438

Report on the sixteenth meeting of Computing Representatives 21–22 April 2004

P. Prior (Compiler)

Operations Department

October 2004

This paper has not been published and should be regarded as an Internal Report from ECMWF. Permission to quote from it should be obtained from the ECMWF.

European Centre for Medium-Range Weather Forecasts Europäisches Zentrum für mittelfristige Wettervorhersage Centre européen pour les prévisions météorologiques à moyen terme

Series: Technical Memoranda

A full list of ECMWF Publications can be found on our web site under: <u>http://www.ecmwf.int/publications/</u>

Contact: library@ecmwf.int

© Copyright 2006

European Centre for Medium Range Weather Forecasts Shinfield Park, Reading, RG2 9AX, England

Literary and scientific copyrights belong to ECMWF and are reserved in all countries. This publication is not to be reprinted or translated in whole or in part without the written permission of the Director. Appropriate non-commercial use will normally be granted under the condition that reference is made to ECMWF.

The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability for error, omission and for loss or damage arising from its use.

€

Contents

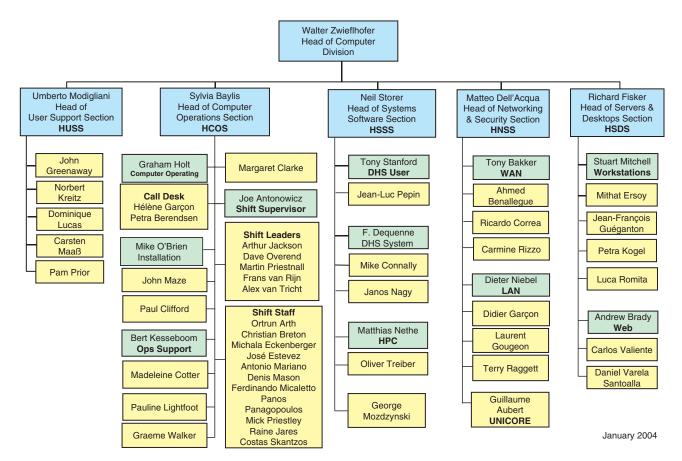
Preface	2
Part I: ECMWF Staff contributions	
ECMWF Computing Service: Status and plans – Walter Zwieflhofer	4
HPCF & DHS update – <i>Neil Storer</i>	
Early experience with Phase 3 test system - Deborah Salmond & Sami Saarinen	
Update on Data and Services – <i>Baudouin Raoult</i>	
Graphics update – Jens Daabeck	
ECaccess, Status & Plans – Laurent Gougeon	
User Registration: Update and Demonstration – Petra Kogel	
Web access control changes - Carlos Valiente	
Survey of external users and status of ECgate migration – <i>Umberto Modigliani</i>	
	1
Part II: Member States', Co-operating States' and ECMWF Linux cluster presentations	~
France	
Hungary	
Ireland	
Norway	
Serbia Montenegro	
Slovenia	
United Kingdom	
ECMWF	2
Part III: Member State and Co-operating State contributions	
Austria	6
Belgium	2
Czech Republic	3
Denmark 7	6
Finland	9
France	1
Germany	6
Greece	
Hungary	9
Ireland	
Italy	
Netherlands	
Norway	
Romania	
Serbia Montenegro	
Slovenia	
Spain	
Sweden	
Switzerland	
Turkey	
United Kingdom	
EUMETSAT	
Annex 1 – Participants	
Annex 2 – Programme	6

Preface

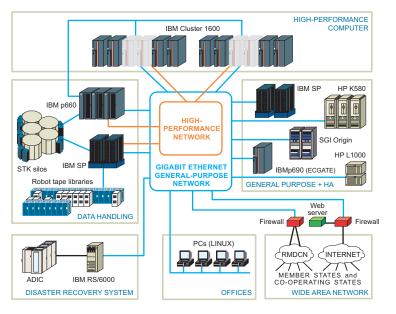
The sixteenth meeting of Computing Representatives took place on 21-22 April 2004 at ECMWF. Eighteen Member States and Co-operating States, plus EUMETSAT, were represented. The list of attendees is given in annex 1.

The Head of the Computer Division (Walter Zwieflhofer) opened the meeting and welcomed representatives. He gave a presentation on the current status of ECMWF's computer service and plans for its development. Each Computing Representative then gave a short presentation on their service and the use their staff make of ECMWF's computer facilities. Participants were also invited to report on their experience in operating and managing Linux clusters, to complement the assessments ECMWF were planning to carry out as background knowledge for future HPCF replacements. There were also presentations from ECMWF staff members on various specific developments in the ECMWF systems. The full programme is given in Annex 2.

This report summarises each presentation. Part I contains ECMWF's contributions and general discussions. Part II contains presentations on Linux experiences and Part III Member States' and Co-operating States' contributions; all the reports were provided by the representatives themselves.


Part I

ECMWF Staff contributions and general discussions


ECMWF Computing Service: Status and Plans - Walter Zwieflhofer, Head of Computer Division

Major activities over the past 12 months

- Phase 1 of the IBM HPCF continues to provide an excellent service at a high level of availability
- Improvements to HPCF job scheduling were made
- A new chiller and air handling units were installed to provide additional cooling capacity for HPCF Phase 3
- Phase 3 of the new DHS is being installed
 - MARS has been completely migrated
 - ECFS migration started in February 2004
- New IBM server ecgate was installed last year
- New Entity Management System has been implemented
- RMDCN upgrade of the Base Package was completed
- The review of Computer Operations Section was completed and recommendations are being implemented
- A High-Sensitivity Smoke Detection system was installed

Computer Division Organigramme

ECMWF Computer Environment

Phase 3 of the IBM HPCF

- Two identical clusters with 68 p690++ servers each
- Nodes for user work:
 - Each cluster has 66 32-processor servers for user work
 - 6 of the servers in each cluster have 128 GB memory
 - All other nodes have 32 GB memory
 - Processors (Power4+) run at 1.9 GHz (7.6 Gigaflops peak)
 - ~25 terabytes of disk per cluster
 - p-Series High Performance Switch (4 links per server)
- Nodes for I/O and networking
 - 2 p690++ servers, each partitioned into several smaller nodes
- The number of nodes is an estimate and could go up or down depending on the results of the performance test

HPC Phase 3 schedule

March	Start to build Phase-3C in Poughkeepsie
April	Start to build Phase-3D at ECMWF
May	Configure, test and set up to run Acceptance Tests on 3D
June 23	Start of acceptance of 3D (including Operational Test)
July	Allow Member State users access to 3D to prepare for migration - manpower resources are available to assist these users Move the Operational Suite to 3D
August	Decommission 1B Start to build and test 3C at ECMWF
September	Decommission 1A, complete the build of 3C
October	Configure, test and set up to run Acceptance Tests on 3C
October 26	Start acceptance of 3C
January 2005	Complete Acceptance of the whole Phase 3 system

168

162

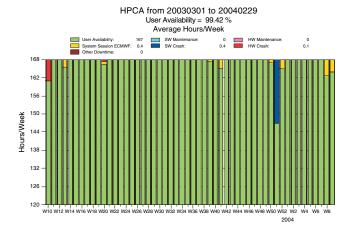
156

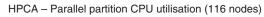
150

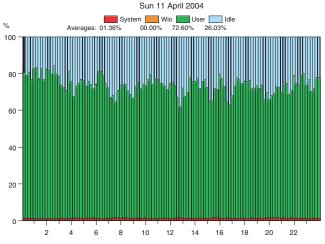
144

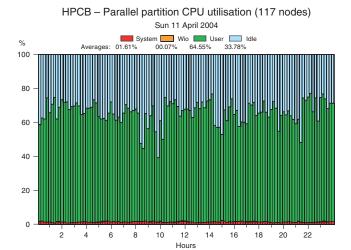
138

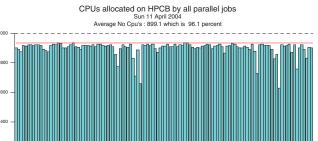
132


126


120


No of CPU's used


wio wie wi


Hours/Week

12 Hours

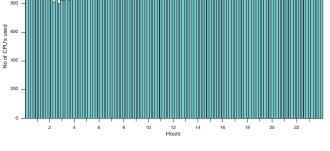
CPUs allocated on HPCA by all parallel jobs Sun 11 April 2004 Average No Cpu's : 884.2 which is 95.3 percent

HPCB from 20030301 to 20040229 User Availability = 99.87 % Average Hours/Week

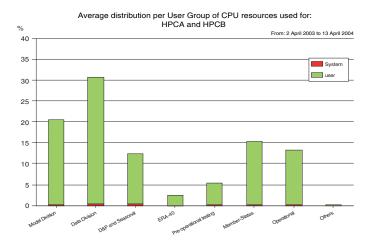
HW Mair HW Cras

0

0 0

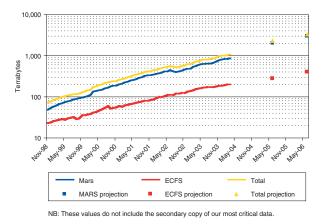

0 W52 W2 W4 W6

2004


SW Maintenance: SW Crash:

67.8

0.2


Distribution of HPCA and HPCB resources per user group

DHS

- The new HPSS-based system is performing very well
- All of the Phase 2 equipment and most of the Phase 3 equipment has been installed
- The system consists of:
 - 4 IBM p650-6M2 servers
 - 2 IBM p660-6H1 servers
 - 1 IBM p660-6m1 server
 - 28 IBM 3590H tape drives
 - 60 IBM 3592 tape drives
 - ~28 TB of disk space
- MARS uses only HPSS
- Most new ECFS data is stored in HPSS and the back-archive of the TSM ECFS data is underway
- Last year we upgraded HPSS from version 4.5 to version 5.1. This was a major upgrade requiring a migration of the HPSS database to DB2 format. This was required before we could offer an ECFS service using HPSS
- The introduction of the new ECFS service is transparent to users the new ECFS handles data stored in both the old and the new DHS
- With the HPSS version of ECFS no automatic secondary copy is made of ECFS data (as there was with the old ECFS system). The user has to specify the "-b" option on the "ecp" command to request a secondary copy to be made

Volume of data stored

Servers and desktops

- The Linux systems continue to be very stable
- An upgrade of the desktop systems to latest versions of the various system components (SUSE 9.1, KDE 3.2, VMWare 4, Windows XP, Office 2003, ...) is being planned
- The main internal SGI servers were shutdown as planned; one Origin 2000 still used by the ERA project
- ecgate1 was upgraded using some of the above SGI equipment in May 2003
- Replacement for ecgate1 chosen and installed last year
- Scratch disk space was increased to $\sim \frac{1}{2}$ TB
- Available for trial service in early December 2003, full user service started on 22 January 2004.

Ecgate

- Ecgate is an IBM p690
 - 16 1.3 GHz Power 4 CPUs
 - 32 GB Memory
 - 1 TB disk subsystem (IBM FASTt700)
 - Running AIX 5.2 and using LoadLeveler as a batch system
- Very similar to the nodes comprising HPC Phase1 (but with only 16 CPUs instead of 32)
- The service on ecgate1 (SGI Origin) will continue until the end of July 2004
- Please encourage users to start migrating to ecgate as soon as possible
- Please refer to Umberto's presentation for more information and discussion on status of migration

Linux Cluster

- Linux Cluster will be installed in late April for evaluation
- Supplied by Linux Networx
- Configuration is
 - 32 nodes plus 1 master node
 - Includes 6 I/O nodes with Fibre Channel HBAs
 - Each node has dual 2.2 GHz AMD Opteron 248 CPUs, 4 GB Memory
 - InfiniBand low latency high bandwidth interconnect for MPI
- Plan to evaluate shared/parallel file systems, particularly Lustre
- Goals are to evaluate this technology both for future HPC requirements and for general purpose servers

Entity Management System

- The Entity Management System (EMS) has been implemented at ECWMF to replace the previous user registration and authentication system
- It can cope with the different types of users and organizations ECMWF deals with
- The core of the system became operational in December 2003 and is initially being used internally by the ECMWF Call Desk to register both internal & Member State users
- The system is being extended to enable Computing Representatives to carry out certain registration tasks directly via a browser interface
- The interface for Computing Representatives should be available by the Summer this year

Web services

- The ECMWF web servers continue to provide a stable and reliable service. New content includes:
 - ENACT and ERA40 data added to the Research Data Web Service
 - Forecast charts, increased parameters, 12UTC and 10 day archives
 - Library bibliography is now a database driven web application
 - Ecgate documentation
- The growth in use of the web site continues to increase:
 - Total number of page accesses in 2003 11 million
 - Average page accesses 1 every 3 seconds
 - Change compared with 2002 +35%
 - Total number of accesses by users
 1.6 million
 - Change compared with 2002 +37%
 - Ratio of recognised to public users 1 in 7
- A considerable revision of the web login will be introduced soon :
 - Users will be able to have a persistent login (no more lost rooms);
 - Users will be able to use password, certificate or SecuridID
 - Certain pages may demand higher authentication (eg SecurID for PrepIFS);
 - Domain login continues but will not be sufficient for a Room;
 - Domain users will not be transparently logged in.
- A mailing list management system (Sympa) has been implemented and will be used to contact external users

RMDCN

- The upgrade of the Member States' Base Package was successfully completed in mid-March 2004. The Centre now has two 34 Mbps access lines to the RMDCN and PVCs to Member States and Co-operating States range from 64 Kbps to 768 Kbps
- New members:
 - Japan joined the RMDCN at end October 2003 and their connection to China was accepted in January 2004
 - India signed an Accession Agreement on 17 February 2004, Their connection to Tokyo and Moscow should be ready in early June
 - Serbia and Montenegro is being connected to the RMDCN
 - Luxembourg is being connected to the RMDCN
- RMDCN Price and Technology reviews have started.

First results are expected by early June.

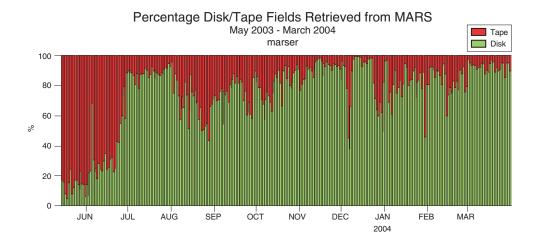
ECaccess

- ECaccess portal was enhanced to provide access to the MARS archive. A release of Metview including the support of the ECaccess-based "ecmars" was made available in June 2003
- · ECaccess has been enhanced to provide support for LoadLeveler job submision
- ECaccess gateways are now installed in the majority of MS/Co-operating states
- Connections to ecgate and HPCA are now possible via any ECaccess gateways
- The previous telnet, ftp and X11 gateway for access to ECMWF via Internet was terminated at the end of December 2003
- The services provided by the ecbatch/eccopy software will be terminated with the decommissioning of ecgate1

LAN

- Following last year's ITT, Force 10 equipment was selected for the replacement of the High Performance Network
- Two E600 switches interconnected by 2 10GE links form the core of the network
- Phase 1 was delivered on 1 March 2004 and is currently under acceptance. DHS and HPC system were connected to the Force10 switches mid-March
- Phase 2 will be delivered in September 2004 and will include new high density module.
 - the 2 core switches will be interconnected by 4 10 GE links
 - HPCF Phase 3 systems will be connected to the HPN with trunks of 4 GE links
- Wireless LAN was installed in the conference block at the end of 2003
 - Access to the Internet is offered to external people attending meetings and conferences
 - Requires userid and password

Infrastructure work

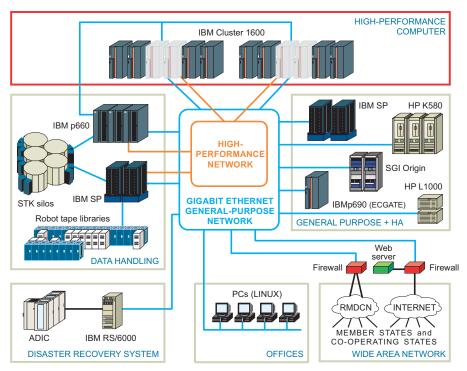

- An additional 11 kV supply was installed with a different cable route from the existing supply
- A new 2MVA Uninterruptible Power Supply system was ordered
 - to provide increased UPS capacity and restore N+1 resilience
 - to replace one of the old standby generators
 - the output can be split so it will run as UPS and standby generator
 - installation will be completed in summer 2004
- ITTs for the extension of the Computer Hall (building, electrical and mechanical services)
 - issued in February; expect to select the successful tenderer in May
 - building should be completed by September 2005
- Installation of High Sensitivity Smoke Detection

Other activities

- The current dissemination software, QFTD, has reached its limitation and is being re-developed. The new system, ECPDS, will offer different transport mechanisms (FTP, SFTP, gridFTP, ...) and the possibility of using the ECaccess network to disseminate securely over the Internet
- Involvement in 2 proposed EU projects:
 - DEISA includes a number of European supercomputing centres and aims at developing/ operating a distributed super-cluster plus GRID-based interfaces to other large supercomputer sites
 - SIMDAT includes participants from aerospace, automotive, pharmacy and meteorology. One objective is to build a VGISC reference implementation for the future WMO Information System

Actions from the previous meeting

• About 4 TB of disk space was added to the new DHS system to cache a large part of the ERA40 archive. This has significantly improved the retrieval times for ERA40 data

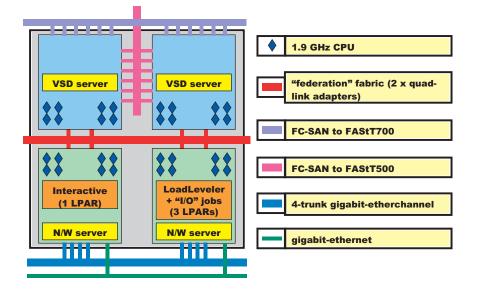


Major ongoing/planned activities

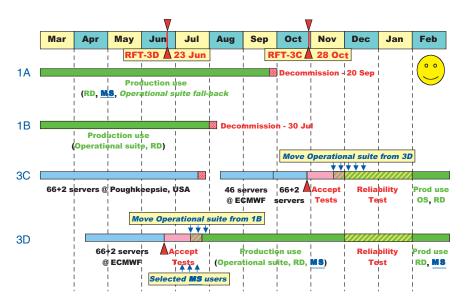
- Complete installation and acceptance of HPCF Phase 3
- Complete the migration of ECFS data from TSM to HPSS
- Decommission ecgate1
- Enable Computing Representatives to carry out certain registration tasks
- Perform RMDCN Price and Technology review
- ITT for the HA pre-processing and dissemination system
- Install Phase 2 of the high-performance LAN
- Complete the installation of UPS enhancement
- Installation of an inert gas fire suppression system
- Start the work on the extension of the Computer Hall

HPCF & DHS update - Neil Storer, Head of Systems Software Section

HPCF

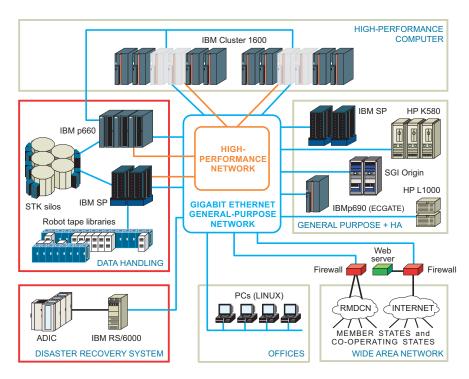

Phase 3 of the IBM HPCF

- On each of the Phase 1 clusters there are 30 p690 servers, each partitioned into 4 nodes (8-CPUs). The 66 or so Phase 3 compute servers will not be partitioned, so each Phase 3 "node" will have 32 CPUs. Consequently jobs that run in 4 nodes or fewer on Phase 1 will be able to run in a single node on the Phase 3 system
- Apart from changing the number of nodes, tasks per node and possibly "consumable resources", there shouldn't be any need to change LoadLeveler scripts submitted to the Phase 3 system
- The latest compilers and libraries will be installed on the Phase 3 clusters, (not the versions in production on HPCA and HPCB e.g. xlf version 8 not version 7). These will be installed on the Phase 1 clusters, but only for testing purposes, not as the default production versions

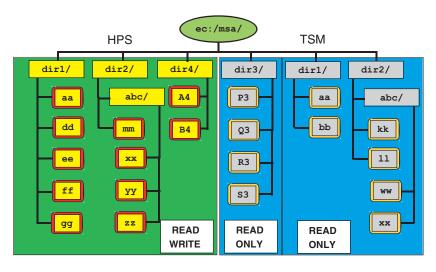

NFS-mounted filesystems

- We have recently been experiencing many problems related to heavy use of NFS-mounted filesystems on the HPC systems
- It was always intended that Filesystems be NFS-mounted on the HPC systems mainly to help with "house-keeping" functions, not for I/O use from batch jobs
- The Operational Suite on the HPC system is being modified to remove all dependencies on NFS filesystems and the Research Department is working towards the same goal for their experiments
- For the Phase 3 clusters we would prefer only to NFS-mount filesystems on the interactive node and would appreciate feedback on this proposal from Member State Representatives

VSD & N/W p690 server (2 per cluster)



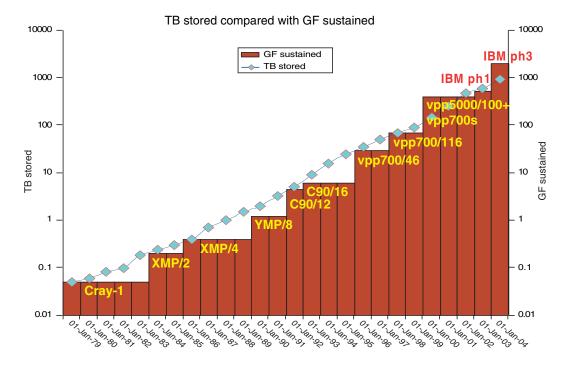
Timetable for HPCF Phase 3


DHS

ECFS migration from TSM to HPSS

- Users who have a lot of data in ECFS have been asked:
 - which of these data can be deleted
 - which of these data they wish to migrate from TSM to HPSS (and of which, of these data, they do NOT wish to have a "backup" copy)
 - which of these data they wish just to keep in TSM until the end of the year (when they will be destroyed)
- With the HPSS version of ECFS no automatic backup copy is made of ECFS data (as there was with the old ECFS system). The user has to specify the "-b" option on the "ecp" command to request a backup copy to be made
- The introduction of the new ECFS service is transparent to users the new ECFS handles data stored in both the old (TSM-based) and the new (HPSS-based) DHS

ECFS directories in HPSS and TSM

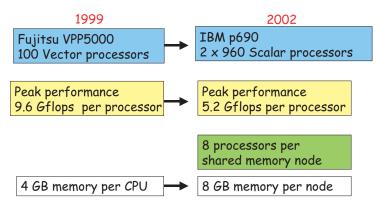

Disaster recovery system - DRS

- ECMWF's data archive is its foremost asset;
- There are many risks associated with data management. Data needs to be protected from:
 - accidental and malicious deletion or damage;
 - bugs in the data management software (vendor's & customer's);
 - disk and tape drive failures and media faults;
 - corruption by S/W and H/W;
 - catastrophes such as machine room fires, explosions etc;
- Access to the data needs to be resilient to these risks and should also take into account failures of the data servers, storage area networks, robotic tape libraries and such like.

