+ In)−1/2, (30)

where the orthogonal matrixT and the diagonal matrixΦΦΦ solve then-dimensional eigenproblem

(ZTHT
s R−1

s HsZ)T = TΦΦΦ. (31)

Here,Hs andRs denote again the observation operator and the observation error covariance matrix for the
supplementary observations. Now we consider that the ensemble perturbationsZ are replaced by the routine
Hessian singular vectorsVn in (31). This yields a transformationΓΓΓETKF that renders the transformed vectors
VnΓΓΓETKF orthonormal with respect to the modified Hessian metricÃ−1. This follows immediately from (28)
and (31).

Thus, the transformation matrices of the HRR and the ETKF applied to a set of routine Hessian singular vectors
are identical up to a rotation. In consequence, the reduction of forecast error variance predicted by the ETKF
applied to the routine Hessian singular vectors will be identical to the reduction predicted by the HRR if the
tangent-linear model is used to evolve the singular vectors to the verification time and if the same metric is used
to measure forecast errors.

2.6 An alternative approximation

An alternative method of estimating the reduction of forecast error variance can be formulated. This approach
is based on a representation of the analysis error covariances following the work of Fisher and Courtier (1995).
The analysis error covariance matrix for the routine observing network is approximated by a low rank correction
of the assimilation scheme’s estimate of the background error covariance matrixB

A ≈ B−
K

∑
j=1

(1−λ−1
j )(Lw j)(Lw j)T. (32)

The correction uses the leading eigenpairs(λ j ,w j) of the Hessian of the cost function for the routine observing
network. The eigenpairs can be determined approximately with a combined Lanczos/conjugate gradient method
during the minimization of the cost function. The eigenpairs are computed in control space; that is the space in
which the background error covariance matrix is the identity. The operatorL denotes the transformation from
control space to model space. In order to be consistent with (32), the forecast errors have to be projected on
the subspace spanned by the leading singular vectors computed with the inverse of (32) as initial time metric.
These approximate Hessian singular vectors can be computed as solution of an ordinary eigenproblem as the
square root of (32) is available. This has the advantage that the computational cost is significantly lower than
that of solving the generalized eigenproblem (1). To achieve consistency, the projection on the subspace also
has to use the inverse of (32) as metric.

For the routine network augmented by a set of supplementary observations, the analysis error covariance matrix
is represented by

Ã = A−AHT
s

(
Rs+HsAHT

s

)−1
HsA, (33)
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whereA is given by (32). Operators with subscriptsrefer again to the supplementary observations. This relation
can be derived from (28) with the Sherman-Morrison and Woodbury formula. Using (33), the projected version
of Ã is given by

ΠΠΠnÃΠΠΠT
n = Vn(In−S)VT

n with (34)

S≡ VT
nHT

s

(
Rs+HsAHT

s

)−1
HsVn. (35)

With this representation of the projected covariance matrix, the variance of forecast error projected onto the
subspace turns out to beε̃n = tr((In−S)ΛΛΛ). Therefore, the reduction of forecast error variance is given by

rn = tr(SΛΛΛ) . (36)

To evaluate (35) the inverse of the matrixRs+HsAHT
s is required. The matrix can be inverted directly as long

as the number of supplementary observations is small enough, say less than 103. This limit would be reached
for instance with 20 supplementary radiosondes having 50 pieces of data per sounding. Iterative techniques for
the inversion seem more appropriate for larger modifications of the observing network.

