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SV–based multivariate normal sampling in ensemble prediction

1 Introduction

Transient growth in atmospheric dynamics has been studied extensively through singular vectors (SVs) that
describe perturbations amplifying most rapidly over a finite time for a specified norm (Buizza and Palmer
1995). These SVs allow for an extension of stability analysis beyond structure–preserving normal modes
(Farrell and Ioannou 1996). In addition, due to identifying highly sensitive directions in phase space, SVs are
primary candidates for generating perturbed initial conditions within ensemble prediction (Molteni et al. 1996).

In the work described in this Technical Memorandum the properties of ensembles that are created through
randomly sampling from a multinormal probability density, the covariance structure of which is described by
SVs. It is discussed (see, section 2) that SVs computed using analysis–error covariance information provide a
square–root decomposition of the analysis error covariance matrix P

a. This SV–decomposition (see section 2)
evolves into the eigendecomposition of the forecast error covariance matrix P

f. As such, the SV–decomposition
of P

a is a primary candidate for generating – from a multivariately standard–normal random variable – a set
of M initial–time perturbations fully consistent with P

a as described through the leading N SVs. Within the
Special Project SPATME01 entitled SV–based multivariate normal sampling in ensemble prediction this SV–
based multinormal sampling technique has been tested with the aim of assessing its potential for operational
implementation (especially in the case M > N). Specifically, ensembles using SVs based on the total–energy
norm have been investigated with this sampling technique (see sections 3 and 4), which has been incorporated
into the ECMWF Integrated Forecast System. Another important part of this Special Project is formed by
data assimilation and ensemble prediction experiments with an exact quasigeostrophic Kalman Filter which
allows for assessing explicitly the implications of limiting initial–time covariance information to N SVs on the
time–evolving covariance structures (see section 5).

This Technical Memorandum is based on the final report for the Special Project SPATME01 that lasted from 1
January 2000 to 31 December 2003. Three persons have been working on the project: A. Beck, M. Ehrendorfer
(Principal Investigator), and P. Haas. An important achievement during the project was the implementation of
the sampling technique (see section 2) within the ECMWF Integrated Forecast System in 2000 (see also section
6 and appendix A). The work and various visits during this Special Project were also strongly connected to
Project P13729–GEO funded by the Austrian Science Foundation (see, Ehrendorfer et al. 2003).

2 The SV–based multinormal sampling method

The basic idea of the multinormal sampling consists of generating perturbations consistent with the analysis
error covariance matrix, represented through SVs. Theoretical aspects are discussed in Ehrendorfer (1999b),
and briefly revisited here. The multinormal sampling by construction generates a set of independent perturba-
tions that is fully consistent with knowledge about the analysis error covariance P

a as described through the
SVs; the sampling method also ensures that these perturbations are comparable in magnitude to the prespecified
amplitude of the operationally used rotation method (Molteni et al. 1996).

2.1 Uncertainty prediction: Hessian SVs

The Hessian SVs (HSVs) are defined as the structures Z
0

that solve the eigenvector problem:

M
T
C

T
CMZ

0
= (Pa)−1

Z
0
Λ s.t. Z

T
0(Pa)−1

Z
0
= I , (1)

where M is the tangent–linear model resolvent, C describes the final–time norm, and Pa is the analysis error
covariance matrix (see, e.g., Barkmeijer et al. 1999). The set of vectors Zt ≡ CMZ

0
, that is, the time–evolved
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structures Z
0
, are the eigenvectors of the forecast error covariance matrix Pf . This fact can be seen, because

operating with CMPa on eq. (1) gives:
(

CMP
a

)

M
T

︸ ︷︷ ︸

≡Pf

C
T
CMZ

0
︸ ︷︷ ︸

≡Zt

=
(

CMP
a

)

(Pa)−1
Z

0
Λ , (2)

which, with the definition of Pf ≡ MPaMT, yields the result:
(

CP
f
C

T
)