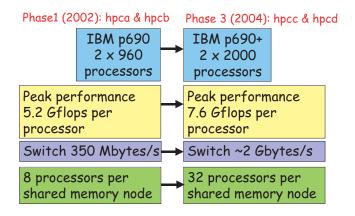
DRS improvements

- ECMWF is currently investigating various options that could improve the capability and functions of the DRS;
- The use of "remote mirroring" of disk volumes to other disks that would reside in the DRS building;
- The use of "flash copy" snapshots to provide point-in-time versions of meta-data;
- Installing sufficient DHS equipment in the DRS building to be able to quickly offer a (degraded) service, should the equipment in the main computer hall be destroyed;
- Upgrading the ADIC AML/J robotic tape library to use Generation-2 LTO drives and media.

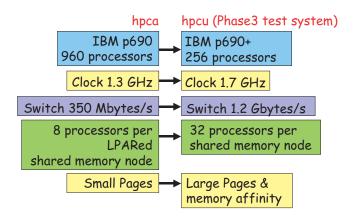
Archive volume compared with computing capacity

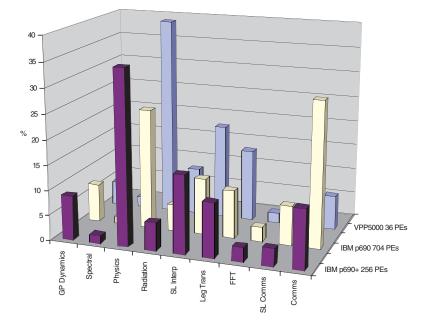


M. Pithon (France) asked, when partitioning stops, with phase 3 of the IBMs, and jobs share nodes, what of contention for other resources, such as memory and access to the Interconnect? N. Storer replied that Workload manager will be used to control access by the jobs to the resources. It can physically limit memory. It allows over-subscription, however, once the oversubscribed resources are required by other tasks, the job using these oversubscribed resources will start to page. This has been reported as a source of performance problems to IBM.



Early experience with Phase 3 test system - Deborah Salmond & Sami Saarinen


Phase 1 - Migration VPP to IBM


Phase 3 - 4x Performance increase

hpca compared with hpcu

T799 / L90

What is Dr.Hook ?

- A Fortran & C-callable instrumentation library to
 - Trap run-time problems
 - Gather profile info per subroutine
 - Wall-clock or CPU-times
 - Mflop/s & MIPS -rates
- The basic feature: keep track of the calling tree
 - For every MPI-task and OpenMP-thread
 - Upon error (when caught via Unix-signals) tries to print the current active calling tree
 - System's own traceback can also be printed
- Portable with low overhead (~1%)

Dr.Hook environment variables

- Enable Dr.Hook (call-tree/traceback only => cheap)
 - DR_HOOK=1
- Enable wall-clock time profiling information at exit
 - DR_HOOK_OPT=prof
 - The profile will be written to files drhook.prof.<1..nproc>
- Redirect profile-file to /path/file.<1..nproc>
 - DR_HOOK_PROFILE=/path/file
- Restrict output to MPL-task MYPROC=1
 - DR_HOOK_PROFILE_PROC=1
- Collect HPM (Mflop/s & MIPS) information
 - DR_HOOK_OPT=hpmprof or mflops

How to instrument a Fortran90 program with Dr.Hook?

```
SUBROUTINE SUB
  USE YOMHOOK, ONLY : LHOOK, DR HOOK
  IMPLICIT NONE
   REAL(8) ZHOOK HANDLE ! Must be a local (stack) variable
!- The very first statement in the subroutine
   IF (LHOOK) CALL DR_HOOK( `SUB', 0, ZHOOK_HANDLE)
!--- Body of the routine goes here ---
!- Just before RETURNing from the subroutine
   IF (LHOOK) CALL DR_HOOK('SUB',1,ZHOOK_HANDLE)
   END SUBROUTINE SUB
```

Dr. Hook Traceback

```
15:57:40 STEP 936 H= 234:00 +CPU= 41.379
0:
  13:[myproc#14,tid#4,pid#55924]: Received signal#24 (SIGXCPU) ; Memory: 2019178K (heap), OK (stack)
13:[myproc#14,tid#1,pid#55924]: MASTER ,#1,st=1,wall=0.000s/0.000s
                                                                                            MASIER, #1,5t=1,Wall=0.0005/0.0005

CNT0 ,#1,st=1,Wall=0.0005/0.0005

CNT1 ,#1,st=1,Wall=0.0005/0.0005

CNT2 ,#1,st=1,Wall=0.0005/0.0005

CNT3 ,#1,st=1,Wall=0.0005/0.0005

CNT4 ,#1,st=1,Wall=0.0005/0.0005

STEPO ,#978,st=1,Wall=10531.2595/0.0005
   13: [myproc#14,tid#1,pid#55924]:
  13: [myproc#14,tid#1,pid#55924]:
13: [myproc#14,tid#1,pid#55924]:
 13: [myproc#14,tid#1,pid#55924]:
13: [myproc#14,tid#1,pid#55924]:
13: [myproc#14,tid#1,pid#55924]:
13: [myproc#14,tid#1,pid#55924]:
13: [myproc#14,tid#1,pid#55924]:
13: [myproc#14,tid#1,pid#55924]:
                                                                                                               SCAN2H ,#1018,st=1,wall=8913.967s/0.043s
SCAN2MDM ,#1018,st=1,wall=8913.896s/32.036s
                                                                                                                   SCAN2MDM ,#1018,st=1,wall=8913.896s/32.036s
GP_MODEL ,#938,st=1,wall=845.641s/4.830s
EC_PHYS ,#213893,st=1,wall=6144.597s/22.378s
CALLPAR ,#213893,st=1,wall=6565.788s/88.130s
SLTEND ,#213893,st=1,wall=662.390s/179.559s
CUADTTQ ,#117188599,st=1,wall=1992.364s/1477.382s
EC_PHYS ,#213356,st=1,wall=6145.442s/22.418s
CALLPAR ,#213356,st=1,wall=5860.376s/88.000s
CUCALLN ,#213810,st=1,wall=2679.495s/36.678s
CUDRAFN ,#213810,st=1,wall=66.548s/23.442s
  13:[myproc#14,tid#1,pid#55924]:
13:[myproc#14,tid#1,pid#55924]:
13:[myproc#14,tid#1,pid#55924]:
  13: [myproc#14,tid#1,pid#55924]:
13: [myproc#14,tid#1,pid#55924]:
  13: [myproc#14,tid#4,pid#55924]:
13: [myproc#14,tid#4,pid#55924]:
13: [myproc#14,tid#4,pid#55924]:
  13: [myproc#14,tid#4,pid#55924]:
13: [myproc#14,tid#4,pid#55924]:
  13:

    13: Signal received: SIGXCPU - CPU time limit exceeded
    13:

  13: Traceback:
                      Location 0x0000377c
  13:
13:
                     Offset 0x0000009c in procedure event sleep
   13:
```

- Offset 0x0000036 in procedure sigwait Offset 0x00000668 in procedure pm_async_thre Offset 0x00000044 in procedure _pthread_body 13: thread
- 13:

13. --- End of call chain

hpcu compared to hpca for T511 L60 forecast run on 128 PEs (32 MPI tasks x 4 OpenMP Threads) at Cycle 28r1

Environment Variables for hpcu

@ network.MPI=css0,,us \$ for hpcu # @ network.MPI=csss,,us \$ \$ on hpca

-> John Hague IBM

#--- for Memory Affinity export MEMORY_AFFINITY=MCM export MP_AFFINITY=MCM

— for comms performance export MP_EAGER_LIMIT=64k export MP_USE_BULK_XFER=yes export MP_BULK_MIN_MSG_SIZE=50000

#--- for MPI + multiple OpenMP threads --export MP_WAIT_MODE=poll export XLSMPOPTS="parthds=\$omp:stack=\$stk : spins=1 : yields=1"

-- for MPI + 1 OpenMP thread export MP_WAIT_MODE=sleep export XLSMPOPTS="parthds=\$omp:stack=\$stk : spins=500000 : yields=50000"

Dr. Hook for T511 forecast - hpca

#	% Time	Cumul	Self	Total	<pre># of calls</pre>	MIPS	MFlops	Div-%	Routine@ <tid></tid>
	(self)	(sec)	(sec)	(sec)					[Cluster:(id,size)]
1	7.43	35.027	35.027	40.573	49	961	273	2.9	WVCOUPLE@1 [567,1]
2	3.67	52.349	17.322	17.367	5824	1113	546	3.6	*CLOUDSC@1 [5,4]
3	3.65	52.349	17.204	17.287	5791	1116	548	3.6	CLOUDSC@4 [5,4]
4	3.64	52.349	17.181	17.289	5769	1118	549	3.6	CLOUDSC@2 [5,4]
5	3.63	52.349	17.138	17.202	5770	1117	549	3.6	CLOUDSC@3 [5,4]
6	3.51	68.918	16.569	16.584	54	783	0	27.6	TRMTOL_COMMS@1 [525,1]
7	2.76	81.935	13.017	18.260	51	926	1	2.8	TRGTOL@1 [520,1]
8	2.51	93.763	11.829	11.831	54	742	0	24.8	TRLTOG_COMMS@1 [523,1]
9	2.41	105.145	11.382	30.536	11540	1106	88	3.4	*CUASCN@3 [30,4]
10	2.40	105.145	11.336	30.436	11538	1112	88	3.4	CUASCN@2 [30,4]
11	2.39	105.145	11.274	30.394	11582	1110	88	3.4	CUASCN@4 [30,4]
12	2.39	105.145	11.267	30.072	11648	1113	86	3.4	CUASCN@1 [30,4]
13	2.36	116.296	11.150	11.185	3492	2135	2172	0.0	*MXMAOP@1 [166,4]
14	2.31	116.296	10.897	10.940	3502	2218	2259	0.0	MXMAOP@2 [166,4]
15	2.30	116.296	10.832	10.920	3474	2216	2258	0.0	MXMAOP@4 [166,4]
16	2.29	116.296	10.816	10.910	3484	2224	2266	0.0	MXMAOP@3 [166,4]
17	1.94	125.448	9.152	9.327	27785	1433	682	0.0	*LAITQM@3 [138,4]
18	1.94	125.448	9.130	9.263	27980	1434	679	0.0	LAITQM@1 [138,4]
19	1.92	125.448	9.073	9.256	27715	1432	682	0.0	LAITQM@4 [138,4]
20	1.92	125.448	9.045	9.220	27750	1440	686	0.0	LAITQM@2 [138,4]
21	1.85	134.173	8.725	8.785	5563	985	592	2.2	*SLTEND@4 [297,4]
22	1.85	134.173	8.724	8.777	5596	987	593	2.2	SLTEND@1 [297,4]
23	1.83	134.173	8.654	8.741	5541	986	593	2.2	SLTEND@2 [297,4]
24	1.83	134.173	8.621	8.658	5546	989	595	2.2	SLTEND@3 [297,4]
25	1.82	142.737	8.565	8.580	51	782	0	21.6	TRLTOM_COMMS@1 [524,1]
26	1.80	151.219	8.482	69.102	13	581	22	10.6	RADINTG01 [207,1]

% Time (self)	Self (sec)	Total (sec)	# of cal	ls MFlops	Div-%	Routine@ <tid></tid>
3.67	17.322	17.367	5824	546	3.6	*CLOUDSC@1
3.51	16.569	16.584	54	0	27.6	TRMTOL_COMMS@1
2.76	13.017	18.260	51	1	2.8	TRGTOL@1
2.51	11.829	11.831	54	0	24.8	TRLTOG_COMMS@1
2.41	11.382	30.536	11540	88	3.4	*CUASCN@3
2.36	11.150	11.185	3492	2172	0.0	*MXMAOP@1
1.94	9.152	9.327	27785	682	0.0	*LAITQM@3
1.85	8.725	8.785	5563	592	2.2	*SLTEND@4
1.82	8.565	8.580	51	0	21.6	TRLTOM_COMMS@1
1.80	8.482	69.102	13	22	10.6	RADINTG@1

Dr. Hook for T511 forecast - hpcu

3

IFS - Communications and Memory access patterns

Spectral Space

LegendreTransform & Transposition

Fourier Space

Fourier Transform & Transposition

Grid-point

Dynamics: Semi-Lagrangian Advection Indirect addressing & wide halo communications

Physics: clouds, convection, radiation etc NPROMA packets & sequential memory access

T511 forecast - hpcu/hpca CPU ratio for top routines

Routine	hpca/hpcu	Description
CLOUDSC	1.28	Cloud physics
MXMAOP	1.32	Legendre Transform
TRGTOL	1.64	MPI buffer pack/unpack
CUASCN	1.38	Convection
LAITQM	1.40	Semi-Lagrangian Interpolation
LARCHE	1.33	Departure point Calculation
VERINT	1.38	Vertical part of Dynamics

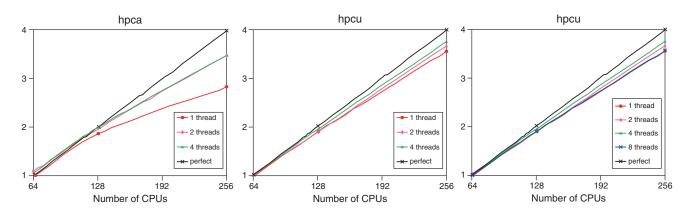
T511 forecast - hpcu/hpca COMMs ratio

Routine	hpca/hpcu	Description
TRMTOL	3.87	Spectral to Fourier
TRLTOM	3.70	Fourier to Spectral
TRLTOG	10.02	Grid-point to Fourier
TRGTOL	10.01	Fourier to Grid-Point
SLCOMM2A	14.66	Semi-Lagrangian

Percentage of total time spent in communications:

- hpca 22%
- hpcu 7.5%

Overall speed-up: (from CPU+COMMS) is 1.57


Federation/Colony = 4 & 32 processor nodes

T511 forecast - hpcu/hpca COMMs speeds from mpi_profile - all on switch

Routine	hpca/hpcu	hpcu GB/s (per link)	hpca GB/s (per LPAR)	length MB
TRMTOL	3.87	1.337	0.345	3.79
TRLTOM	3.70	1.268	0.342	1.98

Federation/Colony = 4

T511 forecast scalability with OpenMP threads

Overall performance extrapolations from 128 PE T511 Dr.Hook run

FP operation count for 10 day T511 forecast is 308 Tflops

hpca:

337 Mflops/processor = 6.5% of peak

– 650 Gflops for hpca + hpcb

hpcu:

529 Mflops/processor = 7.8% of peak

– >2Tflops for hpcc + hpcd *

*(assuming each cluster has ~2000 CPUs with 1.7GHz clock & current federation speed)

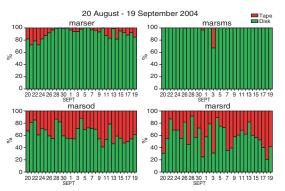
Arpege : T358 L41 C2.4 (4 day forecast) - Jean-François Estrade

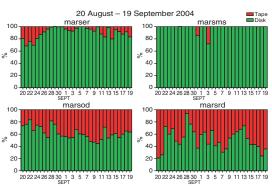
VPP5000	6 CPUs	1740 seconds	
hpca	64 CPUs	16 MPI x 4 OMP 32 MPI x 2 OMP 64 MPI x 1 OMP	1793 1661 1784
hpcu	64 CPUs	16 MPI x 4 OMP 32 MPI x 2 OMP 64 MPI x 1 OMP	1091 1036 1073

Speed-up hpca/hpcu ~ 1.6 - 1.7

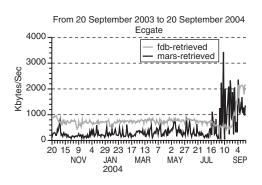
In reply to a question from P. Dando (UK), D. Salmond confirmed that Dr. Hook was available to Member State users. It is useful for any C or Fortran callable code and accepts either, both or neither MPI and OpenMP.