Representations (32) and (33) are employed by Bergot and Doerenbecher (2002) for the Kalman filter sen-
sitivity. It predicts the reduction in variance of a forecast aspectJ . In the tangent-linear approximation this
reduction of variance is given by

rJ = (∇xJ )TAHT
s

(
Rs+HsAHT

s

)−1
HsA ∇xJ , (37)

where∇xJ denotes the sensitivity with respect to the initial conditions. IfA ∇xJ is replaced by the scaled
leading singular vectorσ1v1 in (37), the rank-one estimate is obtained, cf. (35) and (36). Thus, in this approx-
imation the Kalman filter sensitivity and the rank-one estimate are closely related. The only difference is the
direction in phase space for which the change of variance is estimated. The potential advantage of the reduced
rank estimate is that it can be used to assess the change of forecast error variance in many directions whereas
the Kalman filter sensitivity is limited to one direction. In addition, the directions chosen for the reduced rank
estimate are the leading eigenvectors of the routine forecast error covariance matrix and are thus influenced by
the tangent-linear dynamics. On the contrary, the direction in phase space on which forecast errors are projected
in the Kalman filter sensitivity is independent of the tangent-linear dynamics and depends only on the choice of
the forecast aspectJ and possibly the nonlinear dynamics. The latter dependence arises through the trajectory
used for linearization if the forecast aspect is a nonlinear function of the state vector at verification time.

3 Application to the forecast of an extra-tropical cyclone

The HRR estimate is now applied in diagnostic mode to the case of the severe storm that crossed France and
Germany on 26 December 1999. The Hessian singular vectors are computed on a trajectory starting from the
analysis valid at the network modification time and the Hessian is based on the actual routine observations of
this analysis cycle. The reductions of forecast error variance due to several adaptive upgrades of the observing
network are compared (Table1). The forecast error is quantified with the total energy norm localized to the
region 20◦W–20◦E, 35◦–60◦N. A forecast range of 48 hours is considered with a verification time at 12 UTC
on 26 December 1999. Leutbecheret al. (2002) discuss impact experiments for some of the configurations
of adaptive observations that are considered here. Their impact experiments use synthetic observations con-
structed from a simulated truth. Here, the observations are also synthetic but the observed values are irrelevant
apart from the quality control decisions in the assimilation scheme. The Hessian metric depends only on the
observation error statistics, the distribution of observations in space-time and the background error statistics.
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The forecast error variance for the modified observing network is computed via the improved approximation
described in appendix B. For all subspace dimensions up to 25, the projected analysis error covariance matrix
is constructed based on the Hessian in the subspace of the 25 leading routine Hessian singular vectors. The
improved approximation introduces a small but noticeable correction for small subspace dimensions, say less
than five.

The HRR estimate has been implemented for the Integrated Forecasting System of the European Centre for
Medium-Range Weather Forecasts. As data-assimilation scheme a 6-hour 4D-Var is used. The spatial resolu-
tion of the Hessian singular vectors is T42 in the horizontal and 31 levels in the vertical. The analysis error
covariance metric is evaluated at the spatial resolution of the singular vectors. Tangent-linear and adjoint ver-
sions of the forecast model are used that are adiabatic and frictionless apart from diffusion and surface drag.
A climatological estimate is employed for the background error covariances. It stems from an ensemble of
assimilations and forecasts in which the observed values are perturbed in order to represent observational error
(Fisher and Andersson 2001).

Exp. Nsnd ∆s vars. location r25/ε25

a 0 – – – 0.00
b 160 280 all Pacific 0.00
c 160 280 all target L 0.62
d 10 560 all target M 0.16
e 10 280 all target S 0.16
f 40 560 all target L 0.31
g 40 280 all target M 0.38
h 40 94 all flight-track in target M 0.37
i 40 280 all target M, sfc–600hPa 0.25
j 40 280 all target M, 600–200hPa 0.21
k 40 280 wind target M 0.28
l 40 280 temp. target M 0.19

m 640 280 temp. target XL 0.44
n 640 280 all target XL 0.70
o 40 280 all TESV target M 0.27
p 40 111 all target XS 0.30
q 40 1110 all target XL 0.14

Table 1: Configurations of supplementary soundings and the fractional reduction of the total energy of forecast error
r25/ε25 for subspace dimension 25. Here, Nsnddenotes the number of soundings,∆s the spacing between the soundings in
km, vars. the observed variables (all meaning wind and temperature).