Zt = ZtΛ . (3)

Eq. (3) states that the time–evolved HSVs Zt are the eigenvectors of CPfCT, which is the forecast error co-
variance in the “final–time norm” C (see, Ehrendorfer and Tribbia 1997). Note that the following final–time
orthogonality relationship is true for Zt:

Z
T
t Zt =

(

CMZ
0

)T(

CMZ
0

)

= Z
T
0 M

T
C

T
CMZ

0
︸ ︷︷ ︸

=
︷ ︸︸ ︷

Z
T
0(Pa)−1

Z
0
Λ = Λ , (4)

where, for the second equality sign, eq. (1) is used. Thus, it is true that the final–time HSVs Zt are orthogonal,
with their squared length being equal to the squared singular values contained in the diagonal matrix Λ:

Z
T
t Zt = Λ . (5)

It is apparent from the foregoing that the mathematical developments follow through even if approximations for
Pa are used. One such approximation may be considered by constraining the SVs initially through an energy–
like norm (see, e.g., Palmer et al. 1998); clearly, in that case the SVs and the appropriate SV–decomposition of
Pa (see next subsection) need to be accordingly reinterpreted.

2.2 Uncertainty prediction: The SV–Decomposition of P
a

Since the initial–time HSVs satisfy eq. (1), it is true that Pa can be written as:

P
a = Z

0
Z

T
0 . (6)

Eq. (6) represents a special square–root for Pa that is different from an eigendecomposition and that is also not
lower–triangular. The decomposition of Pa given in eq. (6) in terms of the initial time HSVs Z

0
is referred to

as the SV–decomposition of Pa.

It is easily seen that under linear dynamics the SV–decomposition eq. (6) of Pa becomes the eigendecomposi-
tion of the forecast error covariance matrix, because operating on eq. (6) as given below, namely:

(

CM

)

P
a

(

CM

)T
=

(

CM

)

Z
0
Z

T
0

(

CM

)T
, (7)

yields:
CP

f
C

T = ZtZ
T
t . (8)

Further, augmenting eq. (8) by multiplying from the right with Zt and observing the orthogonality relation eq.
(5), yields:

CP
f
C

T
Zt = ZtΛ , (9)

which is precisely eq. (3). Thus, we have established the result that for linear dynamics the SV–decomposition
of Pa evolves into the eigendecomposition of Pf (see also, Ehrendorfer 1999b). The SV–decomposition given
in eq. (6) forms the basis for the generation of initial–time perturbations in the multivariately normal sam-
pling method implemented within the ECMWF Ensemble Prediction System (EPS). Again, if instead of Pa

a simplified metric such as CTC is used at initial time, the SV–decomposition will successively build up the
corresponding matrix description of such a metric according to eq. (6).
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2.3 Multinormal sampling based on the SV–decomposition of P
a

The basis for creating a set of multivariately normal perturbations is the fact that if the vector random variable
q is standard multivariately normal:

q ∼
�

(0, I) , (10)

then the transformed variable x constructed through:

x = xc
0 +V1/2q (11)

will be multivariately normal with mean xc
0 and covariance structure V:

x ∼
�

(xc
0,V) (12)

(see, e.g., DeGroot 1986). The essential point underlying the singular vector–based multivariate normal sam-
pling method is the recognition that the SV–decomposition eq. (6) represents an appropriate square–root of the
analysis error covariance matrix that can be used advantageously in the construction process described through
eq. (11). Specifically, if N SVs, computed according to eq. (1), are available, an (approximate) square–root of
Pa is given, on the basis of eq. (6), by:

(Pa)1/2 = Z
0

(N) , (13)

which is used in the sampling method, in analogy to eq. (11), to generate M perturbed states according to:

xi = xc
0 +Z(N)

0 qi i = 1,2, ...,M . (14)