Update on Data and Services - Baudouin Raoult, Head of Data and Services Section

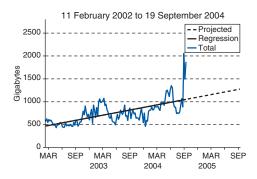

Data And Services Section

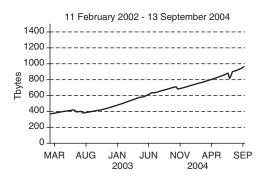

- Ensuring short and long term preservation of the Centre's products
- Providing access to the Centre's data
 - To internal users
 - To the Member States
 - To the research community
 - To the general public
- Managing the Centre's catalogues:
 - Real-time
 - Dissemination
 - Archive
 - Software
- Enforcing data policies
- Providing software to the meteorological community
- Managing licences
 - Data
 - Software
- Support RD, Member States and other research projects
- MARS
- FDB
- GRIB/EMOSLIB
- Dissemination
- Product generation
- Data Services

MARS Update

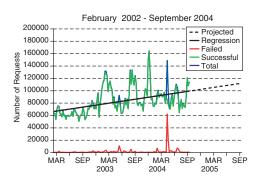

- Migration to HPSS complete
- ERA 40
 - Monthly means, Vertical integrals
 - 4 TB disk space
- New tapes (3592H, 300GB, fast positioning)
- Remote client access using EcAccess
- Implement ERA40 recommended method for wind interpolation

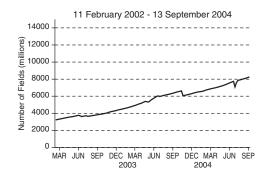
Percentage disk/tape fields retrieved from MARS




Data retrieved per second

Total MARS data archived daily

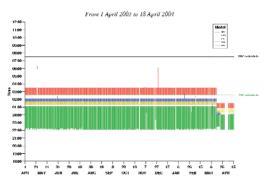

Grand total of MARS archive


Public Data Server

- Free access for research users
- Linux server with a stand alone MARS server
 - 23 million fields
 - 0.5 Tb of data
- ERA 40 2.5x2.5
 - 2300 registered users
 - 1 Tb delivered monthly
- GRIB to NetCDF
 - In development

Number of MARS requests

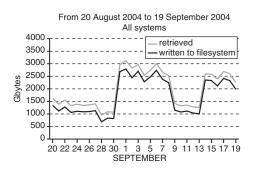
MARS archive - total number of fields



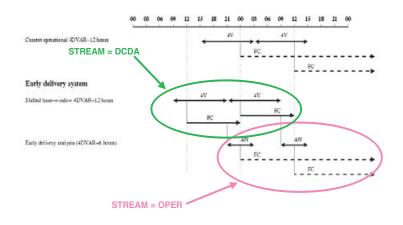
Dissemination - New production schedule

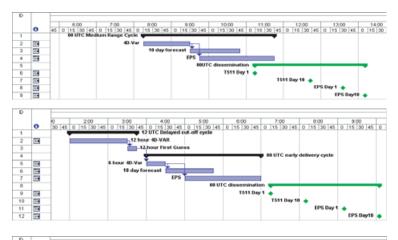
- Introduced on the 16th of March 2004
- From 155 minutes to 100 minutes
- Transmission priorities

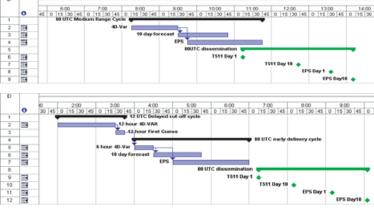
Daily dissemination times for Germany



Dissemination - Figures

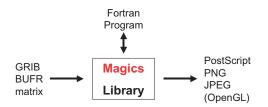

- May 2003
 - 1,200,000 products a day on RMDCN
 - 11.5 Gb a day on RMDCN
 - 85,000 products a day on the Internet
 - 4.4 Gb a day on the Internet
- April 2004
 - 1,650,000 products a day on RMDCN
 - 16 Gb a day on RMDCN
 - 170,000 products a day on the Internet
 - 9 Gb a day on the Internet


Data Stream	Products (fields)	Files
Main deterministic	460 342	5 789
EPS	927 136	2 096
Wave Global	48 838	1 122
Wave European	4 841	955
Multi Analysis	2 319	665
Short cut-off	389 177	2 326
Wave EPS	27 005	566
Total	1 859 658	13 519
1		


Data accessed from FDB

Early delivery system

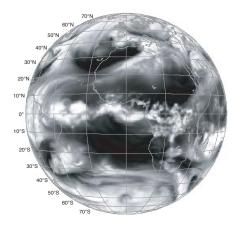
Miscellaneous


- Development of data and software services
 - On-line costing/ordering
 - Packaging of GRIB/BUFR/EMOSLIB
- GRIB2 decoder in development
- New dissemination transport (ECPDS) based on ECaccess in development
 - New monitoring tools

Graphics Update - Jens Daabeck

Magics

• Magics is a software system for plotting contours, satellite images, wind fields, observations, symbols, streamlines, isotachs, axes, graphs, text and legends


Magics 6.9

New features

- Support for 16-bit simulated satellite images e.g. new 10-bit simulated images
- Reduced dynamic memory allocation handling on all platforms e.g. to support generation of large quantities of maps for Web
- Postscript driver dynamic memory allocation improved
- Correction for the PNG driver (background colour)
- Plans
 - Titles for new data types

New 10-bit simulated image

RTTOV generated radiance SIMULATED Meteosat Image

Magics 6.9 - export

- Available to the Member States
 - 2Q2004
- UNIX platforms
 - Linux SuSE 7.3 (9.1) (Portland Fortran compiler)
 - IBM AIX 5.1
 - SGI IRIX 6.5
 - HP HP-UX B.11
 - HP/Alpha OSF1 V5.1
 - Sun SunOS 5.9
- User Guide in HTML, PDF and PostScript format

224 222 220

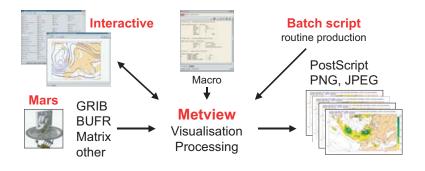
The Magics++ Project

- The MAGICS development started in 1984 with the first release in 1985
- To ensure future maintainability, Magics is being migrated to a modern computer language
- Externally, the aim is that existing Magics user programs will need minimal changes to use Magics++
- Phased implementation
- Work has started on the migration of the Magics library from Fortran to C++ including a new contouring algorithm (Akima), implemented in co-operation with INPE/CPTEC

Status

- The internal structure of the new Magics++ has been agreed and the implementation is well underway
- First trials show promising results in using newly developed data decoders (Grib, Grib2, NetCDF) in combination with the newly developed drivers
- A setup has been developed in which the old and new Magics work together to enable a smooth migration between the versions
- To enable easier installation, in the future an automatic script for the configuration, compilation and installation of Magics++ has been developed, based on the widely used autotools
- Limited netCDF support for trial use
- ODB support for trial use
- Plans
 - Better support for Web output with GIF and SVG

The Akima contouring method


- Three variants of the Akima method were considered for the new contouring package:
 - Algorithms 474 and 760 for generating a denser regular grid, based on an existing grid
 - Algorithm 761 for generating contour lines from an irregularly distributed set of points
- The self-contained versions of these three approaches have been produced in the C++ language
- Algorithm 760 has already been integrated in the Magics++ environment and it is in the evaluation phase
- The other two algorithms are ready to be included in the Magics++ environment

Plan

- Demonstration version of Magics++ was presented at the 9th Meteorological Operational Systems Workshop, 10-14 November, 2003
- Pre-operational release 2Q2004

Metview

- ECMWF's meteorological data visualisation and processing tool
- Complete working environment for the operational and research meteorologist

New features

- In Metview most work has been done in user support (both for internal and and external Metview users) and in maintenance to implement new user requirements and in fixing bugs
- Work has also been done with a new external Macro Editor which adds several productivity features into Macro editing
- Latest internal Metview version is 3.5.4, based on Magics 6.9, which runs at ECMWF on Linux and AIX platforms

New external Macro Editor: NEDIT

X-Hantowe + 0 x	CHANNE .	100
A A A A A A A A A A A A A A A A A A A	Do fill South Subsects that Mays Subsect	99
A bit yes adjud, design, fan in grunter, yn film er mu'i in gif in die 20 2 A bit yes adjud, design, fan in grunter, yn film er mu'i in gif in grunter in grunter in grunter in grunter in gif in grunter in gif in grunter in gif in grunter in gru	A former requestion for the second se	1
interfation 1 "Leninger".	If the in compare and and printers which and superiors restation to be a commuted \bar{C}	
) Character concentration and getachments data and experiments our idealing where expression is the getachment of the second s	if and a "short' the and if "short' (Ref.)(REF.) if an analysis of the short (State (State(
	prop. L4 TBy 7 4 expense tendelizer property medical property Mark 1 and 1	

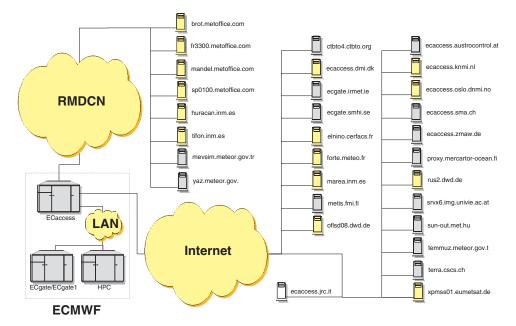
Plans

- Metview 3.6 export
- High volume satellite data
- Magics++ support

Metview 3.6 - export

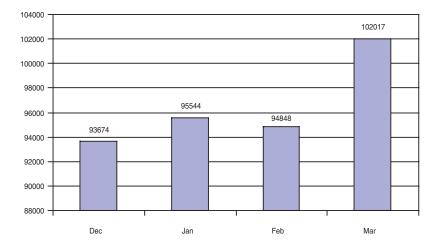
- Available to the Member States
 - 3Q2004
- UNIX platforms
 - Linux SuSE 7.3 (9.1) (Portland Fortran compiler)
 - IBM AIX 5.1
 - SGI IRIX 6.5
 - HP HP-UX B.11
 - HP/Alpha OSF1 V5.1
 - Sun SunOS 5.9
- User Guide online
 - PDF and HTML format

EPS Meteograms


- EPS Meteogram charts available via ECMWF Web pages
 - Shows EPS members forecast distribution for a model run
- Metview user interface
- BUFR data interface
 - Same format as dissemination files
- EPS Meteograms also available as standalone system
- Classic Meteograms available at ECMWF via Metview

Ecaccess, Status & Plans - Laurent Gougeon

Ecaccess


- ECaccess provides a portal to access ECMWF archiving and computing facilities
- Strict authentication via SecurID card and X509 certificates
- Data integrity/confidentiality guaranteed by SSL
- ECaccess provides
 - Files and job management in batch or interactive mode through an extended FTP server
 - Files and job management through a Web browser
 - A secure telnet/SSH access to ECMWF
 - A secure X11/VNC access to ECMWF
 - A secure file transfer between ECMWF and systems running the ECaccess Gateway or FTP/SFTP Servers

ECaccess Gateways

ECaccess Statistics

	Gateways	Output	Input	Telnet/SSH
	brot.metoffice.com	672.6Mo		4 (6m)
	ecaccess.austrocontrol.at	-	-	10 (1h)
LO.	ctbto4.ctbto.org	6.5Go	74.5Ko	-
5	ecaccess.dmi.dk	32.1Ko	-	3 (7h)
to 04-04-15	ecaccess.ecmwf.int	119Go	1.9Go	1745 (4331h)
4	ecaccess.knmi.nl	37.2Go	502Mo	26 (13h)
ŏ	ecaccess.oslo.dnmi.no	353.3Mo	-	-
0	ecaccess.sma.ch	833.2Mo	827.1Ko	-
	ecgate.irmet.ie	191.3Mo	-	10 (31h)
6	ecgate.smhi.se	13.6Go	-	19 (70h)
4	forte.meteo.fr	53.5Go	916Mo	33 (190h)
from 04-04-01	fr3300.metoffice.com	19Go	6.2Go	56 (94h)
4	huracan.inm.es	13.6Mo	-	-
Ē	mandel.metoffice.com	705Mo	-	3 (14m)
	marea.inm.es	4Go	294.8Ko	26 (124h)
Ĕ	metis.fmi.fi	114.9Go	227Go	-
0	mevsim.meteor.gov.tr	630.3Mo	-	-
Statistics	msaccess.ecmwf.int	9.2Mo	-	-
st	proxy.mercator-ocean.fr	21.7Mo	802.2Ko	9 (21h)
÷.	rus2.dwd.de	1.1Ko	-	11 (20h)
<u>a</u>	sp0100.metoffice.com	1.2Go	8.1Go	7 (4h)
S	srvx6.img.univie.ac.at	11.6Go	-	-
	sun-out.met.hu	704.1Mo	33.3Ko	100 (173h)
	tifon.inm.es	13.7Mo	165.3Ko	-
	xpmss01.eumetsat.de	1.9Go	-	11 (18h)
				. /

Job Submission Enhancements

- ECaccess provides Member State users with a common interface to NQS and LoadLeveler
- ECaccess can be used to submit Jobs on different ECMWF platforms
 - The HPC or ECgate (AIX)
 - ECgate1 (IRIX)
- The ECaccess Batch Job Execution system is fault-tolerant
 - Based on the ECtrans spool mechanism
 - The submission machine can be rebooted without losing jobs
- The ECaccess interface allows users to submit scripts with or without scheduler directives to an ECaccess queue
 - A mail notification mechanism is provided

Other Enhancement

- ECaccess symmetry
 - Member State users can use the ECtools at ECMWF using their own shell account as on their workstation
 - Authentication is based on their UNIX account
- Telnet/SSH enhancement
 - From any ECaccess Gateway, users can select the target platform on which they want to login
 - The HPC, ECgate or ECgate1
 - A VNC or X11 proxy can be requested
 - During the login phase with telnet
 - On the command line with SSH
- Access to the MARS archive
 - A release of Metview includes the support of the ECaccess based "ecmars" client

ECaccess Monitoring

- Web interface to monitor ECaccess (Big Sister)
 - Provides the Operators with a simple view of the current ECaccess Network status
 - The ECaccess Servers (Internet and RMDCN)
 - The ECaccess Gateways

	system	system			job	listener	transfer
Ecg	ate -> ECtrans Mair	-> ECtrans Main application					
	TR-1 DO		771	•			
	system	access Pluggin ecauth ecios					hon
	Ecgate Pluggins	0		•	•		>
	N	1.7					_
	Vita	Vital ECaccess P					
	system	ftp	htt	p jytho	n ss	h telnet	
	-> Internet	•		0		9	
	-> RMDCN	1 0					

- Notifies when ECaccess is becoming critical
- Generates a history of status changes

ECaccess Plans

- Dissemination
- The new dissemination system will be combined with ECaccess to allow users to transfer data through the ECaccess Network
- The ECaccess Web Interface will allow MS administrators to monitor their disseminations
- Running the ECaccess and MSaccess Servers and local Gateways in High Availability system will be considered
- ECtrans Enhancement
- Produce a Globus FTP ECtrans module
- Service routing
- Allows the administrator of the Gateway to specify a network (Internet or RMDCN) per service

T. Lorenzen (Denmark) asked whether the service routing mechanism could also allow the specification of Internet or RMDCN depending on the individual Member State user requesting the service: L. Gougeon replied that it could be considered, once the generic service had been established.

User Registration: Update and Demonstration - Petra Kogel

Concepts

- The new system: EMS = Entity Management System
- Entities:
 - Users, applications, web domains
- 2 core data sets in a database:
 - User data:
 - Who they work for: ECMWF, specific Met Service, specific university, WMO, ...
 - What they work on: Projects
 - Roles they have: System administrator, Computing Rep, ...
 - Rules: What you do decides the access rights you get. These rules are called "Policies".

Registration process

- Enter data
 - Bring up web interface
 - Access to web interface strictly controlled
 - Enter user data: name, employer, phone, contact email, ..
 - Tick projects the user works on
 - Choose primary Unix group (if login access is required)
 - Specify additional requests:
 - Login access to ecgate / ecgate1?
 - Login access to HPCA?
 - Access to real time forecast data?
- Press "submit" button
- Request will be checked for validity by central EMS system
- Ok ->
 - A request id will be returned (on screen)
 - The registrations to Unix, web, ECFS, HPC, Mars .. are processed by a batch system
 - Status of request can be seen on-line (started, running, finished)
- Request finishes -> mails are sent
 - To person who performed registration: what has been done
 - To the user who was registered: user name, initial Unix password, web password, SecurID card number, instructions
 - To person dispatching SecurID card
- Immediate request failures
 - Bad request: Failure immediately after "submit"
 - Correct request, eg. Pick different user name if the one chosen is already in use
 - Tell us if you think what you do should work, and that the system is wrong!
 - Permanent failures after initial check: should not exist!
- Temporary failure (system sessions, software bugs):
 - Monitored at ECMWF
 - Fixed at ECMWF
 - Means the registration takes longer than normal (= a few minutes)
 - Does NOT mean that the registration will fail
 - Should be invisible to the Registrator!

Paperwork

- Change current forms to reflect "Rules based system"
- New forms customised for each authorising organisation:
 - National Met Service
 - Special Project Principal Investigator
- Process by which user contacts authorising organisation is unchanged
- User can accept "ECMWF terms & conditions" by logging in to ECMWF web, confirming
 - Acceptance of the terms and conditions
 - Receipt of the SecurID card if applicable

Web Registration or Paper Form?

- Both possible
- Web turnaround should be much faster!
 - Web forms dynamically created
 - Input on first page defines options on following pages

Availability

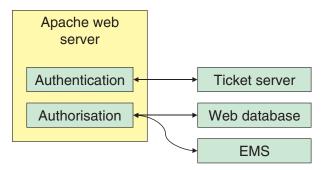
- Core system went operational in December: used for all registrations since then
- When will there be Member State web registration?
 - As soon as the remaining services (hpc, web, ecfs, SecurID) have been connected to EMS, that is:
 - The registration to these services can be executed in batch mode
 - Use the rules stored in the EMS database
 - ~ Summer (2004)

P. Halton (Ireland) asked whether EMS would also apply to Special Projects. P. Kogel replied that it would: Principal Investigators will have the right to register users for their particular Special Project only.

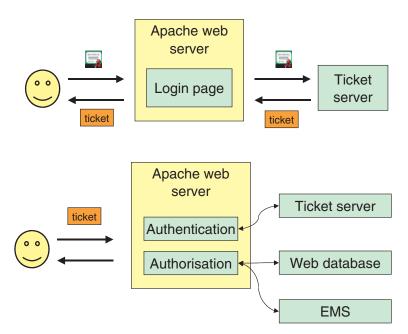
P. Dando (UK) asked who would fill in the form. P. Kogel replied that a form, tailored to each NMS's requirements would be created dynamically. The user can fill this in and return it to the Computer Representative.

P. Dando asked that Computer Representatives receive an e-mail confirmation of registration.

R. Rudsar (Norway) asked whether authority to register users could be delegated to a back-up person. W. Zwieflhofer commented that this was still under discussion, as there were legal aspects to be considered. One possibility might be that ECMWF acts as deputy during a Computing Representative's leave or illness.



Web access control changes - Carlos Valiente


Motivation

- Improve current system
- Integration with EMS
- Share user identification with dynamic web applications

Overview

How it works

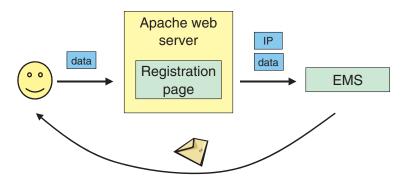
Impact on users

- No transparent login
- Anonymous domain users will have to register in order to access "Your Room" and WebMARS

The login page (1)

200	An In unke		0440/10gm#		I	
n-ti	cket 📄 virutas	s.net 😋 vader [🗋 ems-test 📘	'fish 🛅 nwmstest		
e e ts		<u>Home</u> <u>Your F</u>	<u>oom Login</u>	<u>Contact</u> <u>Feedbac</u>	<u>k Site Map Se</u>	arch:
WI	About Us Overview Getting here Committees	Products Forecasts Order Data Order Software	Services Computing Archive PrepIFS	Research Modelling Reanalysis Seasonal	Publications Newsletters Manuals Library	News&Even Calendar Employment Open Tenders
	ECMWF Login page					
	Your web browser has submitted a certificate that identifies you as user Carlos Valiente					
	Continue working as 'Carlos Valiente'					
	If you are not Carlos Valiente, please login here					
						<u>© EC</u>

The login page (2)



The registration page

d 30m wi	Overview Getting here Committees	Forecasts Order Data Order Software	Computing Archive PrepIFS	Modelling Reanalysis Seasonal	Newsletters Manuals Library	Calendar Employment Open Tenders
122.2765.27			-			
	You may regist and tell us you	r name and you	MWF Web Se Ir e-mail addre	SS .		choose a user ID ch you may use to
	Please choose	e a user ID:		(At least	4 characters lo	ng)
	Your first name	e is:				
	And your last	name is:				
3-	Your e-mail ad	dress is:				
	Your e-mail ad	ldress (again):				
1			Register			
						© F(

The registration process

What does NOT change

- Access permissions for existing users
- Access permissions for self-registered users: same conditions as domain access (but they DO need to self-register)

W. Zwieflhofer asked Computer Representatives whether they were prepared to allow external registrations, for instance from home, once the original authentication/registration had been carried out in the NMS domain. M. Pithon considered this acceptable.

P. Halton also agreed that it should be possible, but requested that ECMWF keep a log of accesses to monitor potential unauthorised accesses, e.g. to confidential Council documents.