3.1 Spatial distribution of supplementary observations

In this section it is investigated how the expected reduction of the total energy of the forecast error depends
on the spatial distribution of supplementary observations. Soundings of wind and temperature from 200 hPa to
the surface are considered as supplementary observations. The observation error of the supplementary data is
characterized by the error variances used operationally for radiosondes. The goal is to identify distributions of
soundings that lead to a large reduction of the variance of forecast error projected into the subspace spanned by
the 25 leading routine Hessian singular vectors. The optimal region to place the supplementary observations is
obviously linked to the region where these singular vectors have the largest amplitude at initial time. Therefore,
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the weighted averageη ≡ ∑25
i=1 σ2

i τi of the vertically integrated total energyτi of singular vectori is used to
target the supplementary observations. The fastest growing structures are emphasized by using the squared
singular values as weights. A target is defined as the region whereη exceeds a threshold value. By choosing
successively smaller thresholds targets of increasing size are determined. Five sizes are considered. The targets
are named XS, S, M, L, XL according to their sizes 0.5, 0.8, 3, 13 and 50×106km2. Target XL covers 10% of
the earth’s surface.

As a first test, the expected total energy of the forecast error of three configurations of the observing network is
compared: (i) the routine network, (ii) the routine network plus 160 soundings in target L and (iii) the routine
network plus 160 soundings in the Pacific — far upstream of target L (Fig.1). With the last configuration the
expected total energy of forecast error is unchanged as compared to the routine observing network. However,
the upgrade with soundings in target L has a major impact. The expected total energy of forecast error is
reduced to 38% of the value obtained with the routine observing network at a subspace dimension of 25. In the
following plots, the reduction of forecast error variancern is normalized with the forecast error varianceεn of
the routine network. The quantityrn/εn will be referred to as fractional reduction of forecast error variance or
fractional reduction of the (expected) total energy of forecast error.

160 suppl. sndgs. in HSV−target (Exp. c)
160 suppl. sndgs. in Pacific (Exp. b)
routine observations only (Exp. a)
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Figure 1: Expected value of total energy of projected forecast error versus subspace dimension n for three different
observing networks.

The reduction of forecast error variance will increase with the number of supplementary observations. An
important issue in observation targeting is to determine the appropriate size of an observing network upgrade.
To illustrate this, target regions S, M, L and XL are considered. These regions are sampled with soundings at
a fixed horizontal spacing of about 280 km. The number of soundings required to cover the target regions is
10, 40, 160 and 640. Figure2 shows the sounding locations in targets S, M and L. The fractional reduction of
forecast error variance is plotted in Fig.3a. As the sampled area and the number of soundings are increased the
forecast error variance decreases. The reduction of forecast error variance is approximately proportational to
the logarithm of the number of soundings up to about 160 soundings. This corresponds to a target region size of
13×106km2. Further enlarging the target region beyond this size yields only a moderate additional reduction
of forecast error variance.

As the goal is to find a set of supplementary observations to reduce the magnitude of the error projected in
the subspace spanned by the leading routine Hessian singular vectors, targets based on these singular vectors
should be superior to other targets. To demonstrate this, the experiment with 40 soundings is repeated with
a medium size target region computed from total energy singular vectors. As anticipated, the forecast error
variance is reduced significantly less with the observations in the total energy singular vector target than with
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Figure 2: Sounding locations at 280 km spacing in targets S, M, L and along a hypothetical flight-track through target M.
Number of soundings: 10, 40, 160 and 40. The box indicates the verification region.

observations in target M, which is based on Hessian singular vectors (Fig.3a).