Clearly, the xi are multivariately normal with:

x ∼
�

(

xc
0,(P

a)(N)
)

, (15)

where:
(Pa)(N) ≡ Z(N)

0 (Z(N)
0 )T (16)

represents the approximation to Pa in terms of the SV–decomposition that is available on the basis of N SVs.
Eq. (14), representing the heart of the singular vector–based multivariate normal sampling method, provides
for a method that allows for generating M perturbations that are completely consistent with Pa knowledge, as
described through a set of N SVs that satisfy (1). Clearly, the technique assumes that initial (analysis) errors are
normally distributed. The attractive feature of the method is that for the linear regime the eigenvector properties
of the evolved SVs will be exploited (see previous subsection, especially eq. (9)); further, as nonlinearity
becomes important, the SV properties are taken into the nonlinear regime (see also, Gilmour et al. 2001).

Apparently, through eq. (14), the sampling method bears a strong resemblance to the operationally used rotation
technique used at ECMWF (see, Molteni et al. 1996) that also creates perturbations to be added onto xc

0 as a
linear combination of the available SVs. A technical point concerns establishing the overall magnitude of the
multivariate normal perturbations Z(N)

0
qi (see eq. (14)) which is taken to be quite comparable to the magnitude

prescribed in the rotation technique.

The methodology presented here allows from the beginning for the two free parameters N and M; that is, the
possibility exists to generate an arbitrary number M of perturbed states from N SVs. In the presently used
operational configuration of the rotation method in the ECMWF EPS, N = 25, and M = 2×N. Also, whereas
the rotation method generates perturbed states that are exactly symmetric with respect to the control at initial
time, this is not precisely the case for the sampling method. Clearly, however, such asymmetry is progressively
reduced for increasing ensemble size M.
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3 Results: Estimating variances and correlations

To investigate the performance of the sampling technique within the framework of the ECMWF EPS, ensem-
ble experiments have been carried out. Specifically, these experiments are designed to address the impact of
different configurations with regard to ensemble size M and the number of SVs N, used for approximating the
analysis error covariance matrix at initial time. Sampling experiments have been carried out for selected dates
during summer 2001, as well as December 2001. Emphasis has been given to the comparison of the sampling
method with the operational rotation technique, as well as to the performance of ensembles with M = 100 mem-
bers. A selection of these experiments is presented here to illustrate the error dynamics within the ECMWF
EPS, as well as to study the potential benefit of the sampling technique in comparison to the operational rotation
technique (see, Molteni et al. 1996).

The present operational ECMWF EPS is based on the so–called total–energy SVs rather than Hessian SVs (see,
Palmer et al. 1998). In view of the theoretical properties of the HSVs (see section 2), this choice of initial–
time metric, namely total energy, seems suboptimal. The computation of HSVs in a high–resolution EPS is,
however, computationally very expensive and has yet to demonstrate a significant impact on the performance
of the forecast (see, Barkmeijer et al. 1998, Barkmeijer et al. 1999).

3.1 Variances estimated from EPS integrations
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Figure 1: D+0 sampling experiment with M=50/N=25. Initial time (20011219/1200) temperature variance (unit K2) at
850hPa (shaded; contour interval indicated on right–hand–side of figure). Contours show Z500 height field (unit 10 m)
of control forecast.

As an example for the error dynamics in the ECMWF EPS, results from a sampling experiment with starting
date 20011219/1200 are presented in Figs. 1 – 6. In the results shown in Figs. 1 – 4, M = 50 perturbations
are sampled from N = 25 SVs; thus, this choice of parameters mimics the operational configuration. Figs.
1 – 4 show temperature variances in units of K2 at 850hPa at four different times. Shown in contours is the
500hPa geopotential height field (unit 10m) of the control forecast. The contour interval for the variances is
given on the right–hand–side of the figures (regions with variances greater than 2 K2 are shaded). It is seen
from Fig. 1 that the (nonzero) variance structures are associated with regions of strong cyclonic activity and
that the largest variance obtained is about 10 K2 (at 175oW). Over the first 24 hours of the forecast the error
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Figure 2: D+1 sampling experiment with M=50/N=25. As Fig. 1, but for D+1 forecast.