H. de Vries (Netherlands) also supported external access. W. Zwieflhofer said that this would not be possible in the initial version but would be considered as a possible future enhancement.

R. Rudsar asked whether users would leave a trail of tickets. C. Valiente replied that all tickets had a limited validity time and would eventually expire, depending on the application. For instance, web SMS and webprepIFS authorities expire after approx. one hour. A normal user registration via certificate expires after approx. 72 hours and login via user ID and password has almost indefinite validity. R. Rudsar considered that the expiry period for roaming users should be relatively short.

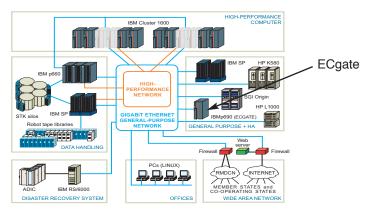
Survey of external users and status of ECgate migration - Dr Umberto Modigliani

Aim of the survey

- Determine the level of user satisfaction with the computing services provided by the Centre
- Identify issues of current concern
- Gather quantitative and qualitative data
- Improve the service offered
- Help ECMWF to serve users' needs better

Organisation of the survey

- Send the questionnaire to all registered users who have access to the Centre's computing facilities, i.e. about 1300 users
- The questionnaire will be on the web, to be completed electronically
- There will be pull-down selection lists, checkboxes, etc. for standard answers to questions and "free format" text fields for comments and additional information/suggestions


Contents of the survey

- · Several sections covering different aspects of the service provided to users
 - information describing each user's activity, work at ECMWF, technical knowledge, etc
 - general evaluation of the services offered
 - use of the ECgate1 server and HPCF
 - more detailed use of the MARS service, including webMARS
 - use of ECFS
 - more detailed use of web services
 - evaluation of User Services
 - area to make suggestions for possible improvements
- There is NO need to answer every question
- The number of questions to answer depends on the specific response to certain questions (branching)
 - the more active/less satisfied users are, the more questions they are asked.
- Users can remain anonymous and information provided will be treated confidentially

Future plans

- Issue the questionnaire as soon as your feedback/comments have been included
- Give about 3 weeks to complete it
- · Analyse the results of the questionnaire and produce relevant reports
- Inform users, Computing Representatives

Computing systems configuration

ECgate configuration

- 1 p690 server with 16 CPUs and 32 GB of memory
- Each CPU is a Power4 processor running at 1.3 Ghz (5.2 Gigaflops peak)
- The new system is about 3 times more powerful than ECgate1
- About **1 TB** of usable disk space is provided through a FASTt700 Fibre Channel Disk Subsystem
- File systems use RAID 5 for speed and protection

Migration status

- Documentation and job examples created
- Announced trial access starting on 3 December 2003
 - System was accessible using "rlogin ecgate" from ECgate1
- Full user access started on 21 January 2004
 - Direct access using ECaccess/MSaccess available
- Training course organised
 - attended by over 20 Member State users
- Informed all registered users individually
- Advice/assistance given to several users, in particular those who have been quite active on ECgate1 in the past 3 months
- The system has been quite **stable**
- prepIFS environment being moved to ECgate
 - performance much better
 - solved some issues with a Dutch user
- HIRLAM environment being migrated to run on ECgate
- submission of Member State jobs via SMS being tested
 - required the implementation of a feature not provided by LoadLeveler
 - jobs will NOT automatically be migrated; users will need to change the relevant headers and check their scripts
 - NQS and LoadLeveler jobs could run in parallel for testing purposes
 - job examples will be available

Access to ECgate server

- Direct access via ECaccess/MSaccess available:
 - telnet ecaccess.ecmwf.int
 - telnet msaccess.ecmwf.int
 - or
 - telnet ecaccess.meteo.ms (your local gateway)
 - Similarly for ftp access
- It is **NOT** possible to access the system via:
 - telnet ecgate.ecmwf.int
 - ftp ecgate.ecmwf.int

Batch environment

LoadLeveler

- LoadLeveler classes Û NQS/NQE queues
- No pipe classes with LoadLeveler

 \bigcirc

- No command line options/flags: specify in job header
- No "waitqueue" concept: specify output and error files in job header
- No class for parallel work has been set up
- CPU-intensive interactive use of the system is discouraged (30 minutes limit)
- The number of classes has been kept to the minimum, but further classes may be added, limits adapted

Simple batch job comparison

,	NQE/NQS •	AIX LoadLeveler
	#QSUB -q normal	#@ class = normal
	#QSUB -lt 1000	#@ cpu_limit = 1000
	#QSUB -IT 1000	#@ job_cpu_limit = 1000
	#QSUB -o /aa/bb/output	#@ output = out.\$(jobid)
	#QSUB -eo	#@ error = out.\$(jobid)
	#QSUB	#@ queue
	:	:
	:	:
	[script]	[script]
	:	:

Classes

•

• 3 classes are defined for user work:

Class name	Suitable for	Limits
normal	most batch work: it's the default class	3 hours CPU time Unlimited Wall time 1 GB memory
express	short jobs, access to real-time data	1 hour CPU time 6 hours Wall time 1 GB memory
long	long and/or large jobs	6 hours CPU time Unlimited Wall time 2 GB memory

Compiling environment

- 32-bit or 64-bit addressing mode binaries and libraries
 - two **incompatible** modes.
 - "-q32" or "-q64" options to the compiler
 - 32-bit mode used for ECMWF local libraries.
 - Default: "-q32"
- 'underscore' for external names
 - "-qextname" used for ECMWF local libraries.
 - Default: "-qextname"

Software environment

- ECMWF local libraries:
 - ECLIB, accessible through environment variable \$ECLIB
 - Default is 32-bit reals (4-byte REALs)
 - EMOSLIB, version 240, accessible through environment variable \$EMOSLIB
 - Default is 32-bit reals (4-byte REALs)
 - NAGLIB, version 20, accessible through environment variable \$NAGLIB
 - Default is 64-bit reals (8-byte REALs)
 - netCDF, version 3.4 and 3.5
 - HDF version 4.1
- General software packages:
 - MARS, ECFS, MAGICS, METVIEW, TotalView, NCAR Graphics, Midnight Commander, etc.

Information on the Web

- ecgate home page
 - www.ecmwf.int/services/computing/ecgate/
- Several job examples available at

www.ecmwf.int/services/computing/job_examples/ecgate/

Updated "Introduction for new users"

www.ecmwf.int/services/computing/help/new_user/intro_ex/

• Computer user training course material available at

www.ecmwf.int/services/computing/training/material/com_intro.html

- www.ecmwf.int/services/computing/training/material/com_hpcf.html
- Selected IBM manuals available from: www.ecmwf.int/publications/manuals/ecgate/

ANY OTHER BUSINESS

J. Greenaway noted that the UK and Ireland had enquired about alternative data transportation, as their telecommunication lines had occasionally been swamped by huge data transfers. W. Zwieflhofer noted that ECMWF now has the capability to write standard LTO tapes (200 GB per tape). M. Fuentes added that a very large data request had recently been supplied on LTO2 tapes.

W. Zwieflhofer commented that the Member States' need to monitor the ECaccess daemon at their end had been noted. The reference in the Administrator's Guide will be reviewed and clarified, if necessary. L. Gougeon also commented that the Big Sister monitoring system at ECMWF could send automatic emails to the Member States' administrators, warning them of daemon problems. This is also a webserver administering the gateway, which could be accessed by Member States operators to monitor the gateway. L. Gougeon noted, however, that, once satisfactorily installed, the gateways are very stable.

W. Zwieflhofer expressed his satisfaction with the Linux cluster presentations. They had been extremely useful. He proposed that this subject should be resumed at the Representatives' next meeting.

NEXT MEETING

It was unanimously agreed that the next meeting should take place in spring 2005.

Part II

Member States', Co-operating States' and ECMWF Linux cluster presentations

FRANCE

FRANCE

LINUX at Météo-France - Marion.Pithon

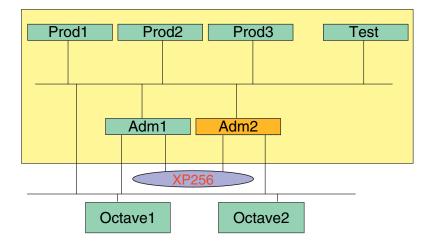
- Since 1999 (mail servers)
- Red-Hat for servers. Mandrake for PC.
- Since 2001, some operational production on Linux servers (OKAPI system: production of climatology products). Choice made for performance reasons (compared to HP servers).
- Currently, Linux servers (Red-Hat) for :
 - OKAPI : 5 servers
 - Meteonet 2000 : 7 servers
 - Mail servers : 17 servers
 - Network and security : 5 servers
 - Development servers : 15 servers
 - Telecommunication system : 10 servers

Some issues about O.S

- Change of philosophy (compared to O.S from suppliers)
 - Need of a "professional" distribution? Well supported with a long life cycle.
 - Some software is only certified on "Enterprise" distribution (Oracle on Red Hat Enterprise)
 - Will all distributions be supported and certified by providers?
- Change of organisation (System administrators team)
- What sort of support ? (at M.F minimum of support: contract with a company for 30 calls a year)

Cluster test configuration at Météo-France

- To replace our current production system
 - Current configuration based on HP servers.
 - Data servers (with database ORACLE).
 - Compute servers (pre-processing).
- Prototype configuration :
 - Cluster of :
 - 4 compute nodes (4 HP DL360 bi pro Xeon2 2GB RAM)
 - 2 nodes for administration and NFS servers (2HP DL320)
 - Switch gigabit for interconnect
 - OS Red Hat 9.0
 - Software ALINKA + OPEN PBS + PGI F90
 - First production ("Immediate forecast" products) in June 2004


Current configuration

FRANCE

FRANCE

Prototype configuration

Administration tool : ALINKA

- Administration and management software tool.
- Enables the management of heterogeneous hardware.
- Company : Prologue technology.
- Licence cost is cheap.
- Master/nodes philosophy : one computer, the master, creates and administers many nodes. Nodes are clones of master.
- The cluster can be divided into several logical sub-clusters.
- Web based graphical user interface.
- PBS can be integrated in ALINKA.

General comments

- Need a tool for system management and administration.
- Need a tool for supervision.
- Resources management, scheduling and load balancing.
- Parallel I/O, file systems and storage.
- Middleware for clusters.
- Security.

HUNGARY

HUNGARY

Cluster Project – László Tölgyesi

Operative configuration (*test phase*)

PC Linux cluster with 4 nodes (1 master, 3 computing) Pentium IV(Xeon), 2.4 GHz CPU, 0.5 GB RAM, 40 GB HD per node GigaBit CISCO switch amoung nodes (1 Gb/s; UTP) SAN (2 Gb/s), LAN (1 Gb/s) connected to master node OS: Linux 2.4.20 Cluster SW: OSCAR (*Open Source Cluster Application Resources*) Loadbalancing, scheduling: Maui (*tested on WEB*) Job controlling: OpenPBS (*Portable Batch System*)

Note: SGI and HP machines with two Itanium CPU are tested

Planted configuration (December 2004)

PC Linux cluster with 17 nodes (1 master, 16 computing) Two Pentium IV(Xeon), 2.4 GHz CPUs, 2 GB RAM per node

...and later

Linux cluster with 32 or 48 nodes Itanium 2, 1.5 GHz CPUs, 2 GB RAM per node

IRELAND

IRELAND

Linux Cluster Implementation at Met Éireann - Paul Halton, Head, IT Division

Why Now?

Main reasons for procuring a Linux Cluster in 2003 were:

- Running costs of the IBM RS/6000 SP [SWIFT] are quite high and the system has had several hardware failures on different nodes.
- More cost effective platform needed for running HIRLAM
- Good in-house experience of using Linux and Open Source S/W
- Success stories from Linux Cluster workshops in Sweden in 2002 (...and again in 2003) & marketplace reports of architecture maturity
- First-hand experience of Linux Clusters running NWP experiments required, before replacing the IBM RS/6000 SP
 - [SWIFT = 9 nodes, each with 4 x 375 Mhz Power3-WH-II CPU's]
- A small budget of Euro50k became available in 2003.

More arguments for buying a Linux Cluster included:

- Backup server needed to run HIRLAM at the same fine-mesh resolution as the operational suite on the IBM $\rm RS/6000~SP$
- Availability of a cluster would be useful for getting experience of:
 - Managing such a distributed architecture and learning about reliability problems [if any]
 - Porting NWP applications from IBM to Linux Cluster & MPI usage
 - Running new NWP experiments [when the IBM system is fully loaded]
 - Providing in-house computing resources for Special Project, C4I

HPC Marketplace Assessment

Five different machines were identified for comparison:

- a) An IBM RS/6000 SP -Power-3 [375Mhz] similar to our own machine
- b) An SGI 3800 R14000 [600Mhz] similar to a machine used at SMHI
- c) A Linux cluster as used in Sweden [called BRIS]
- d) A Linux cluster available from ClusterVision
- e) A Linux cluster available from IBM

Relative Speeds

Summary of relative speeds based on information we assembled from various sources...

- SGI 3800 with 16-processors is approx the same speed as a 32-processor IBM RS/6000 SP
- A 16-processor Linux Cluster [BRIS] is about the same speed as a SGI 3800 with 16 processors
- So a 16-processor Linux Cluster is about the same speed as 32-processor IBM RS/6000 SP
- Thus a 16-processor Linux Cluster is about 75% of the power of the 36-processor IBM RS/6000 SP [SWIFT]

IRELAND

IRELAND

Relative Costs

Summary of relative costs based on information we assembled from various sources...

- A Linux Cluster would cost about 1/7th the cost of the equivalent
 - SGI 3800 mainframe. (€367,216)
 - IBM mainframe of similar power [SWIFT], (€367,216).
- A Linux Cluster from IBM or ClusterVision, of similar power, would be much cheaper.
- Evidence showed that an MPI version of HIRLAM would run on a Linux Cluster and it would be significantly cheaper. (€ 53,000 ?)
- Our objective was to start with a small inexpensive cluster to get experience of reliability, scalability, application portability and maintenance & support

Procurement

Procurement of a small 'entry-level' Linux Cluster approved by Met Éireann management in Sept 2003

Invitation To Tender (ITT) issued in Sept 2003 to:

- Dell, IBM, CALYX (Fujitsu-Siemens), SYSNET, ClusterVision, ACT (Sweden) and HP
- Proposals were received from:
- IBM, Dell, DSS (HP) and Xpert Technology (HP)

Contract Awarded

- Contract for the supply of a 7-node Linux Cluster was awarded to Dell, in November
- The Dell Cluster was delivered early in December '03
- Cluster is based on the PowerEdge 1750 rack-mounted server

Hardware Specification-1

Dell Linux Cluster (Phase-1) installed Dec 2003:

- 1 x Master node
- 6 x Compute nodes
- 6 x 4 Port Dolphin SCI HBA for Compute Node interconnect
- 1 x Dell PowerConnect Cluster Communication Switch
- 1 x Full size Rack:
- 1 x 42U Rack 4210 Base with a Dell PowerEdge 1750 AC
- 1 x Backup Tape Unit
- PowerVault Tape System PV112T VS80 Rack Base 1U Single 40/80GB

Hardware Specification-2

- 1 x Master Node: Dell PowerEdge 1750
 - Dual Intel Xeon processors at 2.8GHz with 512kb cache
 - 533 Mhz Front Side Bus
 - 4GB ECC DDR RAM
 - 3 x 146 GB 10k rpm Ultra320 SCSI disk drive
 - Dell PERC4/Di U320 Raid controller. (RAID-5)
 - On-Board dual PCI-X 10/100/1000 BaseT Ethernet port
 - Embedded Remote Access (ERA) port for remote management
 - Redundant Power Supply
- 6 x Compute Node: Dell PowerEdge 1750
 - Dual Intel Xeon processors at 3.2 GHz with 1Mb cache
 - 533 Mhz Front Side Bus

IRELAND

- 2GB ECC DDR RAM
- 1 x 36 GB 10k rpm Ultra320 SCSI disk drive
- On-Board dual PCI-X 10/100/1000 BaseT Ethernet port
- Embedded Remote Access (ERA) port for remote management
- 4 Port Dolphin SCI HBA for Compute Node interconnect

Software Specification

- RedHat Linux enterprise edition
 - Enterprise Server (ES Version 3.0) on the Master node and
 - WorkStation (WS Version 3.0) on the compute nodes
- SCALI Software Suite (Beta-Release installed in Phase-1) included:
 - Scali Interconnect with Dolphin cards
 - Scali MPI Connect which includes:
- Heterogeneous Cluster Support
- Automatic selection of transport mechanism at runtime
- Multithread safe and hot
- UNIX command Line replication
- MIMD support
- Tracing and Monitoring
- Support for Debuggers such as Vampire MPI from Pallas and GNU gdb
 Scali Manage
- PGI compilers (Fortran and C) & Intel compilers (Fortran and C)

Initial Tests of the Dell Cluster

- After initial installation, tests were run using a temporary Scali licence
- A full release of the Scali software for RedHat was not available until March 2004.
- We only had temporary licences for the PGI Fortran and C compilers.
- All the temporary licences meant that we had to reinstall licences and recompile all applications every two weeks!
- When the PGI compilers were reinstalled, the earlier versions of programs failed to run and error messages similar to the following were produced:
 - EXECUTABLE EXPIRED This executable was created using a Trial version of PGI software. The PGI Software and derived executables cease to function
- · Apart from these inconveniences the system worked very well

Installation Completion (1)

Cluster Installation (Phase Two) March 2004

Scali Engineer and Dell Engineer completed the installation work over 3 days in March 2004

- Hardware:
 - Second Power supply fitted in master node and tested.
 - Tape Drive and SCSI card and cable were fitted.
 - ERA (Embedded Remote Access) installation completed.
 - Each compute node has a 4 Port Dolphin SCI HBA card for compute node interconnect.
 - The compute nodes are connected as a two-dimensional torus via the Dolphin SCI cards.

IRELAND

IRELAND

Installation Completion (2)

- Software:
 - RedHat WS 3.0 installed on the slave nodes.
 - Latest version of Scali software installed.
 - Dell OpenManage Version 3.6 was installed and configured.
- Network:
 - Remote system access / management via the ERA/RAC system was configured.
 - Networking software: Scali MPI connect, Scali TCP connect, Scali Manage

Scali Software

ScaliManageTM

- Software Distribution & Configuration
- System Administration & Management
- System Monitoring & Alarms

Scali MPI ConnectTM

- Scali MPI Connect for TCP/IP
- Scali MPI Connect for Direct Ethernet
- Scali MPI Connect for SCI
- Scali MPI Connect for Infiniband
- Scali MPI Connect for Myrinet

Services

- Consulting & Training
- Maintenance & Support

Installation Completion (3)

Benchmark:

- We have been running the full HIRLAM suite on the Dell Linux Cluster continuously for almost 2 months.
- We are very pleased with the performance.
- While it would be interesting to have a LINPACK number, we haven't got the expertise or time to run it at the moment.

Training:

- We require no further hands-on training at this stage!
- We have asked Scali for details of MPI training courses awaiting reply
- The porting of an identical MPI version of the operational HIRLAM suite was successfully completed during the period Dec 2003 to March 2004.

Installation Completion (4)

Problems encountered during the installation (Phase-2)

- Unable to install latest version of Dell OpenManage due to incompatibility between Scali Manage & Dell OpenManage.
- The installation of Scali Manage failed due to a little known bug in the RedHat Package Manager (RPM). Scali logged into our system from Norway and fixed this.
- We need to know how to get around this bug [so that we can upgrade Scali Manage, as newer versions become available]
- Confusion about Netmask addresses. The SCALI engineer, sorted this out in conjunction with colleagues in Norway.

IRELAND

IRELAND

Installation Completion (5)

Outstanding issues:

- Unsupported version [i.e. OpenManage version 3.6] of Dell OpenManage presently installed, but it works
 - This didn't hold us up, as we could install slightly older versions of the software
- RPM bug, we need to get a permanent fix
- NFS mounts were lost on one occasion. We are still monitoring this issue.
- Some functionality in the ERA/RAC browser interface does not work, such as:
 - Graceful (smooth) shutdown of system.
 - No response to F2 or ctrl commands intermittent

Set Up & Management

Benefits of the Scali software

- The RedHat Linux OS was loaded on the Master Node and then we supplied it with relevant details:
 - (IP addresses, node names) and it created the cluster across available nodes.
- The user directories are exported to each of the compute nodes.
- From the desktop, using Scali Manage, we can reboot, power down and monitor the cluster.