In a scenario with a fixed number of supplementary soundings, the HRR estimate can be used to determine
the optimal horizontal spacing between soundings. As example the deployment of 40 targeted soundings is
considered. The spacing is varied between 111 km and 1110 km. The target regions are computed again from
the routine Hessian singular vectors. The area of the target regions is approximately 40 times the square of
the spacing. The 280 km spacing yields the largest reduction of forecast error variance (Fig.3b). One would
expect that the optimal spacing has the same order of magnitude as the horizontal correlation length scale of the
background error estimate used in the assimilation scheme (Leutbecheret al. 2002). The result is consistent
with this expectation as the average horizontal correlation length scales of the background errors for surface
pressure, vorticity, the unbalanced parts of divergence and temperature are about 400, 200, 200, and 300 km,
respectively.
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(a) variable number of soundings,
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Figure 3: Fractional reduction of the total energy of forecast error rn/εn versus subspace dimension n for network
upgrades that differ in terms of spatial coverage.

With the optimal spacing of 280 km, target M is sampled homogeneously. However, the two-dimensional sam-
pling pattern is not feasible if the soundings were to be obtained with sondes dropped from one aircraft. Figure2
shows a rearrangement of the 40 sondes along a hypothetical flight-track in target M. As in the previous ex-
periments, all soundings are simultaneous observations. Intuitively, one would expect that the one-dimensional
pattern along the chosen flight-track is less suited to constrain the initial condition error in target M than the two-
dimensional pattern. Yet, the reductions of forecast error variance due to the two patterns are almost identical
up to a subspace dimension of 25 (Fig.3b). Without rank reduction, the two patterns could nevertheless yield
different reductions of forecast error variance. However, it may require a subspace dimension considerably
higher than 25 to let this different performance emerge.

The flight-track had been chosen such that it traverses the entire target M but is not too long at the same time. It
is 3700 km long with a sounding every 94 km. Obviously, the choice of the flight-track within target M matters.
One could design another flight-track of about the same length in target S, which is contained in target M, to
get the two-dimensional sampling with 111 km spacing between sondes. According to the HRR predictions,
the sondes dropped along the latter flight-track yield a significantly smaller reduction of forecast error variance
than the sondes along the former flight-track.

All experiments discussed so far study the horizontal distribution of observations. Every sounding extends
from the surface to 200 hPa. One experiment has been repeated using only data either below 600 hPa or
above 600 hPa to compare the impact of data from the lower troposphere with that from the upper troposphere.
The sounding locations are the same as in experiment g, which has 40 soundings in target M at a spacing of
280 km. The experiment which uses the lower (upper) tropospheric part of the soundings yields 67% (56%) of
the reduction of forecast error variance obtained with the entire sounding for a subspace dimension 25. Thus,
the data in the lower troposphere reduce the forecast error variance somewhat more than the data in the upper
troposphere. This may appear perplexing at first because the average total energy of Hessian singular vectors
above 600 hPa is almost double the total energy below 600 hPa. However, the appropriate metric to assess the
impact of the supplementary observations is the observation error covariance metricHT

s R−1
s Hs, cf. (29). This

metric varies with altitude. For radiosonde data, the observation error variance for wind at 300 hPa is 2.6 times
as large as the corresponding variance at 850 hPa. As a result of this weighting, the Hessian singular vectors
contribute to theHT

s R−1
s Hs metric about equal amounts above 600 hPa and below 600 hPa.
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3.2 Observation type

The adaptation of the observing network to specific forecast goals could involve more than the choice of a
spatial pattern for a set of additional observations. Upgrades of the observing network that differ in terms of the
observed variables can be compared with the HRR estimate. To illustrate, the experiment with 40 soundings in
target M at 280 km spacing is repeated twice using either wind data only or temperature data only. The reduction
of forecast error variance due to wind observations is significantly larger than the reduction due to temperature
observations (Fig.4a). It has to be anticipated that these results are sensitive to the formulation of the balance
between wind and mass in the statistical model for the background error covariances. The reduction obtained
with soundings of wind and temperature is 20% smaller than the sum of the individual reductions. This is to be
expected as wind and temperature increments are statistically balanced via the background error covariances.
Thus, the two variables do not provide completely independent information.
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Figure 4: Fractional reduction of the total energy of forecast error rn/εn versus subspace dimension n for network
upgrades that differ in terms of observation type.