2

2
2

2

2

2

2
2

2

2
2
22

6

6

6

6

H
H

H

H H

H

H H
H

H

H

HH H

H
H

H

H

H

H

H

H

H H

H
H

L

L

L

L

L

LL L
L

L

L

L L

L

L
L

L
L

L
L

L

L
L L

L

L
L

L L
L L

L

500

500

500

500

500
500

500

525

525

525

525

525

525

525

525

525

525

550

550

550

550

550

55
0

550

55
0

575

575 575 575

575575575575

80°S80°S

70°S 70°S

60°S60°S

50°S 50°S

40°S40°S

30°S 30°S

20°S20°S

10°S 10°S

0°0°

10°N 10°N

20°N20°N

30°N 30°N

40°N40°N

50°N 50°N

60°N60°N

70°N 70°N

80°N80°N

160°W

160°W 140°W

140°W 120°W

120°W 100°W

100°W 80°W

80°W 60°W

60°W 40°W

40°W 20°W

20°W 0°

0° 20°E

20°E 40°E

40°E 60°E

60°E 80°E

80°E 100°E

100°E 120°E

120°E 140°E

140°E 160°E

160°E

850hPa **temperature  - Ensemble member number 1 of  51
Wednesday 19 December 2001 12UTC ECMWF  EPS Perturbed Forecast t+48 VT: Friday 21 December 2001 12UTC

Wednesday 19 December 2001 12UTC ECMWF  EPS Control Forecast t+48 VT: Friday 21 December 2001 12UTC 500hPa geopotential height

2

6

12

18

24

30

30.50

Figure 3: D+2 sampling experiment with M=50/N=25. As Fig. 1, but for D+2 forecast.
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Figure 4: D+4 sampling experiment with M=50/N=25. As Fig. 1, but for D+4 forecast.
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Figure 5: D+4 operational EPS experiment with N=25. As Fig. 1, but for D+4 forecast, as obtained with operational
ECMWF EPS.
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Figure 6: D+4 sampling experiment with M=100/N=50. As Fig. 4, but for sampling experiment with M=100/N=50
starting from 20011219/1200.

growth is fairly small in terms of absolute values, but the variance structures are spreading substantially, thus
covering the baroclinic regions of the individual cyclones across the globe (Fig. 2). Growth further into the
forecast (Figs. 3 and 4) shows that the largest variance is associated with the cyclone over the north–east Pacific
(about 60oN, 170oW), showing variances of about 30 K2 at D+2 and almost 45 K2 into the forecast range at
D+4, respectively. Hence, the error doubling time is estimated to be slightly larger than 2 days. The spatial
structure of the variance fields at D+2 and D+4 still shows the largest variances corresponding to regions of
cyclonic activity, but variances between 2 K2 and 8 K2 are covering most of the extratropics.

For comparison with the operational EPS configuration, D+4 temperature variances at 850hPa, as estimated
from the operational ECMWF EPS, are shown in Fig. 5, for the same initial date as used in Figs. 1 – 4.
Comparing Fig. 5 with Fig. 4 reveals that the error variances are smaller in the operational run, compared
to the corresponding sampling experiment. The two figures are very similar in an overall sense; however, the
structures associated with the largest variances have a larger magnitude in the sampling experiment shown in
Fig. 4. D+4 temperature variances at 850hPa from a sampling experiment using M = 100 ensemble members
on the basis of N = 50 SVs are shown in Fig. 6. It is evident that again the structures for D+4 variances (in Fig.
6) are quite similar, compared to both Figs. 4 and 5. Evidently, this comparison with the operational rotation
technique in terms of variances provides evidence for the robust performance of the SV–based multinormal
sampling technique.