Benefits of Dell OpenManage

- Using Dell OpenManage we can monitor the hardware and interact with the BIOS on each node
- To do this on the compute nodes we login to the master node initially
- This is done from a browser interface (we use Netscape)

Cable Management

- Initially when Dell installed the system, cable management arms were installed
- These had to be removed when the Dolphin SCI cards were installed.
- This reduces the ability to slide nodes out & in the SCI cables have to be disconnected first.

Intel Compilers

- We have an ongoing problem with the licensing software for the Intel compilers.
- The software will not run on RedHat ES 3.0.
- As a work around we are using another Dell workstation (with RedHat 7.2) as the licence server.

Initial Hardware and Software delivery and lessons learned

- Dell appointed a Project Manager from a third Party (SureSkills)
- The nodes arrived from DELL without the ERA ports
- Initially, the Master node only had 1 power supply installed redundant power supply ordered but only installed in March 2004.
- Dell did not come on site to verify that everything was delivered before installation commenced. This led to delays later.
- Dell learned more about clusters during this installation and a good working relationship was established.
- We purchased the RedHat software directly from RedHat Europe.
- The PGI and Intel Compilers were purchased via Scali. This led to delays, as the PGI software was delivered to Norway and seemed to get lost!
- We recommend that all third Party software should be bought directly in future.

IRELAND

IRELAND

Experience (1)

HIRLAM running on the new Linux Cluster

- Currently running version 5.0.1 of the Hirlam forecast model, along with the Hirlam 3DVAR analysis scheme.
- Analysis and model both support MPI.
- Initially a 'stripped-down' version of Hirlam was installed in late December / early January.
- The HIRLAM suite was gradually upgraded to be identical to the operational system running on the IBM RS/6000 SP system

Experience (2)

- The Cluster has been tested using both
 - the Gigabit Ethernet and
 - the Dolphin SCI interconnects.
- The applications were initially compiled using the PGI compilers
- Experiments with Intel compilers have started
- Further optimisation options are under investigation, particularly for 3DVAR analysis

Comparative Timings

Results for the operational Hirlam run on IBM RS/6000 SP were compared over six different runs with results for the same version of the model on the same grid on the Dell Linux Cluster

- The timings are for a 48-hour forecast.
- The grid is 438 x 284 with 31 levels
- The timestep is 300 seconds.

Comparisons made over 6 x HIRLAM runs on each platform:

- The mean time for the IBM SP runs [on 36 CPUs] was 63.3 mins,
- The mean time for the Cluster runs [on 12 CPUs] was 79.5 mins.
- Using these figures gives the result
 - -(63.3 / 79.5) = 0.80
 - (79.5 / (63.3) = 1.26
- Thus, the IBM system is 1.26 times as fast as the Cluster or, alternatively, the Cluster is 0.80 times as fast as the IBM system.
- Comparing individual processors
 - $(63.3^*36) / (79.5^*12) = 2.4$
 - $(79.5^*12) / (63.3^*36) = 0.4$
- Thus a cluster processor is 2.4 times as fast as an IBM processor, or
- An IBM processor is 0.4 times as fast as a Cluster processor.

Comparisons made over 6 x 3DVAR Analysis runs on each platform

- Mean time for the IBM SP runs [on 36 CPUs] was 16.0 mins,
- Mean time for the Cluster runs [on 12 CPUs] was 29.5 mins.
- There is a dramatic difference in performance between the HIRLAM forecast model and the 3DVAR analysis
- The Cluster performance is 80% of the IBM for the HIRLAM model but just 50% for the 3DVAR analysis.
- The 3DVAR we run on SWIFT is extensively optimised, using special IBM libraries for calculating maths functions and for FFT's.
- The Dell Cluster uses a stricter [i.e. slower] implementation of MPI.

IRELAND

Future Plans

Currently the full operational NWP cycle includes:

- 3DVAR analysis,
- HIRLAM forecast model,
- Routines for generating climatological files,
- Various post-processing programs,
- A single-processor version of the WAM model and
- Various programs for generating products for customers.

Future work will involve:

- Modifying boundary processing programs to run on more than one node
- Writing a script to check which nodes are available
- if not all nodes are available, modify the run as appropriate to use the reduced set of nodes
- Implementing the MPI version of WAM.
- Experimenting with the Intel compilers and Maths Libraries to see if they will produce a faster run.
- Adding additional nodes to the Cluster

Summary

- Dell 7-node Linux Cluster with Scali software was installed successfully.
- We have been very impressed with how easy it is to set up the cluster!
- Total cost of 7-node Linux Cluster was €56.6k (ex VAT)
 - H/W Cost: €40.1k
 - S/W Cost: €8.7k
 - Installation Cost: €7.8k
- HIRLAM operational suite (with MPI) was successfully ported to the Dell Linux Cluster
- The entire system has been running reliably for 4 months
- Some minor issues remain to be resolved
- Overall experience to date is very satisfactory.

NORWAY

NORWAY

IBM eServer 1350 Linux-cluster at met.no – Rebecca Rudsar

Why IBM eServer 1350 with dual AMD Opteron processers and Myrinet?

Three firms (IBM, Dell and HP) came with an offer. They had quite different configurations, therefore we were able to test our benchmark on

- AMD Opteron and Intel Xeon
- Nodes with one and two processers
- Myrinet and Gigabit Ethernet interconnect

In addition we examined the status of 64-bit vs.32-bit processers.

32-bit vs. 64-bit

The code that we run does not need 64-bit memory addressing, as we always run on as many processors as possible and this spreads the memory usage over all the processors. If we needed 64-bit precision in the calculations, this could be done by compiling with 64 bits precision. At present we mange with 32-bits precision and it doesn't seem that 64-bit processors can compete on a price/performance basis yet.

Opteron vs. Xeon

The memory architecture in Opteron appears to be very effective for atmospheric models and the 2.0 GHz Opteron gave a better price/performance picture than a 3.06 GHz Xeon. In addition Opteron has the advantage that applications and Linux can run in 64-bit mode (even though this isn't necessary yet).

One vs. two processers per node

Two processors do not give twice as much performance as one processor but as far as we could see two-processor nodes gave a better price/performance than one-processor nodes even with a Gigabit Ethernet interconnect.

Gigabit vs. Myrinet

The initial start time or latency is very important in ocean- and atmospheric models, since each processor is assigned a physical area (area of the map) and what happens in each area affects to a large degree all the nearest neighbours and to a lesser degree all the other areas. In addition the mathematical algorithms used need global communication. Each single message which is exchanged is, however, not so big and latency is therefore more significant than bandwidth.

Comparing systems with Gigabit Ethernet and Myrinet interconnect showed that over a certain number of processors Myrinet was not only better on performance but also on price/performance. This was because with Gigabit Ethernet the processors were periodically waiting for data from each other.

Why Scali software?

Scali has good administration tools and a good implementation of MPI. Both of these are important but for us the most important thing was the combination of Scali software and OpenPBS queueing system.

We run jobs with different priorities (typically operations, production, research).

All jobs run on the whole cluster. The operational jobs are dependent on using all the nodes to be finished as soon as possible. Thus we had to have a queueing system which makes it possible to suspend jobs with low priority to make sure that jobs with high priority have a fast throughput.

Scali have implemented a solution for this which functions well with the free implementation of PBS, OpenPBS.

Basic software is therefore:

RedHat 9 Linux
Scali
Scali
Portland Fortran and C
OpenPBS

NORWAY

Details of the configuration acquired are given in the main body of Norway's presentation in Part III.

Experience

We have had one occurrance of a broken node. Until then we had been running the jobs on all the processors, i.e. the script which started the job specified the number of nodes to 40. The job expected all the nodes in the correct order and aborted when one node was missing.

To avoid this problem the script was changed to check the nodes which were available and submit the job with a list of available nodes.

They had based their configuration planning on the assumption that the typical MTBF for a server was 70,000 hours, so that a 1,000 server cluster might expect a failure every third day: it is important to build in adequate redundancy and to ensure that the effect of a single node failure is minimised.

Clusters produce a great deal of heat. Their 80-node cluster produces 15 kw and they were obliged to buy a new cooling system.

SERBIA MONTENEGRO

SERBIA MONTENEGRO

RHMS of Serbia, BEOWOLF CLUSTER - Vladimir M. Dimitrijevic

About 1 year ago we started to use a BEOWULF cluster for running the Eta model with better horizontal resolution of 18 km for 5 day forecasts. At first it was 9 node cluster but very soon we upgraded it to 16 and 20 nodes.

BEOWULF Cluster consists of:

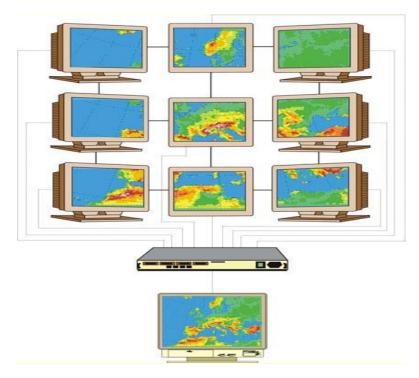
- 20 diskless nodes + one reserve node
- Two servers
- Switch module
- Linux OS
- Message Passing Interface (MPI) for parallel processing

Cluster 3x3 diskless nodes

3x3 diskless nodes

1 Server node + 1 buck up node-server module

Switch module is based on Cisco switch 2950 and Panduit passive components.


Server and nodes are based on ASUS motherboard and AMD Athlon processor on 1.4GHz

Each node has 512 MB DDR RAM memory and 4 Ethernet ports (one has 5 Ethernet ports) which enables us to link them in simple star or 2-D grid

The operational system is Linux Red Hat 7.2

Nodes share all the resources from the server using the Network File System (NFS).

This configuration works as single computer with 5GB memory, processor performance of 5 Gflops and 100 Mbit Ethernet interconnection between nodes.

ig 1: Here we can see how parallel programming works on a 9-node cluster example. The domain of integration is divided into parts so every node calculates parameters on sub domains and after every time step they exchange the new values of variables. Standard Fortran code of the Eta model is modified using MPI (Message Passing Interface).

SERBIA MONTENEGRO

SERBIA MONTENEGRO

Cluster 5x4 diskless nodes

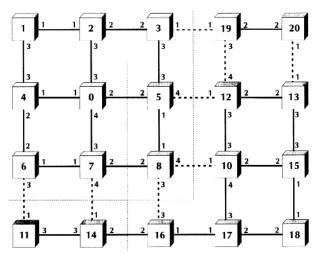


Fig 2: Here we can see how the 2-D grid looks on a 20 node cluster example. The domain of integration is divided in 20 parts, so every node calculates parameters on sub domain and after every time step they exchange new values of variables.

Cluster 2x3x3 diskless nodes

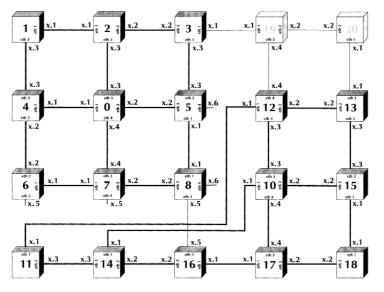


Fig 3: Two separate 9-node clusters can be made easily by switching some cables on the patch panel and disconnecting the two excess nodes. It is also possible to use 4x4 Cluster just by disconnecting 4 nodes (1, 4, 6, 11 or 20, 13, 15, 18).

Experience

- Cluster of 20 nodes showed some irregularities during model integration (infinite values ...)
- After testing all the nodes and possible combinations of connections between nodes in 2-D grid, the following conclusion is reached:
 - All nodes work correctly
 - All connections, cables and Ethernet cards are functional
 - Problems with software are excluded (after several runs of different models on same boundary lateral conditions)

Slow Ethernet connections between nodes (100 Mb/s) are a probable cause of problems.

SERBIA MONTENEGRO

SERBIA MONTENEGRO

Conclusion

Cost-benefit of Linux clusters is one of the main reasons for using them.

Considering our needs for running NWP LAM and our financial situation, developing and using Linux Clusters is our best option.

Future plans

- Building the new 6x6 node Beowulf Cluster with Gigabit Myrinet which has 20 times more bandwidth than the 100 Mbit Ethernet that we used.
- Usage of existing 4x4 Cluster or 2x3x3 Clusters as backup.

SLOVENIA

Linux clusters in Slovenia - Miha Razinger

Goals (with NWP in mind)

- "Supercomputing" solution meeting our needs:
 - Enough computing power for our problems
- Taking in account
 - Price of the system
 - Cost of ownership
 - Stability
 - Potential operational requirements
 - Minimized maintenance
 - User friendliness

NWP requirements

- Operational / Research duality
- Computation of forecast in reasonable time on requested domain
- Data assimilation intensive Input/Output
- Code: Fortran90 programming environment
- MPI / OpenMP programming model
- Specific software (ECMWF ODB)
- Big amount of data (storage aspects)

History of Linux Clusters at EARS

- 1995 test of Digital Unix cluster (4 nodes)
- 1995 demonstrational 20-node Alpha Linux cluster
- 1996 operational 5-node Alpha Linux cluster
- 2003 current 14-node Intel Xeon Linux cluster goes operational

Tuba Cluster

- Hardware
 - Processors : Intel Xeon 2.4 GHz (28)
 - 1 master node SuperMicro 4U Server
 - 13 computational nodes SuperMicro 2U servers
 - 1 GB memory / processor
 - Storage
 - 350 GB Raid-5 array in Server node
 - 3.5 TB external Raid-5 array
 - Network
 - Gigabit Ethernet fiber, Entherasys 8000 Gigabit switch

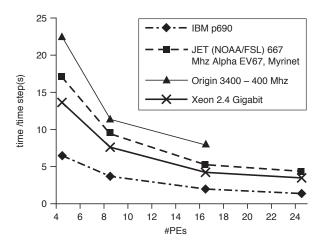
Tuba Cluster Software

- Linux (RedHat 7.3) + Score
- f90 Compilers (Lahey, Intel, Portland Group)
- Totalview debugger
- SMS
- Open source solutions for cluster monitoring (Ganglia)

SLOVENIA

SLOVENIA

SLOVENIA


Score (the heart of Tuba)

- Features:
 - LINUX Kernel patch (improved network bandwidth)
 - Modified version of MPICH
 - Synchronized execution of parallel code (gang scheduling)
 - Preempting, checkpointing
 - FIFO scheduler, priority policy
 - Parallel shell
 - Cluster supervision (automatic restart in the case of Score/Hardware failure)

Availability

- Reducing number of single points of failure
- Clusters: great number of redundant boxes
- Usage of Raid-5
- Self correction with Score

Performance

Problems

- Minimal amount of hardware problems
- Some problems due to improper design (master node as a computational node, hyperthreading)
- MPI buffered communications problems
- Score hanging some times

Future Plans

- Challenge: LAM of new generation (2.5 km horizontal resolution), 2007-08
 - at least 10 x times more computing power
- Parallel filesystem (IO) (TerraGrid pfs)
- Faster low latency network (Infiniband)
- Migrate to 64bit (AMD Opteron, Blade servers)
- 64 bit compiler (PathScale)
- Hope to have some results for ECMWF HPC workshop

SLOVENIA

Conclusions

SLOVENIA

- Very good price/performance ratio
- With some additional work close to functionality of big systems
- Some unresolved problems with a good hope of resolving them
- Very crucial part (ODB) is still missing for Linux

M. Pithon asked whether the cluster caused much additional work either in its management or from the end-user's point of view. M. Razinger replied that the initial building of the cluster required more effort but that, once running, little maintenance was required and it was very user-friendly. They do not have any external support.

UNITED KINGDOM

UNITED KINGDOM

Experiences with Linux Clusters - Paul Dando, Met Office

Linux Cluster at BAS

- http://www.antarctica.ac.uk/met/beowulf/
- 13 node (1 master +12 slave) cluster
 - 8 dual processor AMD Athlon MP 1600
 - 5 dual processor AMD Athlon MP 2200
- Ethernet interconnects
- I/O via NFS to 80 GB disk on master node
- No queuing system or job scheduling
- Portland Group Fortran Compiler

Experiences with BAS cluster

- Ethernet interconnect gives poor speed-up beyond 2 processors
- Running Unified Model with 2 processors gives
 - 2 model years/day for global atmosphere-only (32-bit)
 - 0.5 model years/day global coupled atmosphere-ocean (64-bit)
 - Very favourable turnaround compared with other systems
- Only 2 users so do not use batch
- Very reliable
 - 1 PSU failure and 1 memory problem in 2+ years full-time running
- Recent upgrade: 2 dual-node opteron systems + Myrinet

Linux Cluster at RAL

- http://home.badc.rl.ac.uk/iwi/lewis/lewis.html
- 17 node (1 master + 16 slave) cluster
- Each node has
 - Dual processor CPU (2.4GHz Pentium 4 Xeon)
 - 512MB RAM (master has 1GB RAM)
- Slave nodes have Myrinet 2000 networking
- RedHat operating system
- MPICH library for parallel code
- Intel Fortran 90 Compiler version 7
- OpenPBS queueing system
- MAUI job scheduler

Experiences with RAL Cluster

- Some initial problems (PSU, memory failures)
- Ethernet networks used for NFS can be a bottleneck for I/O (better with gigabit ethernet ?)
- Some failures with nodes being unreachable over Myrinet (fixed by replacing the cards)
- Hardware faults on slave nodes do not affect whole cluster (can configure out)
- Overall reliability has been pretty good
- Better performance with fewer processors with more jobs running concurrently

UNITED KINGDOM

Hadley Centre Linux Cluster

- 26 node (1 master + 25 slave) cluster
- Each node has
 - Dual processor CPU (1.13GHz Pentium III with 512K L2 cache)
 - 1 GB RAM (shared)
 - 40 GB hard disk
- All nodes connected on a private ethernet network using 100baseTX network switch
- Dolphin SCI high-speed interconnect (2-D torus)
- RedHat v7.1, kernel 2.4.3-12scalismp
- Scali Software Platform (SSP v3.0.1)
- Lahey/Fujitsu Fortran 95 Express Release L6.10a

Experiences with Hadley Centre Cluster

- Scaling poor when using both CPUs of a node otherwise comparable to SX-6
- Running Unified Model (UK Mes forecast)
 - ~1.7 model hours/CPU hour (single CPU/node)
 - ~1.1 model hours/CPU hour (2 CPUs/node)
- Good reliability following initial problems
- Some recent H/W problems
 - Faulty fans, memory, PSUs
 - Recent problems with nodes crashing for large runs

UNITED KINGDOM

ECMWF

ECMWF

The ECMWF linux cluster - Petra Kogel

Purpose

- Evaluate technologies: Suitable for ECMWF HPCF
- Commission as general purpose server next year

Hardware

- Will be installed in late April
- Supplied by Linux Networx
- Configuration is
 - 32 nodes plus 1 master node
 - Includes 6 I/O nodes with Fibre Channel HBAs
 - Each node has dual 2.2 GHz AMD Opteron 248 CPUs, 4 GB Memory
- InfiniBand low-latency high bandwidth interconnect for MPI

Choices made

- Opteron
 - Performance similar to Power 4+ (as in phase 3 HPC)
 - Xeon: 32 bit only
 - Itanium: Price
- Infiniband
 - Emerging technology, industry standard
 - Price dropping rapidly
 - Excellent expected performance
 - Myrinet, Quadrics: Are known to work, so take the opportunity to evaluate Infiniband now in a "small" setup with limited risk

Shared filesystem

- Which ones?
 - Lustre
 - PVFS 2
 - NFS over fast interconnect
- Problem areas
 - Locking mechanisms / resilience
 - Small and large I/O

Fast Interconnect

- How good is Infiniband?
 - MPI support: Test different versions of MPI
 - Reliability
 - Performance for ECMWF applications

ECMWF

Cluster and Node Management

- Is a production environment distributed over ~4000 feasible?
 - Power down / up: How long does it take?
 - Reboot the cluster:
- How often will that be necessary ?
- How long will it take?
 - Operating system upgrades and patches:
- How difficult?
- Recovery after failure?

Monitoring

- Utilisation, problems, failures, etc.
- Try:
 - Ganglia: Designed for grid, zoom in to cluster and node
 - Other ?