More complex comparisons could be envisaged. Say, one had the following two options of complementing
the routine observations: (i) a satellite that was able to provide 640 temperature soundings in target XL with
the accuracy and the vertical resolution ofin situ temperature measurements taken by a radiosonde or (ii) 40
dropsondes in target M that deliver temperature and wind data. The expected reductions of the total energy
of forecast error for the two options are plotted in Fig.4b. The dependence of the reduction of forecast error
variance on the subspace dimension is interesting. The 40 soundings of wind and temperature observations are
superior for a subspace of dimension one or two. However, for a subspace dimension greater three, the “satellite
data” are the superior choice. Obviously, more complexity could be added to make the comparison more
realistic, e.g. radiance observations in cloud-free regions could be compared with a set ofin situ observations
of wind and temperature. The impact of using more accurate instruments on future satellites can be assessed
also if observation operators and realistic observation error estimates are available.

4 Discussion

An important question is whether the HRR estimate provides useful predictions of the change of forecast
error variance due to modifications of the observing network. For the studied cyclone of 26 December 1999
the predictions of the HRR for some network upgrades can be compared with actual reductions of the total
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Exp. HRR RUO RPO
d 0.16 0.11 0.11
e 0.16 0.09 –
o 0.27 0.31 0.25
f 0.31 0.32 –
g 0.38 0.35 0.20
c 0.62 0.52 –

HRR: expected fractional reduction in the 25-dim
subspace

RUO: realized fractional reduction with unperturbed
observations

RPO: realized fractional reduction with perturbed
observations, average over five realizations of
observational error

Table 2: Hessian reduced rank predictions versus realized fractional reductions of the total energy of the full forecast
error as determined in OSSEs.

energy of the 48-hour forecast error in the verification region as obtained in the corresponding observing system
simulation experiments (OSSEs) of Leutbecheret al. (2002). Note, that in some of the experiments a small
fraction of sounding locations disagrees between the HRR experiments and the OSSEs because the target
regions are diagnosed in a slightly different manner. In Table2 the fractional reductions of the total energy
of the full forecast error(‖Pxcnt‖2

E −‖Px‖2
E)/‖Pxcnt‖2

E are listed for the OSSEs, wherex denotes the state
vector of the forecast error of the experiment with the supplementary observations andxcnt the state vector of
the forecast error of the control experiment, which uses no supplementary observations. The magnitude of the
HRR predictions of the fractional reduction agrees surprisingly well with actual realizations. However, this
agreement may be mere coincidence as results for a single realization of the error of the control experiment are
compared with expected values for distributions of initial errors.

A thorough multi-case evaluation consisting of two steps could be envisaged. First, the HRR estimate is com-
pared with the actual forecast error projected into the subspace of leading Hessian singular vectors. Second,
the projected forecast error is compared with the total forecast error. The test will require many assimilation
experiments with a modified observing network in order to obtain a reliable estimate of the mean of the actual
change of the square norm of forecast error. One could study the expected reduction of forecast error variance
due to the addition of targeted dropsondes during the recent field campaigns FASTEX, NORPEX and the WS-
RPs similar to the work of Majumdaret al. (2001) for the ETKF. Another option to test the HRR estimate
is to suppress data from the routine observing network and quantify the associated increase of forecast error
variance. In these data denial experiments, one would not be restricted to the limited number of cases in recent
field campaigns.