3.2 Correlations estimated from EPS integrations

Having illustrated in section 3.1 the degree to which variances are different when perturbed integrations are car-
ried out within the ECMWF EPS, with perturbations created either through the operational rotation technique
or through the sampling method, attention is now turned to the estimation of off–diagonal elements of the fore-
cast error covariance matrix, in terms of correlations. Maps of 500hPa geopotential–height correlations of one
particular gridpoint (50oN, OoE) with all other gridpoints on the globe are shown in Figs. 7 – 9. Correlations
shown in these figures are valid for D+4 forecasts and are estimated from EPS ensemble forecasts starting from
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20011219/1200.

Fig. 7, showing correlation structures based on the operational EPS forecast, illustrates that estimating off–
diagonal elements of the forecast error covariance matrix P

f from only M = 50 ensemble members gives highly
unrealistic correlation structures. Fig. 7 suggests that geopotential height of one point over Europe (i.e., 50oN,
OoE) is highly correlated with geopotential height over Australia and the South Pacific. Obviously, such corre-
lations are highly unrealistic in the real atmosphere and are simply the result of a systematic undersampling of
the correlation structure. To overcome this undersampling problem the number of ensemble members appar-
ently has to be increased. However, it is evident from Fig. 8 that the correlations can be improved substantially
on the basis of only M = 50 EPS members if the sampling technique is used for the generation of the initial
perturbations. Completely analogous to Fig. 7, Fig. 8 shows Z500 correlations that are now estimated from
a sampling experiment using M = 50 members (and N = 25 SVs). This improvement in the estimation of
off–diagonal elements is considered to be due to the fact that the operational rotation technique (underlying the
results in Fig. 7) imposes strictly symmetric perturbations with opposite sign at the initial time (see, Molteni
et al. 1996).
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Figure 7: D+4 geopotential–height correlations at 500hPa (of grid point 50oN and OoE with all other grid points on the
globe) obtained from ECMWF operational EPS forecast starting from 20011219/1200. Also shown is Z500 height field of
control forecast (black contours; unit 10m).

Finally, Fig. 9 again shows Z500 correlations based on an EPS sampling experiment, but now for the situation
that the sampling method uses M = 100 members on the basis of N = 50 SVs. It is evident from Fig. 9
that this configuration ensures that the unrealistic correlation structures found in the previous figures largely
disappear; that is, Fig. 9 does not show any significant correlations with points in the southern hemisphere.
These comparisons of the sampling and the rotation technique seem to be slightly favorable for the sampling
technique, in terms of its efficiency to remove unrealistic correlations, given the constraint that M perturbed
states can be integrated forward in time.
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Figure 8: As Fig. 7, but for EPS sampling experiment with M = 50 members based on N = 25 SVs, starting from
20011219/1200.
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Figure 9: As Fig. 7, but for EPS sampling experiment with M = 100 members based on N = 50 SVs, starting from
20011219/1200.
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4 Results: Performance in terms of EPS scores

Given the performance of the sampling method in comparison to the operational EPS rotation method in terms
variances and correlations (see section 3), a few selected skill measures of both techniques are compared here.
With regard to the verification of probability forecasts reference is made to the excellent book by Wilks (1995).

Fig. 10 shows the Z500 anomaly correlation, as well as RMS error (unit m) of the ensemble mean computed
with respect to the control forecast and evaluated for the northern hemisphere. The curves correspond to the
operational EPS (red), and sampling experiments with M = 50/N = 25 (blue), with M = 50/N = 50 (green), and
with M = 100/N = 50 (black), respectively. All curves are computed as means over 8 cases in December 2001.
The top panel in Fig. 10 shows the difference in skill between the ensemble mean and the control forecast. The
lower panel shows the corresponding difference in RMS errors between the ensemble mean and the control. It
is evident from Fig. 10 that after D+3 the ensemble mean is more skillful than the control forecast. Moreover,
the ensemble mean of the sampling experiments performs slightly better after D+6.