Load balancing

- Batch
- Interactive login: Needed on general purpose server!
- Try:
 - SLURM (default as delivered)
 - Sun Grid Engine
 - Open PBS ???

Other issues

- Support model: Who will fix the bugs?
- Application recovery:
 - The more nodes, the more failures .. Automatic recovery would be "nice"!

€

PART III

Member States' and Cooperating States' Presentations

AUSTRIA

Computer equipment

a) Production Server: SUN Server 420, 2 CPUs/450 MHz, 2GB Memory, Disk 2 GB, CD-ROM SUN Server 420, 2 CPUs/450 MHz, 2GB Memory, Disk 2 GB, CD-ROM

- **b)** Development Server: SUN Server 420, 4 CPUs/450 MHz, 2GB Memory, Disk 2*18 GB Raid1, CD-ROM
- c) Fileserver:

NET APPLIANCE Network Attached Storage, Disk 500 GB proprietary Raid (~Raid 4)

- d) Short-Range_Database Server: SUN Ultra Enterprise 450 Server, 2 CPUs/300MHz, 2 GB Memory, Disk 4*9.1 GB, CD-ROM, Floppy 3.5" SUN Ultra Enterprise 450 Server, 2 CPUs/300MHz, 2 GB Memory, Disk 4*9.1 GB, CD-ROM, Floppy 3.5"
- e) Long-Range_Database Server: SUN Enterprise E3500 Server, 4 CPUs/336 MHz, 2GB Memory, Disk 4*9.1 GB, CD-ROM SUN StorEdge A3500 Disk Array, Disk 2 x 51*9.1 GB SUN Enterprise E3500 Server, 4 CPUs/336 MHz, 2GB Memory, Disk 4*9.1 GB, CD-ROM SUN StorEdge A3500 Disk Array, Disk 2 x 51*9.1 GB
- f) ECMWF-Server:

SUN Ultra-10, 1 CPU/440 MHz, 524 MB Memory, Disk 2*19 GB, CD-ROM SUN Ultra-10, 1 CPU/440 MHz, 524 MB Memory, Disk 2*19 GB, CD-ROM

g) GTS-Server:

SUN Ultra-10, 1 CPU/440 MHz, 524 MB Memory, Disk 2*19 GB, CD-ROM SUN Ultra-10, 1 CPU/440 MHz, 524 MB Memory, Disk 2*19 GB, CD-ROM

h) Internet- and Product Server:

SUN LX50 Server, 2 CPUs/1.4GHz, 1 GB Memory,, Disk 2*72 GB, CD-ROM SUN LX50 Server, 2 CPUs/1.4GHz, 1 GB Memory,, Disk 2*72 GB, CD-ROM SUN LX50 Server, 1 CPU/1.4GHz, 512 MB Memory,, Disk 2*36 GB, CD-ROM

i) Intranet-Server:

SUN Ultra-1, 1 CPU, 65 MB Memory, Disk 10.5 GB, CD-ROM

j) Domainname-, Administration- and Operating Server:

SUN Ultra 5_10, 1 CPU, 132 MB Memory, Disk 5.2 GB, CD-ROM *SUN Ultra-1, 1 CPU, 65 MB Memory, Disk 4.2 GB, CD-ROM

k) Mail-Server:

SUN Netra T1, 1 CPU/500 MHz, 512 MB Memory, Disk 18 GB, CD-ROM SUN Netra T1, 1 CPU/500 MHz, 512 MB Memory, Disk 18 GB, CD-ROM SUN Netra st D130, Disk 2*36 GB

l) Backup- / Archive-Server:

SUN Enterprise 250 Server, 2 CPUs, 128 MB Memory, Disk 26.4 GB Single Equipment with double Access: DLT Cartridge Roboter (3.5 TB, 4 drives) Single Equipment: Tape 0.5", 9-track, (6250/3000/1600/800 bpi) Optical Disk Roboter (4 Drives, 144 Slots re-writeable Magneto-Optical- Disk, 650 MB Cartridge)

m) RC-LACE Model Group:

Digital Personal Workstation 600 AU, 1 CPU, 1 GB Memory, Disk 8.6 GB, CD-ROM, Tape 4 mm DAT SGI Origin 3400, 20 x R14000 CPUs/500MHz, 20 GB Memory, Disk 2*18 GB, 8*73 GB, Tape 4 mm DAT

n) FIREWALL:

XXXXXXX, Confidential

and more than 60 other Servers and Clients depending on special needs at the several Departments and Regional Services of ZAMG, and a flock of nearly 300 PCs, some of them used for routine work, e.g. for forecasters and to supply special Media (Broadcast and Television, Newspapers).

Software

SUN-Systems

Operating System: Solaris (UNIX) Compiler: Fortran 77, 90, 95, C, ANSI C, C++ Script language: Perl Xelion GKS, MAGICS, PV-Wave, OpenGL Graphics: Libraries: IMSL, NAg Database: SYBASE ARC/INFO GIS: Backup SW: Veritas Netbackup e-mail: Z-mail

LX50

Operating System: Sun Linux

Digital Workstation

Operating System:	Digital UNIX
Compiler:	Fortran 90, C++
Graphics:	NCAR Graphics

SGI-System

Operating System:	IRIX64
Compiler:	Fortran 77, 90, C, C++
Graphics:	NCAR Graphics

Personal Computer

Operating System:	Windows NT, Windows 2000, Linux (SuSe, REDHAT), MacOS
Compiler:	Fortran, Visual Basic, C
Graphics:	Xelion GKS, MAGICS
Applications:	MS Office, ABC Flowcharter, ARC/VIEW, CorelDraw, Exchange, Exceed, PageMaker,
	PhotoShop, SYBASE ODBC, OnNet interdrive
Internet/e-mail:	Netscape, Internet Explorer, Outlook / Outlook Express

Operational ECMWF-data in Austria

The operational ECMWF-Data for Austria from the 00Z and 12Z model runs are transmitted to Austria by using :

- ECMWF Dissemination System (most products) : 306 Gribfiles and 2 Bufrfiles are sent to Austria every day (one file per forecast step)
- MSJ-Jobs : EPS-Meteograms as postscript Files, 9 files per day
- special products are downloaded from the internet (EFI-Forecasts)

The ECMWF-Data are sent to the ECMWF-Servers zaaecm1 and zaaecm2 in Vienna

(zaaecm2 is used when the zaaecm1 has broken down).

The daily operational ECMWF-data comprises 330 megabyte. The data is stored ten days on zaaecm[12], a part of it is archived on magnetic tapes.

On the zaaecm[12] the data is checked and copied to the multi-user server zaamus1p (coupled with zaamus2p) for public use as soon as it becomes available and has passed the validation.

AUSTRIA

Overview : ECMWF-Datastreams used by the Austrian Weather Services:

1 Gribdata from T511 modell, area Europe/North Atlantic/North Africa

Two data streams "A0D" and "A4D" are used (A0D/A4D-Gribfiles from the 12Z and 00Z run) with the following contents :

- 1.5 degrees latitude-longitude grid in the area from 90W-90E and 90N-18N
- analyses 00 06 12 18 UTC and forecast steps 6-240 hours in 6-hourly intervals
- parameters on pressure levels 1000-200 HPA (u/v-wind, vertical velocity, temperature, geopotentiel, relative humidity)
- surface parameters (e.g. temperature/dew point 2M, 10M u/v wind, wind gusts, cloud cover (total, low, medium, high), precipitation (total, convective), mean sea level pressure, snowfall and other)
- additional data from a global 1.5 degrees grid are also available (only a few parameters and the forecast steps 12-84 hours)
- A0D-Data are also used as input for AUSTROMOS (Model Output Statistics for Austria) forecasting local weather for 112 weather stations in Austria and 150 locations outside of Austria
- 44 A0D and 41 A4D-Files are disseminated to austria every day

2 High-resolution gribdata from T511 modell, area Central Europe

Two data streams "A3D" and "A6D" are used (A3D/A6D-Gribfiles from the 12Z and 00Z run), they have been established in operational weather forecasting during the last year and contain :

- 0.5 degrees latitude-longitude grid in the area from 4E-21E and 54N-43N
- analyses 00 06 12 18 UTC, forecast steps 3-72 hours in 3-hourly and 78-240 hours in 6 hourly intervals
- the same parameters as in data streams A0D/A4D, described in (1).
- 56 A3D and 53 A4D-Files are disseminated to austria daily

3 Gribdata on Model Levels (A1D-Data, 12Z run only)

The A1D-Files are used in the Environmental Department to compute trajectories :

- data on model levels 60-26
- 1.0 degrees grid from 90W-90E and 90N-18N
- analyses 00 06 12 18 UTC and forecast steps 6-84 hours (6hr interval)
- 18 A1D-Files are disseminated to austria daily

4 Ensemble forecasts for Europe (A0E-Data, 12Z run only)

The A0E-gribdata are processed with MAGICS and shown as graphical weather charts and contain :

- cluster means, ensemble means, standard deviation and probability fore- casts
- 1.5 degrees latitude-longitude grid in the area from 90W-90E and 90N-18N
- precipitation, temperature 850 HPA, geopotential 1000/500 HPA
- 7 A0E-Files are disseminated to austria daily

5) Weather Parameters (AYA/AYB-Data in Bufrcode, 12Z run only)

The AYA and AYE Data are deterministic (AYA) and EPS-Forecasts (AYB, Ensembles 1-50 and control forecasts) of temperature for Vienna used by the Vienna Main Heating plant ("Fernwaerme"). These are the only products in Bufr Code used in Austria. 1 AYA and 1 AYB-Bufrfile are sent to austria every day.

6) Forecasts from the European Wave Model (ASM-gribdata, 12Z and 00Z run)

The ASM-gribdata contain forecasts of significant wave height and mean wave direction for the mediterranean area for the forecasts steps 6-78 hours in 6 hourly interval.

The ASM-Data have been made operational in April 2004 and replaced the former A0M-Datastream; 24 ASM-Files are sent to austria per day.

AUSTRIA

7) Special Forecasts for Italy (A2D/A2E-Data, 12Z run only)

The A2D and A2E-Data contain deterministic (A2D) and EPS Forecasts (A2E, Ensembles 1-50) for a grid point in Northern Italy and is sent to ARPA (Regional Weather Service Venezia) per e-Mail (12 to 240 hours after base time in 12-hr intervals). 21 A2D- and 20 A2E-Files are disseminated to austria per day.

8) Precipitation ensemble forecasts for Austria (APE-Data, 12Z only)

The APE-gribdata are used for precipitation weather forecasts sent to the main electricity power company in Austria:

- control forecast and ensembles 1-50 (total precipitation)
- 1.5 degrees latitude-longitude grid in the area from 9E-18E and 49.5N-45N
- forecast steps from 12 to 120 hrs in 6-hr interval
- 19 APE-Files are disseminated to austria per day.

In addition to the grib- and bufrfiles from the Dissemination System, also 9 postskript files are sent to Austria by MSJ-Jobs :

9) EPS-Meteograms (Postscript Files)

EPS-Meteograms are drawn for Vienna and the capitals of the 8 districts in Austria by a user job (ecgate1) and are transmitted to Austria by FTP, printed out and visualized in the Intranet Server.

In the past the generating of EPS-Meteograms has sometimes failed due to new data structures, missing access rights and installation of new Versions of Metview. It is under discussion to take the EPS-Meteograms directly from the Internet web pages.

10) Extremely Forecast Index

Graphical forecasts of the EFI are downloaded directly from Internet web pages by the synoptic department and stored on the Intranet.

Processing and Usage of ECMWF-Data

The software consists of Korn-Shell Scripts (Solaris Unix-System) for operational control of the data and Fortran77-Programs for deriving special products. The gribdata are processed by using the GRIBEX-Software.

Although the use of Ensemble Forecasts has extended, the main production data is from the T511 model and the 12Z run. In March 2004 the 00Z run has been established in operational weather forecasting in Vienna also.

The T511 data is processed by the new Fortran 77 program "ECMMOD" (=ECMWF Model Output Diagnosis). "ECMMOD" is applied to actual or historic data of the T511 modell, the 00Z and 12Z run and the 1.5 deg grid Europe/North Atlantic or 0.5 deg grid Central Europe:

- ECMMOD reads and decodes the original gribdata from a specified dataset (date of base time, 00 or 12Z run, a defined grid and forecast steps)
- ECMMOD derives additional parameters (BAZI (Baroclinic Zone Indicator), specific Humididy Index, Temperature, Vorticity Advection, Showalter Index, level with 0 deg Celsius temperature, convective cloud cover, windshearing and others)
- ECMMOD has been implemented on the ECMWF-Servers zaaecm1/zaaecm2 and the multiuser public production servers zaamus1p/zaamus2p

The original and derived data is stored on arrays internally and the output of ECMMOD comprises:

• gridpoint values for postprocessing (Ascii-Files)

Graphical products are produced using the gridpoint data (weather charts for Europe and Austria by using MAGICS) as hardcopies and visualized on the Intranet Server.

Mainly used are charts for Europe/North Atlantic for sea level pressure, geopotential 850 and 500 HPA, equivalent relative topography, humidity index, precipitation, temperature and vorticity advection, baroclinic zone indicator, total cloud cover, temperature 2M and 850 HPA.

AUSTRIA

- QFA-forecasts for 500 different locations in the whole world (QFA's are ECMWF-forecasts interpolated from the gridpoints to the locations, new is the usage of high resolution data in Central Europe)
- selected products (QFA's and also MOS-Data) are stored in a SYBASE data bench at the ZAMG and the regional departments for 7 days
- the data is coded and stored on gribfiles which will be used in the future as the database for meteorological products (one file per time step, the ECMWF-Standardname)
- also special forecasts for customers and private meteorological companies are derived

Corresponding grib data is also available from the DWD (German Weather Service), based on the obervations at 00, 12 and 18 UTC, but only up to 72 hours after the base time and with fewer elements and no Ensemble products.

The Programm DWDMOD is a copy of ECMMOD and is applied to the DWDData.

Additionally also the Output of the ALADIN-Modell is used (fine meshed model, but only for Central Europe and two forecast days). The programs processing the ALADIN-Data is a program written by the model working group, not by the Computer department.

The new Fortran program "PROGVER" has been developed for verification of selected ECMWF-Forecasts based on 0.5 to 1.5 degrees grid compared with MOS and other reference forecasts such as persistence.

Users of ECMWF Products

ECMWF-data is used by the Austria Weather Services internally (operational and scientific purposes) and to derive products for private customers :

1) Operational use by the Austrian public weather services

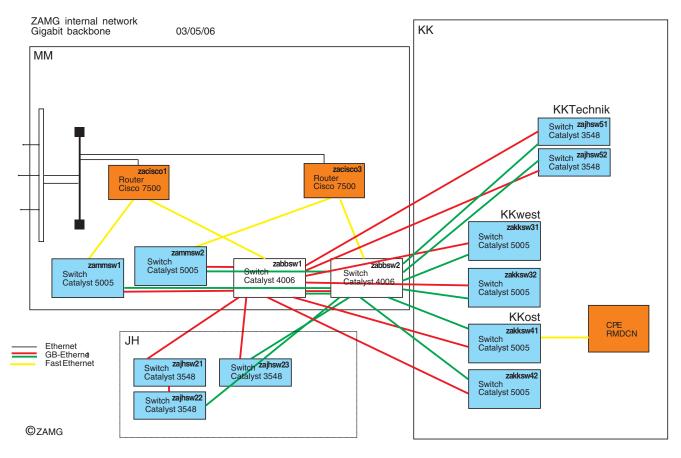
• ZAMG: Central Institute for Meteorology in Vienna and the 4 Regional Departments in Innsbruck, Salzburg, Klagenfurt and Graz

The computer department is responsible for ordering, obtaining and processing the ECMWF-data (e.g. weather charts), the synoptic department uses the ECMWF-data as a basis for dayly weather forecasting

- MWD: Military Weather Service of the Austrian army and the air force
- ACG: Civil Aviation Weather Service (Austro Control)

It is discussed to combine the three weather services to a single one and establish a private company named "Met Austria".

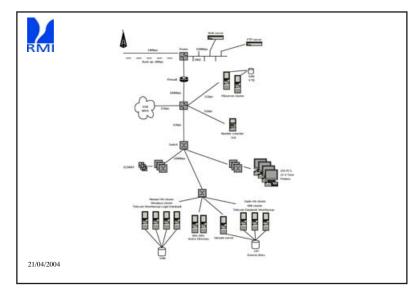
2) Scientific purposes (special projects) - actual data from dissemination and archived MARS-Data

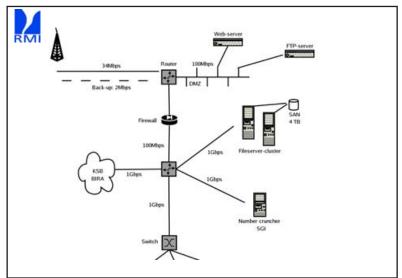

- internal use at the Central Institute of Meteorology in
 - Model Working Group (e.g. for the project "verification")
 - Remote Sensing Group (e.g. combining with satellite data)
 - Environmental Department (e.g. for computing trajectories)
- University Institutes in Vienna, Innsbruck, Graz (e.g. Steinacker, Ehrendorfer, Haimberger, Skoda and advanced students)

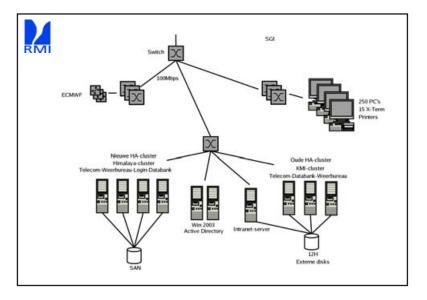
3) Private and public customers (only derived products), e.g.