The climatological background error covariances used for the HRR estimate correspond to a certain routine ob-
serving network. This implies that the HRR estimate is a tool to investigate intermittent changes of this routine
observing network. Any permanent change of the routine network would affect the climatological background
error. Therefore, the assimilation experiments should not be cycled in the evaluation proposed above. The
reliance on the climatological background error covariances employed in the variational assimilation scheme is
probably the largest weakness of the HRR. Further improvements of it will have to aim for better background
error estimates, which should account for past changes of the observing network and the actual atmospheric
flow.
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Inaccuracies in the observation error estimates may be another cause for discrepancies between the HRR predic-
tions and the actual reduction of forecast error variance. Correlations of observation error are usually neglected
in current operational assimilation schemes. For instance, satellite radiance data will have observation errors
correlated in space and between different spectral channels. The HRR estimate may overestimate the impact of
such data if the correlations are not accounted for. Furthermore, model error may contaminate the relation be-
tween the HRR predictions and the actual square norm of forecast errors. This includes errors of the nonlinear
forecast model itself as well as errors of the tangent-linear version of the forecast model. Another issue that
may be of relevance in the proposed evaluation is the consistency between the HRR estimate and the assimila-
tion system. Ideally, the spatial resolution of the analysis increments should agree with the resolution used in
the HRR. In addition, the data selection choices made for the assimilation should agree with the data selection
choices used in the computation of the Hessian metric. There is a further consistency issue for implementations
of incremental 4D-Var that recompute the trajectory used for the linearization during the minimization of the
quadratic cost function. This update of the trajectory is not accounted for in the estimate of the analysis error
covariances used in the HRR.

Two alternative approximations were proposed to calculate the variance of the projected forecast error. The
analysis error covariances are approximated at different stages in the two methods. In the first method (sec-
tions 2b-d), the metricsA−1 andÃ−1 are fully consistent with the covariance estimates used in the assimilation
scheme. The approximation occurs when the projected analysis error covariance matrix for the modified net-
work is represented by the outer product of the subspace singular vectors. The second method (section 2f),
starts with an approximation of the analysis error covariance matrix for the routine observing network. The
covariance matrix is represented by the background error covariance matrix of the assimilation scheme plus a
low rank correction that describes the leading effect of the observations on the covariance matrix. Thereafter
no further approximation is required. It remains to be investigated which of these approximation techniques is
better suited for the computation of the reduction of forecast error variance.

So far in this paper changes of the variance of forecast error projected into a fixed subspace were studied.
The subspace is spanned by the singular vectors computed with the Hessian of the routine observing network.
However, the subspace that evolves into the leading eigenvectors of the forecast error covariance matrix will
change as the observing network is modified. The HRR estimate using a fixed subspace will not provide a
method to determine the optimal sampling strategy for a set of supplementary observations, if the subspace
changes significantly due to the addition of these extra observations in the Hessian metric. To address this
issue, Hessian singular vectors were computed for the modified networks of experiments f and g with 40
supplementary soundings at 560 km spacing and 280 km spacing, respectively. The agreement between the
subspaces spanned by these modified Hessian singular vectors and the routine Hessian singular vectors is
quantified with a similarity index which is 1 for identical subspaces and 0 for completely orthogonal subspaces
(Buizza 1994). The index is computed with the total energy metric using orthonormalized bases with respect to
this metric. For a subspace dimension of 25, the similarity indices are 0.86 for experiment f (560 km spacing)
and 0.82 for experiment g (280 km spacing). Thus, the subspaces are still fairly similar if 40 targeted soundings
are added to the routine observing network. Therefore, it appears justified to optimize observing network
upgrades of this extent using a fixed subspace.

The illustration of the HRR in a case study was performed in a diagnostic mode. In order to apply the technique
in real-time for planning adaptive observations Hessian singular vectors need to be computed at a lead time
of 24–48 h with respect to the network modification time. This requires a prediction of the likely distribution
of observations and the use of a trajectory starting from a forecast. Buizza and Montani (1999) and Gelaro
et al. (1999) investigated the sensitivity of total energy singular vectors to the forecast lead time of the used
trajectory. They found significant differences between singular vector subspaces computed with 0 h lead and
with 48 h lead mostly due to differences in structure rather than location. It is conceivable that Hessian singular
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vector subspaces are also sensitive to the trajectory lead time. Therefore, it is important to check in subsequent
work that the HRR predictions of the reduction of forecast error variance are reasonably insensitive to the lead
time. Apart from the choice of trajectory, an additional sensitivity is expected for the Hessian singular vectors
due to inaccuracies in predicting the spatial distribution of observations. For instance, the spatial distribution
of satellite observations that depend on the location of clouds will be difficult to predict accurately.