Another measure of the performance of the EPS is given by the area under the Relative Operating Characteristic
(ROC) curve, which is an overall measure of the quality of an ensemble forecast. Basically, it is a generalization
of the concept of contingency tables to probabilistic forecasts. A ROC area of one indicates a perfect forecast,
and a value of 0.5 is considered to be the lower bound for a useful forecast. For a detailed description of the
properties of this verification measure, reference is made to Stanski et al. (1989). Fig. 11 shows the ROC
area curve for the same experimental configurations as in Fig. 10 (also with the same colouring conventions).
Curves shown correspond to temperature at 850 hPa for the event that the temperature anomaly is greater than
8K evaluated over the northern hemisphere. It is evident from Fig. 11 (upper panel) that all EPS configurations
behave quite similar in terms of ROC area. The lower panel in Fig. 11 shows the change in ROC area with
respect to the operational EPS, and indicates a slight improvement for the sampling experiments with config-
urations M = 50/N = 50 (green curve) and M = 100/N = 50 (black curve), apparently resulting from larger
sampling size combined with more detailed SV knowledge.

Fig. 12 shows Brier (see, Brier 1950) scores (BSs), as well as Brier skill scores (BSS) for the same EPS
configurations as in the previous figures. As in Fig. 11, the verification area is the northern hemisphere and
statistics are shown for T850 for the event that the temperature anomaly is greater than 8K. The BS is essentially
a mean–squared error for probability forecasts, verified for subsequent binary events (i.e., whether or not the
specified event did happen). The BSS is a skill score computed for the BS with respect to climatology. Thus,
BSS=1 indicates a perfect forecast, and BSS=0 indicates no improvement compared to climatology. Fig. 12
suggests that in terms of BSS all sampling configurations perform very similar, also in comparison to the
operational EPS.

A final verification statistic is shown in Fig. 13, displaying the number of outliers computed for six verification
areas for sampling experiments with different choices of M and N (same colouring conventions as before), as
well as for the operational EPS (red curve). The basic idea of this verification statistic is that the M ensemble
members are used to partition the real line into distinct intervals. Then, assuming that the evolving ensemble
members provide a random sample of evolving probability density function, and neglecting model errors, each
interval is equally likely to contain the analysis (averaged over the verification area). For details refer to Strauss
and Lanzinger (1996) and Buizza (1997). Fig. 13 shows the percentage of outliers for T850 relative to the
expected value of 100%×2/(M +1). It is evident that the sampling technique reduces the number of outliers
for all configurations. The largest reduction is obtained for the ensemble using M = 100 members. Interestingly,
the sampling configuration using M = 50 members on the basis of N = 50 (green curve) SVs performs almost
as well as the configuration M = 100/N = 50 (black curve). This result is probably due to the fact that including
a larger number of SVs leads to more detailed large–scale error structures and thus to lower probabilities for
the analysis to be lying outside of the two extremes of the ensemble.
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Figure 10: Z500 anomaly correlation (top panel) and RMS error (unit m; lower panel) of the ensemble mean with respect
to the control forecast as function of forecast day computed for the northern hemisphere (mean over 8 cases); operational
EPS (red), sampling M = 50/N = 25 (blue), sampling M = 50/N = 50 (green), sampling M = 100/N = 50 (black).
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Figure 11: T850 ROC area (top panel) and relative change with respect to the operational EPS (lower panel) for the
threshold 8K computed for northern hemisphere (mean over 8 cases); operational EPS (red), sampling M = 50/N = 25
(blue), M = 50/N = 50 (green), and M = 100/N = 50 (black).
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Figure 12: Brier score (top panel) and Brier skill score (lower panel) for T850 for the threshold 8K computed for the
northern hemisphere (mean over 8 cases): operational EPS (red), sampling M = 50/N = 25 (blue), M = 50/N = 50
(green), and M = 100/N = 50 (black).
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Figure 13: Relative number of outliers for T850 for 6 verification areas as indicated (mean over 8 cases): operational
EPS (red), sampling M = 50/N = 25 (blue), M = 50/N = 50 (green), and M = 100/N = 50 (black).
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5 Related research