- ORF Austrian Broadcasting Corporation
- local authorities
- some newspapers
- organizers of sport and culture events
- tourist traffic offices
- street services (esp. snowfall and freezing rain)
- environmental purposes
- electric supply companies (forecasts of precipitation and temperature)
- warning of extreme weather situations (placed in Internet) such as strong wind, extreme precipitation amounts, thunderstorms, icing conditions

AUSTRIA

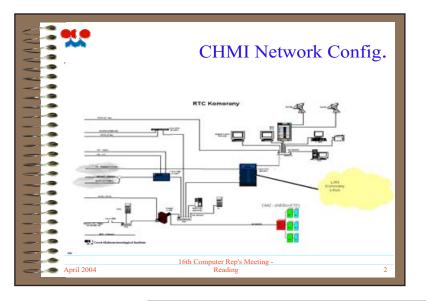

AUSTRIA

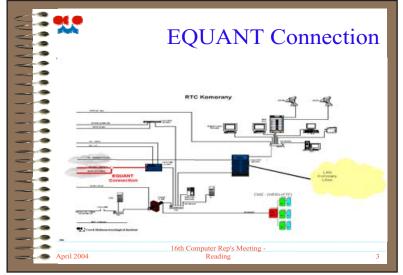



BELGIUM

BELGIUM

Liliane Frappez – Royal Meteorological Institute, Brussels



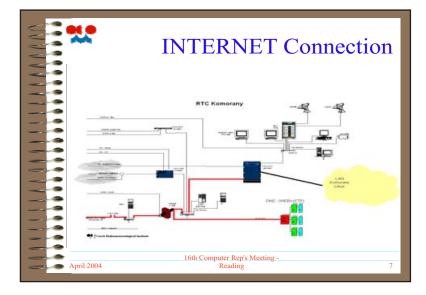


CZECH REPUBLIC

CZECH REPUBLIC

Karel Ostatnicky, Karel Pesata – Czech Hydrometeorological Institute

	EQUANT Connection
	Connection over RMDCN
	- routers setup fixed to
	access ECMWF resources from
	named computers in CHMI only
-	(address translation)
	- named computers are used only by named users
	16th Computer Rep's Meeting -
April 20	

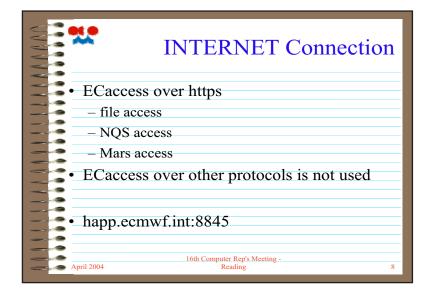

CZECH REPUBLIC

CZECH REPUBLIC

 \bigcirc

ECMWF Services for CHM • ecgatel used • migration to ecgate in preparation

ECMWF Ser	vices for CHMI
• 5 users	
- 3 CHMI users in meteo	-research
• Ecgate1 access	
• https access	
– 1 CHMI technician	
- 1 user from The Academ	my of Sciences –
Institute of Atmospheri	c Physics
• ECMWF data access on	ly
16th Computer Rep	's Meeting -
April 2004 Reading	

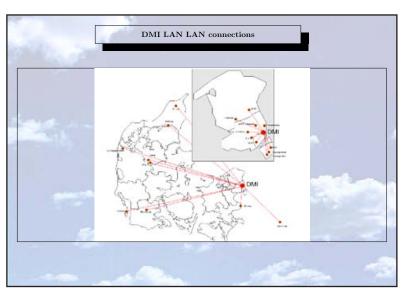


Technical Memorandum No. 438

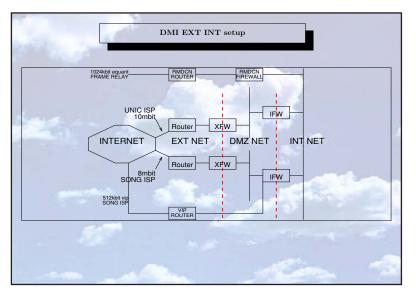
CZECH REPUBLIC

ECaccess over https file access NQS access Mars access ECaccess over other protocols is not used happ.ecmwf.int:8845

	CHMI Computers	S
	NEC SX6	
	• 4 processors @ 8 GFlops	
	• 32 GB RAM	=
	• 500 GB RAID	_
		_
	• Aladin	-
		_
		_
	16th Computer Rep's Meeting -	_
April 2004		9

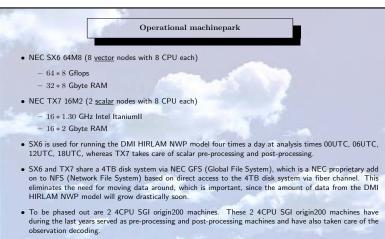


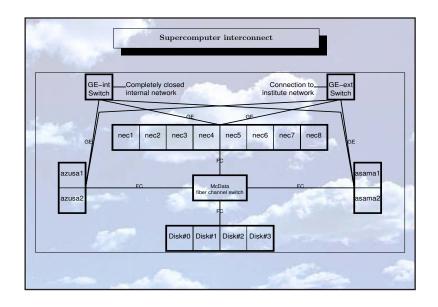
CZECH REPUBLIC

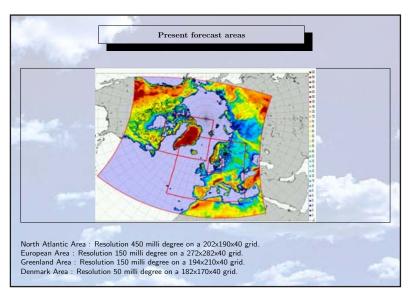

€

DENMARK

DENMARK

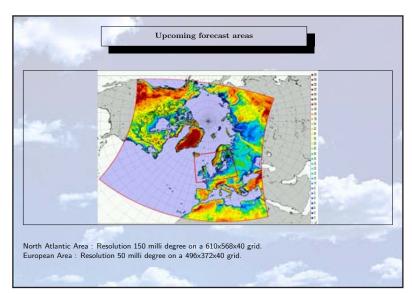

DMI remote network connections THE R. M. LEW. HARTA MAR MARKAN SHO HARA SPO HARA SP Ante water and a second Nam Scott Anna Anna 20 53 *** 10° 20 5 R R M. R M MARK P. M. Mark P. M. Mark P. M. Mark P. Ma 10.0 a you there is Anna Maria 200


Thomas Lorenzen – Danish Meteorological Institute


DENMARK

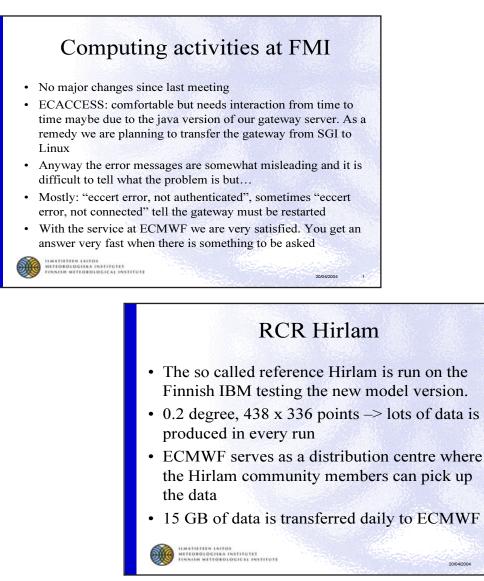
DENMARK

 Other operational workloads, among which also GTS receiving and archiving from RMDCN, are done on quite a big park of SUN machines, but also LINUX based machines are used.



DENMARK

DENMARK

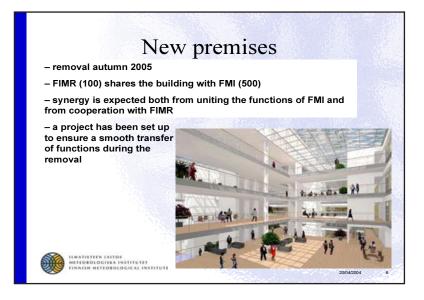

Operational data flow from ECMWF to DMI

- DMI receives from ECMWF via RMDCN data amounting to close to 2GByte per day.
- Of this 2Gbyte amount, more than half of it is frames for the DMI forecast model.
- The remaining data are selected ECWMF forecasts, ensemble forecasts and wave model forecasts, which are plotted for the benefit of the forecasters.
- Around dissemination hours the primary 1Mbit RMDCN line is fully saturated.
- The backup ISDN line only holds one third of the bandwidth of the primary line, so a failure of the primary line will cause operational delays at DMI. The ISDN backup line is not readily upgradeable to 1mbit and is already somewhat expensive.
- An alternative method of getting disseminated data via the Internet has been set up. When the Internet connection is fully functional, transfer rates between ECMWF and DMI are sufficient for not introducing operational delays at DMI.
- DMI currently have 33 registered users using the ECMWF computer systems interactively or via batch jobs via either the ecbatch software or its successor ecaccess, to which users are currently asked to migrate.
- Of the DMI share on the ECMWF supercomputer an amount of 7 percent have currently been used.

FINLAND

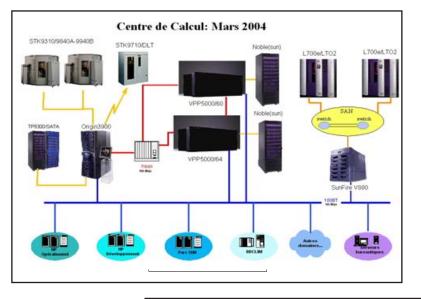
FINLAND

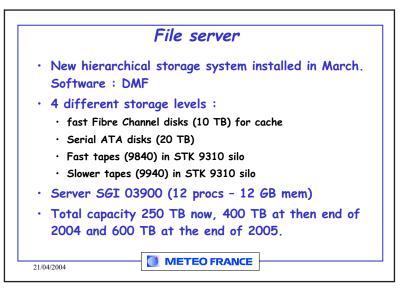
Kari Niemelä – Finnish Meteorological Institute



FINLAND

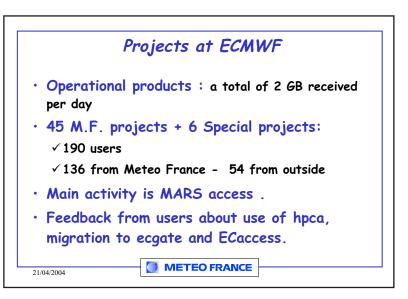
FINLAND

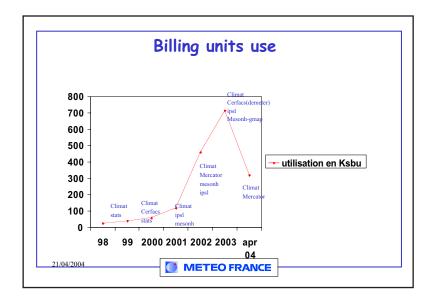


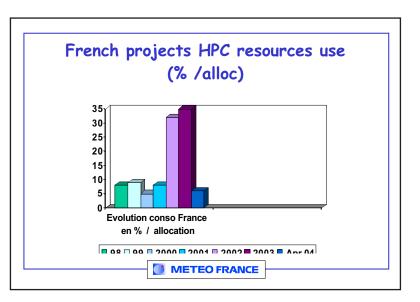

FRANCE

FRANCE

Marion Pithon – Météo-France

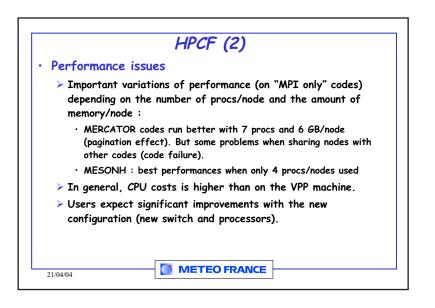


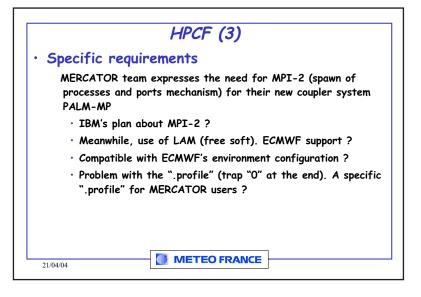

	The compute system
•	VPP5000 124 Pes in 2 machines.
•	Production : 60 Pes- 280 GB mem- 3 TB disks
•	Research, development and backup : 64 Pes- 300 GB mem- 3.9 TB disks
•	Office hours maintenance only.
•	Production can be switched on the research machine in the event of a failure of the production machine
•	Operational files are updated at a regular basis through direct HIPPI link between the 2 VPPs
•	Until the end of 2006.
21/	



FRANCE

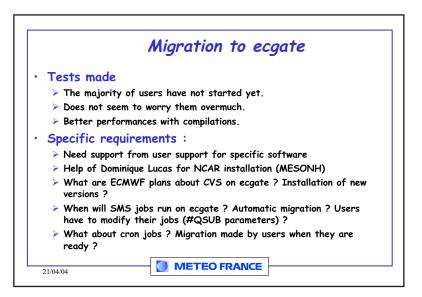
FRANCE

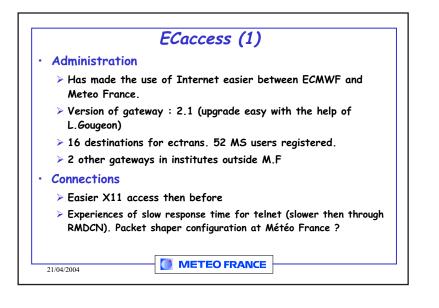


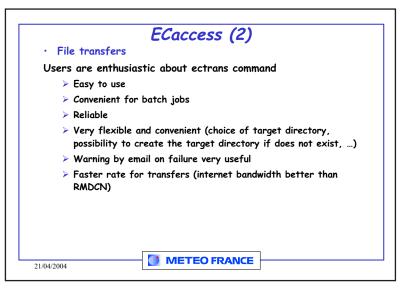


FRANCE

HPCF (1) Availability Throughput of jobs is good. Availability is good despite some system or hardware sessions well announced . Performance issues Compilations are very fast Optimisation of the codes since last year thanks to ECMWF advices and help : MESONH : efficient help from D. Lucas and P.Tower. MERCATOR : use of MPI_ISEND and choice of data distribution to use a relevant number of nodes and procs/nodes.

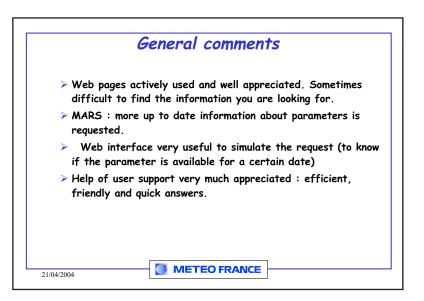


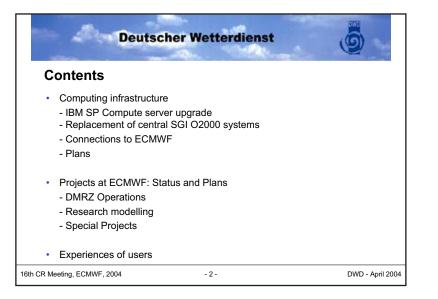


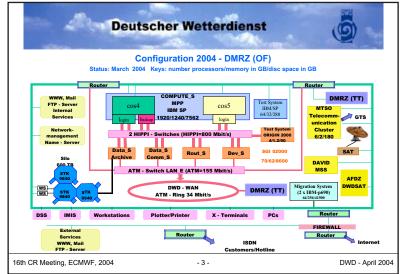

€

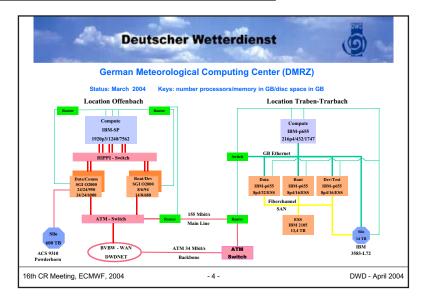
FRANCE

FRANCE



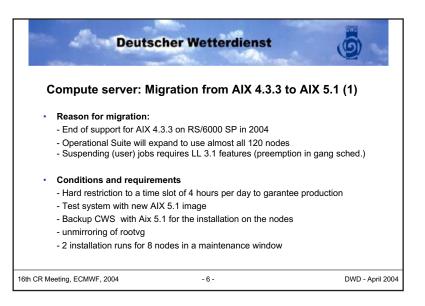

FRANCE

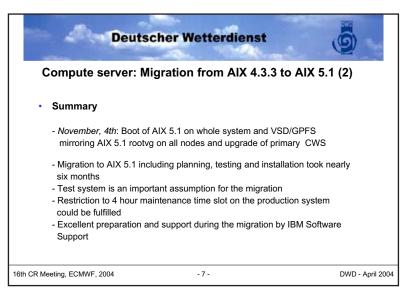

FRANCE



GERMANY

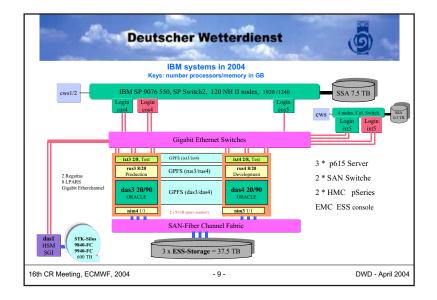
Elisabeth Krenzien – Deutscher Wetterdienst

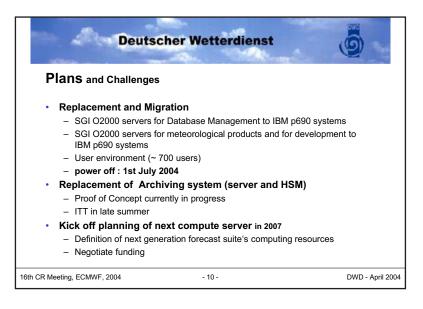




GERMANY

Deutscher Wetterdienst Compute server: upgrade (1) Addition of 40 16-way NH II nodes, 3.8 TB SSA disk space Model of operation: - single system with one instance of GPFS and LoadLeveler; - development and production separated by definitions of LL job classes Internal network: SP Switch2, Cisco router ction and Development system Assimilation, GME, GME2 LM, LM, GSM, LSM, MSM 5.1 ML 3 n001 - n052 and n081 - n120 trajectories, LPDM, RLM csobank, ecfs 3.: projects with external part 7574 GB SSA, GPFS 3.2 7.1 er/compute node ute node login CWS1/2 LAN LAN LAN LAN HIPPI -Switch (800 Mbit/s) 16th CR Meeting, ECMWF, 2004 - 5 -DWD - April 2004




87

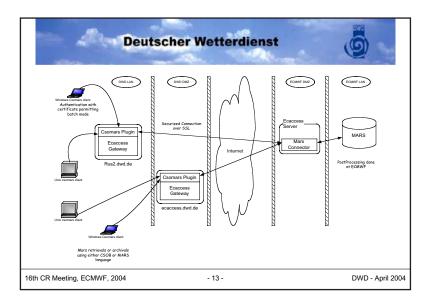
GERMANY

Deutscher Wetterdienst Image: Construction of the problem of the

16th CR Meeting, ECMWF, 2004 - 8 - DWD - April 2004

TelnetGateway

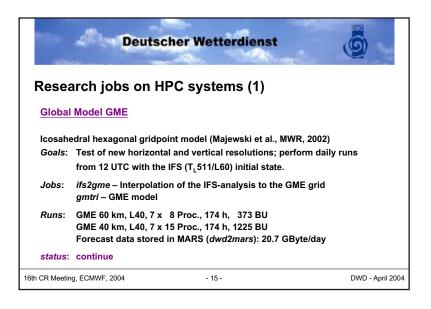
16th CR Meeting, ECMWF, 2004

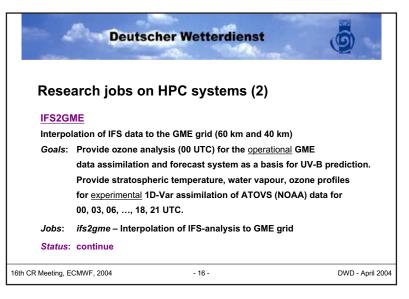

Deutscher Wetterdienst

- 11 -

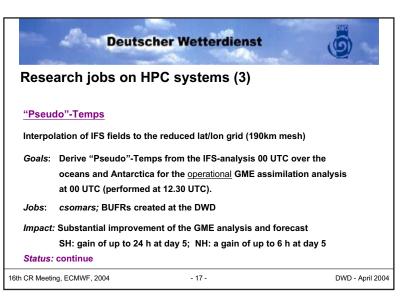
Deutscher Wetterdienst		
Projects: DMRZ Operations (1)		
ECFS enhancements:	AIX 5.1 clients	
	introduction of ecquotas	
	development of MS_NT client	t (ECcmd based)
ECaccess gateways:	Linux (DMZ), Irix (LAN), planr	ned (RMDCN)
Csomars:	version 1.2 in full operation	
	remote access to MARS, inte	ractive client
SMS:	single instance solely for ope	erational production
UNICORE 4.1:	beta testing	
16th CR Meeting, ECMWF, 2004	- 12 -	DWD - April 2004

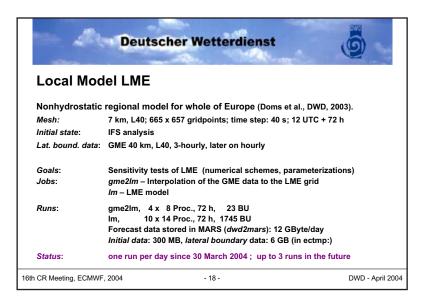
Central Servers

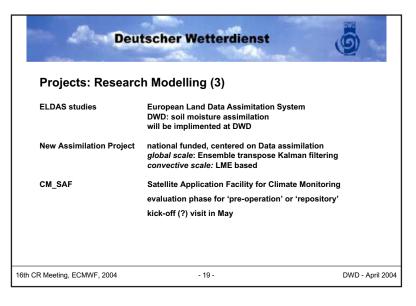

DWD - April 2004



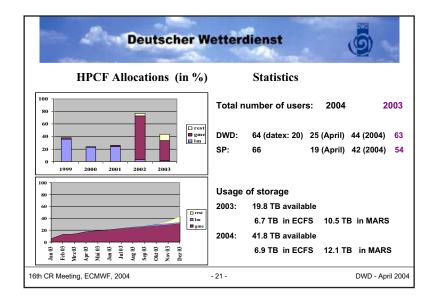
GERMANY

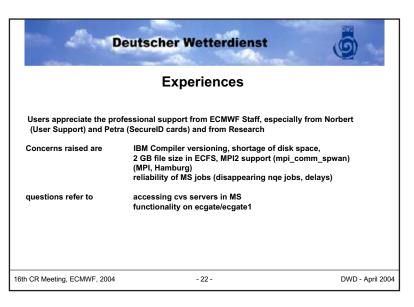

GERMANY


Deutscher Wetterdienst Projects: Research Modelling (2) GME reference successful for operation at DWD improvements for assimilation schemes Muse Project case study of storm surges in the North Sea (5 episodes) identify members in EPS/IFS experiments, data transfer LM runs at DWD; end in summer 2004 LME testbed in place since March, one run per day ODB SW package installed at DWD, filling in test data in progress test applications for 1D and 3 D Var assimilation 16th CR Meeting, ECMWF, 2004 - 14 -DWD - April 2004