It may be justified to simplify the initial time metric for the routine observing network given the potential
difficulties in predicting the variable parts of the observing network accurately enough and given the approxi-
mations made in current variational schemes of modelling the background error covariance by a climatological
estimate. One attempt could be to replace the routine Hessian by a metric based on a climatological estimate
of the analysis error covariances. The covariances could be parameterized in the same way as the background
error covariances. The parameters for the climatological analysis error covariance could be estimated from an
ensemble of analyses generated with different random perturbations of the observed values for each ensemble
member. Such an ensemble is used to determine the operational background error covariances at ECMWF
(Fisher and Andersson 2001). A further advantage of this simplification would be the reduced computational
cost for obtaining the singular vector subspace. The computational cost of calculating singular vectors with
the climatological analysis error covariance metric will be roughly comparable to the cost of calculating total
energy singular vectors as the Lanczos algorithm can be used in both cases. The Hessian singular vectors are
substantially more expensive to compute as a generalized eigenproblem solver is required that evaluates the
gradient of the cost function many times for each iteration step. The high computational cost together with
lacking evidence of a benefit for the ensemble prediction system has precluded the operational use of Hessian
singular vectors so far.

5 Conclusions

A new tool for adaptive observations has been introduced: The Hessian reduced rank estimate (HRR) predicts
how much the expected value of the square norm of forecast error changes due to an intermittent modification of
the observing network. The HRR estimate is based on a variational assimilation scheme using the incremental
approach. Forecast errors are projected into the subspace spanned by the leading Hessian singular vectors
computed for the routine observing network. Forecast errors are quantified with a norm such as total energy.
The expected value of the square of this norm is computed for distributions of initial error that are consistent
with the statistical assumptions of the variational assimilation scheme. In the one-dimensional case, forecast
errors are projected on the leading Hessian singular vector. This rank-one version of the HRR estimate is
closely linked to the Kalman filter sensitivity (Bergot and Doerenbecher 2002). If the HRR estimate is applied
to the full state space, it yields the same predictions as an extended Kalman filter — provided that the Kalman
filter is initialized with the background error covariance matrix used in the variational assimilation scheme.

A potential advantage of the HRR is its consistency with an operational assimilation scheme. The ensemble
transform Kalman filter (ETKF) technique applied to a set of evolved ensemble perturbations lacks this con-
sistency. However, if the ETKF technique is applied to a set of Hessian singular vectors it predicts the same
reductions of forecast error variance as the HRR — provided the same measure of forecast error, the same
observation operator and the same observation error covariances are used. Thus, practically both techniques
can be made to agree. The different way of deriving the two techniques may be of educational interest. In the
derivation of the ETKF, the reduction of rank is introduced by assuming that the full prediction error covariance
matrix is represented by an outer product of transformed ensemble perturbations. Therefore, the terms inF in
(19) are implicitly assumed to vanish and the issue addressed in appendix B does not emerge. The rank reduc-
tion remains implicit through the choice of the ensemble size. For the HRR, the rank reduction via a projection
operator is explicit throughout the derivation. The latter approach is attractive as it offers different options of
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approximating the projected versions of the analysis error covariance matrices.