Further work carried out in Special Project SPATME01 concerns the impact of dynamic background infor-
mation on the quality of subsequent analyses. Work in this direction was carried out within the ECMWF
assimilation system; code is in existence that allows for computing within the ECMWF assimilation system the
complete analysis error covariance matrix at T21/L3 resolution (through inverting the Hessian of the variational
cost function; see Fisher and Courtier 1995), to propagate these analysis errors using quasigeostrophic (QG)
dynamics, and to interface that result back into the next assimilation step of the full system. Details for this
QG extended Kalman Filter (EKF) are found in, for example, Ehrendorfer et al. (2001), Ehrendorfer (2000a),
Ehrendorfer (1999a), Ehrendorfer and Bouttier (1998).

One of the primary products of this QG/EKF are analysis and forecast error covariance matrices for vorticity.
The analysis error covariance matrices are evolved over time according to the complete prediction equation
of the EKF, using the QG dynamics of the model by Marshall and Molteni (1993). An example of such a
(tangent–linear) time evolution over 48 hours is shown in Figs. 14 and 15. Fig. 14 shows the time–evolved
forecast error variances when 100 (out of the 1449 possible) SVs are used in the prediction equation. Fig.
15 shows the complete result obtained with all SVs. The SVs used here were computed using the analysis
error covariance as initial constraint, and the total energy norm, described by Ehrendorfer (2000b), as the final
constraint. The optimal reconstruction of the forecast error covariance (at final) time is based on the SV–
decomposition (described by Ehrendorfer 1999a, Ehrendorfer 1999b; see also section 2). From Figs. 14 and
15 it becomes evident that the forecast error variances are, in terms of their structure, well described when only
100 SVs are used. The 100 SVs describe 22.91% of the variance at the initial time and 64.99% of the variance
at the final time.

In a parallel data assimilation effort (see, Beck 2003, Ehrendorfer et al. 2003) assimilation experiments were
carried out within an assimilation system entirely contained within the QG model dynamics formulated by
Marshall and Molteni (1993). As illustrated schematically in Fig. 16, the central part is a four–dimensional
variational (4D–Var) system that, given appropriate input, produces an analysis, together with P

a. As indicated,
three options exist within this system for time–evolving P

a.

One of the major results of that investigation is shown in Fig. 17. In this investigation, the background error
covariance matrix is made (partially) dynamic (through the choice of the “middle” option in Fig. 16) by com-
puting the time evolution of the analysis error covariance matrix on the basis of the HSVs along the theory of
the Reduced–Rank Kalman Filter (e.g., Fisher and Andersson 2001). Results from the simulation experiments
within the QG assimilation system shown in Fig. 17 demonstrate clearly that increasing the amount of flow–
dependence (through including successively more HSVs) in the background error covariance matrix leads to
a positive impact on analysis quality in this assimilation system. In Fig. 17 the black curve shows analysis
and forecast errors for static background information, whereas the orange curve shows the “ideal” situation of
the fully flow–dependent background error covariance matrix computed according to Kalman filter theory. In
between, results are shown for including 10, 100, 200, and 1000 HSVs (out of a total of 1449 HSVs). The
improvement in analysis quality that is expected from theory can be demonstrated in this system.

6 Conclusions

In conclusion, in the work related to this Special Project emphasis has been on both data assimilation and
ensemble prediction. While data assimilation evidence is preliminary and restricted to simplified (i.e., quasi-
geostrophic) dynamics, results from the sampling method within the ECMWF EPS clearly demonstrate that the
sampling method possesses no disadvantages as compared to the presently operationally–used rotation method.
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Figure 15: Same as Fig. 14, except for all 1449 SVs.
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Further, the sampling method is already part of the ECMWF Integrated Forecasting System, is derived from a
strong statistical basis, and may be a particularly attractive method when norms specifically describing analysis
error are introduced to constrain the SV computation at the initial time.
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A Technical description of sampling technique

The sampling technique has been implemented within the IFS in April 2000 and is available from IFS model
cycle 22R3 onwards. The implementation affects two subroutines (comp rotmat.f, comp rotpert.f), one SMS
script (rot.sms), as well as minor modifications to prepIFS. The changes to the individual components, as well
as the specifications in prepIFS are described briefly in the following subsections.

Note that the implementation ensures that the results are reproducible in the sense that for one particular initial
date and number of ensemble members M the same perturbations are obtained when the experiment is re-
peated. Technically speaking, the (initial) seed for the random number generator (in subroutine comp rotpert.f)
is computed from the initial date and the number of ensemble members in the SMS script rot.sms.

A.1 prepIFS

The sampling is included in prepIFS as an option in the EPS setup. Technically, this causes the variable
EPSSIMPL to be set to two (see, below). In addition, a new variable EPSBASIS is used for specifying the
number of SVs (i.e., the dimension of the subspace that is sampled from). Note that this variable EPSBASIS
does not have any impact on other configurations (i.e., the rotation method) as it is only used if “sampling” has
been selected.

Figure 18: Screenshot of prepIFS window showing EPS setup.

Fig. 18 shows a screenshot of the prepIFS window. This figure reflects the following specifications relevant to
the sampling technique (variables EPSMEMBERS, EPSSIMPL, and EPSBASIS):
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• M = 50 [EPSMEMBERS = M + 1 (control)]

• sampling technique (EPSSIMPL = “sampling”)

• N = 25 (EPSBASIS = N; number of SVs that is used in the sampling)

A.2 Code

The files comp rotmat.f and comp rotpert.f in directory src under the IFS script branch are modified to ac-
commodate for the sampling.

A.2.1 comp rotmat.f

Additional parameters namely -y, -n, and -z are passed by rot.sms to comp rotmat to set up the sampling
technique. The option -y causes the logical variable LSAMP to be set to TRUE and trigger the sampling. In
addition, the number of SVs that are used for describing the initial–time covariance structure is specified by
the parameter -n $EPSBASIS. This number is stored in the integer variable NBASIS within comp rotmat. The
variables NPERT and NSV are set equal to NBASIS to extract the correct number of SVs from the SV input
file (e.g., svifs).

A.2.2 comp rotpert.f

The implementation of the additional command line parameters, as well as the specification of NPERT, and
NSV are done in exactly the same way as in comp rotmat (see above). The scaling that is implied by the
rotation matrix (i.e., the diagonal elements of the rotation matrix) is extracted and stored on the variable beta.
Thereafter the “rotation” matrix is re–allocated with dimensions NENS × NBASIS and its columns are filled
randomly with realizations of a multinormal distribution. The scaling of the variance level that is implied by
the rotation matrix is taken into account through the factor beta. This NENS × NBASIS matrix is subsequently
applied to the set of NBASIS SVs to generate the initial time perturbations.

A.3 SMS scripts

Changes are made to the SMS script rot.sms in directory sms only.

A.3.1 rot.sms

The sampling is triggered by the variable EPSSIMPL=2. The number of SVs to use is stored on the variable
EPSBASIS as specified in prepIFS (see, above). Next, we compute the seeding for the random number genera-
tor from the initial date (BASETIME) and the number of ensemble members (EPSNENS). The new command
line options -y, -n, -z introduced in comp rotmat.f and comp rotpert.f (see, above) are specified by means of
the variable lnew opt and subsequentely passed to the executables.
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