Several aspects of the adaptive observation problem were studied with the HRR estimate in a case study for an
extra-tropical storm. The relation between the size of the adaptive component of the observing network and
the expected reduction of the total energy of the forecast error was determined. For a given number of targeted
soundings distributed in a two-dimensional pattern, the optimal horizontal spacing between soundings was
determined. The optimal value coincides with the average horizontal correlation length scale of the background
error estimate. The reduction of forecast error variance due to data from the lower troposphere was compared
with that due to data from the upper troposphere. Furthermore, the impact resulting from observations of
different variables was determined.
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Appendix A: Projections

Now, the equivalence (7) of projecting at initial time onLn or at final time onPMLn is proved. Using the
singular value decomposition (2), the orthonormality relations (3), (4) and the definition of the projections
(5),(6) we observe that

PMΠΠΠn = UΣΣΣVTA−1VnVT
nA−1 = UΣΣΣ

(
In 0
0 0

)
VTA−1 = U

(
In 0
0 0

)
ΣΣΣVTA−1 =

Un(In 0)ΣΣΣVTA−1 = UnUT
nEUΣΣΣVTA−1 = Π̂ΠΠnPM. (A1)

Appendix B: Approximation of the projected covariance matrix

For the modified observing network, the analysis error covariance matrix projected onto the subspaceLn has
been approximated by (22). The approximation of the projected covariance matrix can be improved, if the
modified metric is known in a larger subspaceLn′ , n′ > n. Now, it is investigated how the approximation of the
covariance matrix affects the value of the forecast error variance.

The exact projected covariance matrix is given by (21). It involves the matrixF = ṼT
nÃ−1(ṽn+1 . . . ṽN), which

can be split asF = (F′ F′′) with

F′ ≡ ṼT
nÃ−1(ṽn+1 . . . ṽn′) and (A2)

F′′ ≡ ṼT
nÃ−1(ṽn′+1 . . . ṽN). (A3)
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An improved approximation of the projected covariance matrixΠΠΠÃΠΠΠT is obtained by replacingF with (F′ 0)
in (21). With this new approximation, the forecast error variance becomes

ε̃n ≈ tr

((
In−F′F′T

)−1
Λ̃ΛΛ

)
. (A4)

To computeF′, an Ã−1-orthonormal basis̃V′ ≡ (ṽn+1 . . . ṽn′) of span{vn+1, . . ., vn′} is required. DefineV′ ≡
(vn+1 . . .vn′) andC′′ ≡ V′TÃ−1V′. Then, the new basis is obtained via the transformationṼ′ = V′ΓΓΓ′, where the
transformation matrixΓΓΓ′ satisfies

ΓΓΓ′TC′′ΓΓΓ′ = In′−n. (A5)

With this transformation,F′ is given by
F′ = ΓΓΓTC′ΓΓΓ′, (A6)

with C′ ≡ VT
nÃ−1V′.

Fig. B1 shows the improved approximation (A4) versus the original approximation (23) for cases where the
routine observations where supplemented with 10–640 soundings in targets S, M, L and XL. The experiments
with the larger number of soundings represent a major change of the observing network in the region of interest.
The expected total energy of the forecast error appears to converge rapidly as the dimensionn′ is increased.
The difference between the two approximations is largest for the lowest dimensional subspaces(n< 5). For the
subspaces with dimension 5–10, the total energy of forecast error computed with the original approximation
has reached already 95% of the value computed with the improved approximation forn′ = 25. This suggests
that the original approximation is good enough if the subspace dimensionn is sufficiently large, say greater
than five.
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Figure B1: Impact of improving the approximation of the projected covariance matrixΠΠΠnÃΠΠΠT
n . (a) Convergence of the

expected total energy of forecast error projected on the 1, 2, 5 and 10-dimensional subspaces versus the dimension n′ of
the subspace used to approximate the projected covariance matrix. Experiment g with 40 soundings in target M. The total
energy of the forecast error is normalized with the value obtained for n′ = 25. (b) The expected reduction of forecast error
variance versus the subspace dimension n using the original approximation of the covariance matrix (n′ = n, normal) and
the improved approximation (n′ = 25, bold). Experiments with 10, 40, 160 and 640 soundings in targets S, M, L and XL,
respectively.
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