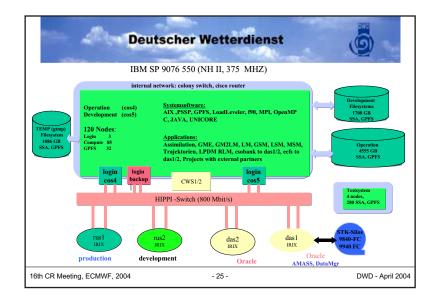
GERMANY

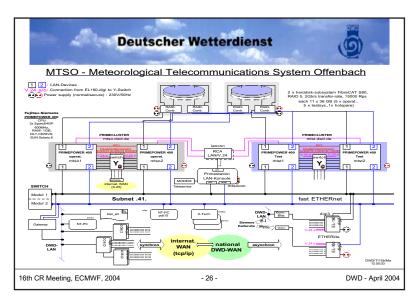

GERMANY


GERMANY

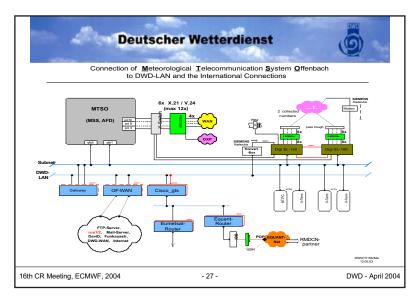
Special Projects

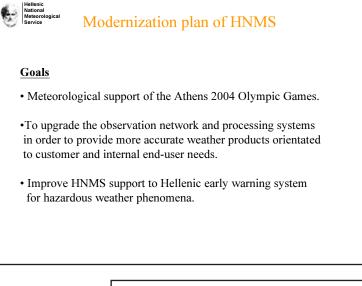
Deutscher Wetterdienst


MPI, Hamburg:	early tests on new IBM System (ECHAM5 validation) tests for MOZART2.1, beta-testing ecgate installation of PRISOM environment	
DLR, Oberpfaffenl	nofen: influence of non-hydrostatic gravity waves on stratospheric flow over mountains current forecast data for mesoscale field campaigns	
1 Special Projects	: Mars Data Retrieval	
16th CR Meeting, ECMWF, 20	- 20 -	DWD - April 2004



GERMANY


Deutscher Wetterdienst Frojects: DMRZ Operations (2) ODB: AIX 5.1 clients introduction of ecquotas development of MS_NT client CM_SAF: Linux (DMZ), Irix (LAN), planned (RMDCN) Csomars: version 1.2 in full operation remote access to MARS, interactive client


GERMANY

GERMANY

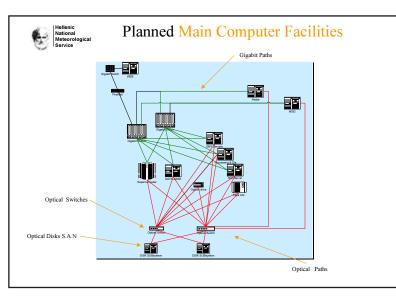
GREECE

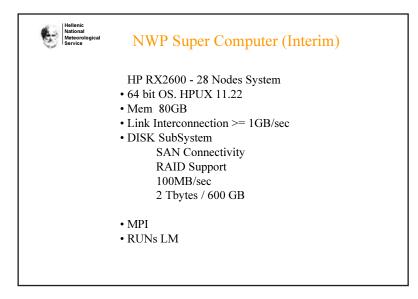
Ioannis Mallas – Hellenic National Met. Service

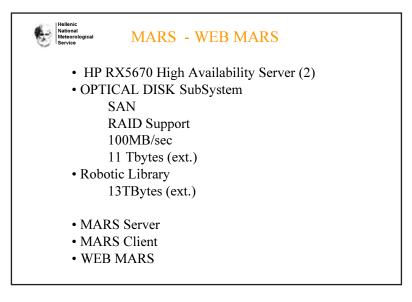
Hellenic National Meteorologica Service	Modernization pla	n of HNMS	
	Status of Computer and System	Infrastructure	
	Main Computer for the run of HNMS NWP Models	OK	
	C- Band Doppler Radar (Aigina Island)	OK	
	MSG Satellite Station.	Installation Phase	
	Now-Casting System.	Testing Phase	
	Meteorological Visualization W/S System.	Testing Phase	
	Meteorological Archival and Retrieval System (MARS)	Installation Phase	
	Preprocessing System (ECMWF)	Testing Phase	
_			Cont

Hellenic National Meteorological Service

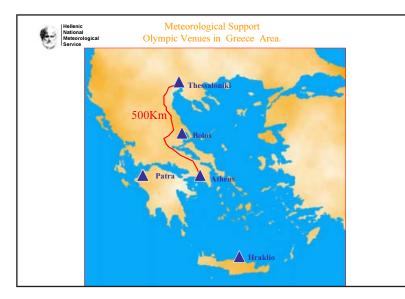
Modernization plan of HNMS

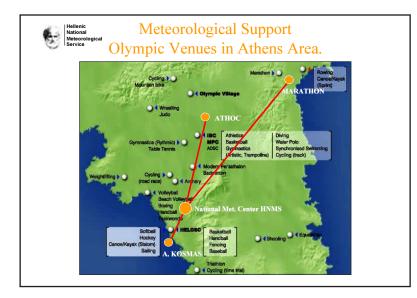

Status of Computer and System Infrastructure

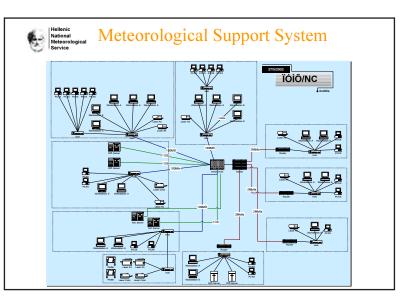

MSS	Testing Phase
SMS	Testing Phase
WEB Server	Installation Phase
Main Super Computer	Benchmarking Phase
Lightning Detection Network and Wind Profiler Radar.	ITT
Automatic – Manned Weather Station Network Upgrade	ITT

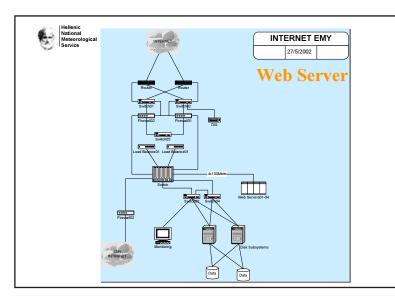

€

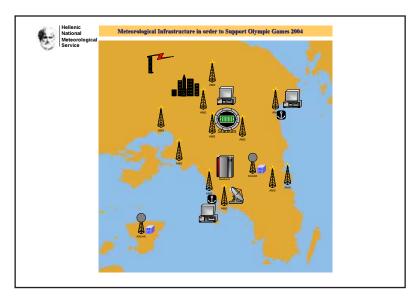
Report on the sixteenth meeting of Computing Representatives, 21-22 April 2004

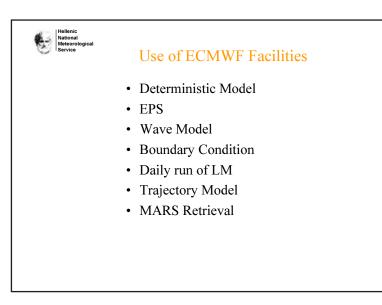

GREECE



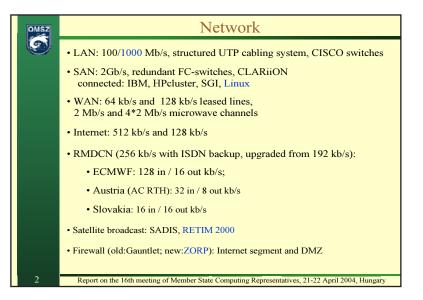


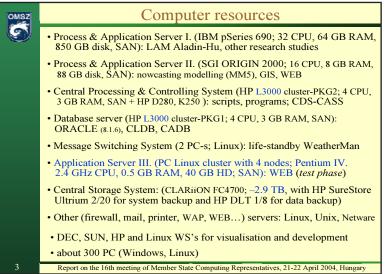

GREECE

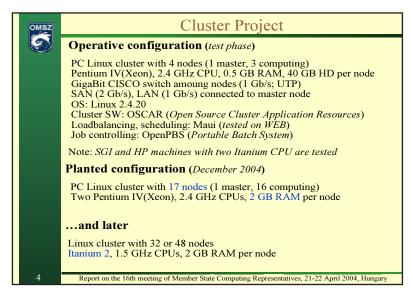




GREECE

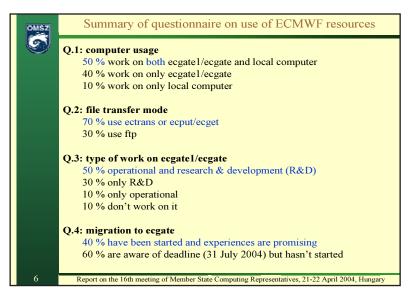


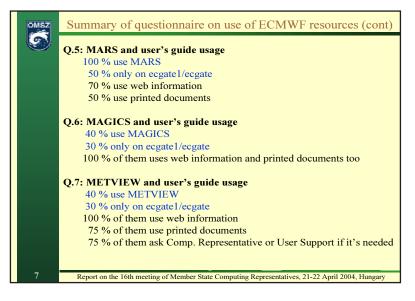




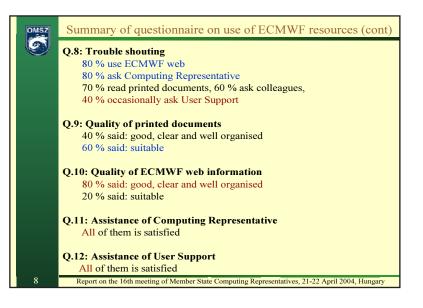
HUNGARY

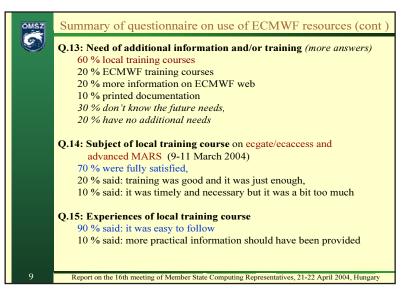
László Tölgyesi – Hungarian Meteorological Service

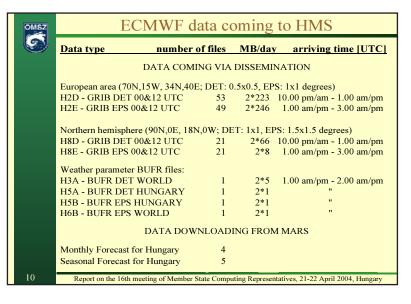




C

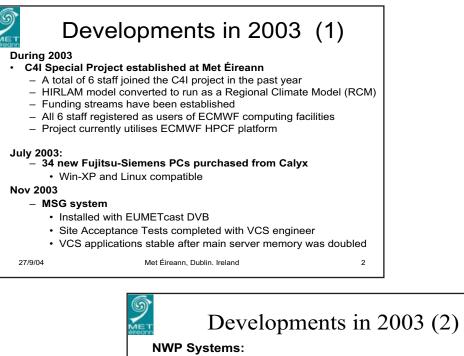

HUNGARY


OMSZ	Changes related to ECMWF
9	• Sixteen registered users since April 2004 (ten users were in 2003)
	• Operational use of 0.5 x 0.5 degrees deterministic forecast and
	1.0×1.0 degrees ensemble forecast twice a day for European area
	(since January 2004)
	• Operational use of EPS clusters for Central European area
	and ectrans for file transfer from ecgate to HMS server via Internet
	(since July 2003)
	• Installation of the newest version of ecaccess software was done
	last November.
	 WEB based application management: NWP monitor
	 Local questionnaire on use of ECMWF resources
	(July 2003 and March 2004)
	Local training course on ecaccess and migration to ecgate
	(9-11 March 2004)
	• Welcome early delivery system (16 March 2004)
	• No projects run at ECMWF
5	Report on the 16th meeting of Member State Computing Representatives, 21-22 April 2004, Hungary



HUNGARY

€


Report on the sixteenth meeting of Computing Representatives, 21-22 April 2004

HUNGARY

OMSZ	Future plans
	 Installation and use of the MSaccess gateway for communication via RMDCN
	• Establish of the possibility of dissemination via Internet (for backup and test)
	• Further development of WEB based visualization for ECMWF forecast and verification (Intraweb)
11	Report on the 16th meeting of Member State Computing Representatives, 21-22 April 2004, Hungary

IRELAND

Paul Halton – Met Éireann

- In April 2003, IBM engineer, Peter Mayes upgraded AIX, Loadleveller, PSSP and other system software on the RS/6000 SP server, SWIFT.
- During 2003, hardware failures occurred on a number of nodes on the SWIFT system and these were repaired by IBM under the terms of the maintenance contract.
- In one or two instances the operational HIRLAM cycle was interrupted
- It was necessary to utilise the output data from the backup NWP server which runs the NWP suite at a coarse resolution on a Dell dual processor Precision 530 MT, Xeon 2GHz PC running Red Hat Linux version 7.1.

27/9/04

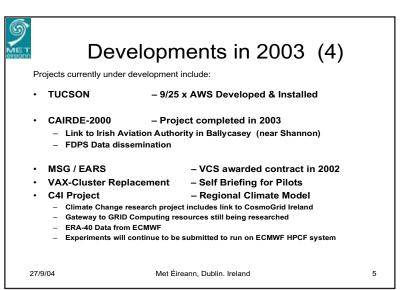
Met Éireann, Dublin. Ireland

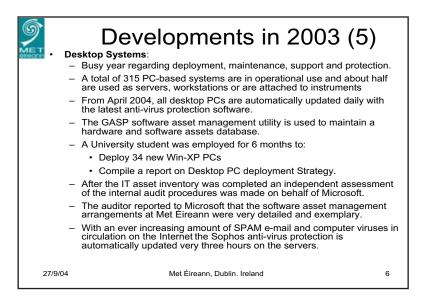
3

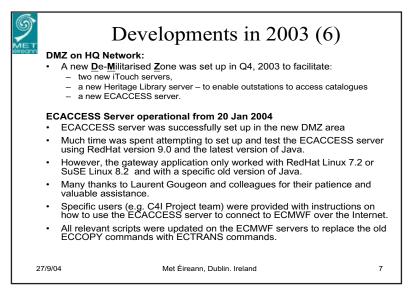
Developments in 2003 (3) In Dec 2003, a contract was awarded to Dell for the supply of a seven-node Linux Cluster comprising...

- 1 x 42U Rack 4210 Base containing a Dell PowerEdge 1750 AC
- 1 x master node: 2 x Xeon 2.8Ghz/512k 533Mhz FSB, 4Gbytes ECC DDR memory
- 6 x slave nodes: 2 x Xeon 3.2Ghz/1MB 533Mhz FSB, 2Gbytes ECC DDR memory per node with
- Scali interconnect and Dolphin cards.
- 1 x tape backup unit PowerVault Tape System PV112T VS80 Rack Base 1U Single 40/80GB
- RedHat ES 3.0 on master node, WS 3.0 on compute nodes
- PGI Cluster development kit & Intel Fortran compiler

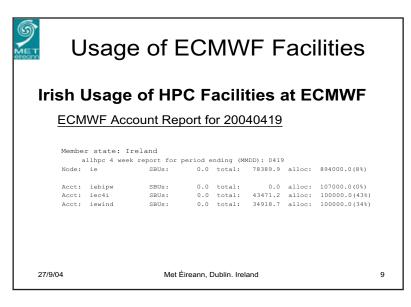
27/9/04

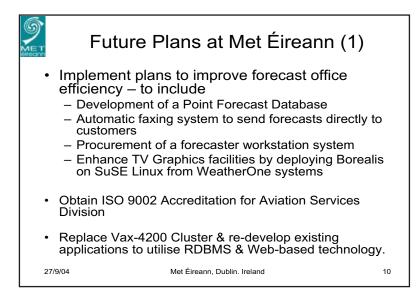

Met Éireann, Dublin. Ireland


IRELAND


4

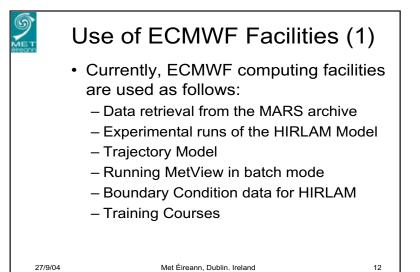
IRELAND

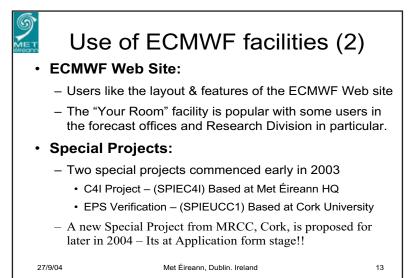

IRELAND



IRELAND

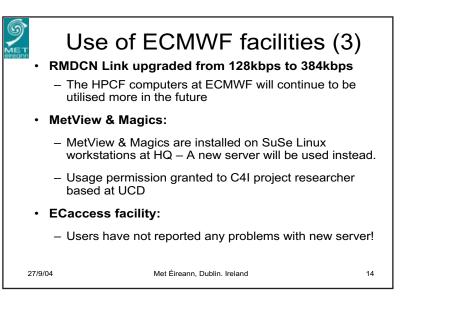
IRELAND

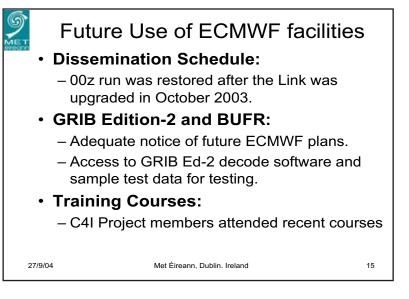

106

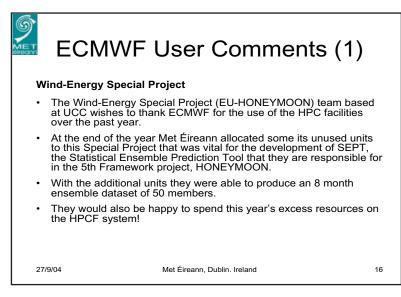

IRELAND

Future Plans at Met Éireann (2)

- Download ECMWF 15 Years Re-Analysis data for Special Project, C4I.
- Continue development work on Linux Cluster
- Develop a strategy for the operational introduction of BUFR encoding and decoding of observation data transmitted and received on the RMDCN circuit.
- Prepare for the future replacement of T4-FAX products with alternatives for aviation users

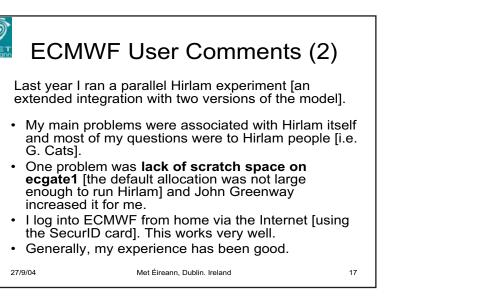

27/9/04 Met Éireann, Dublin. Ireland 11

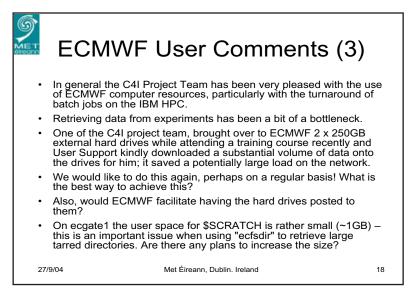


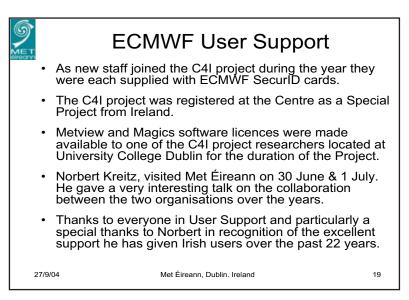


IRELAND

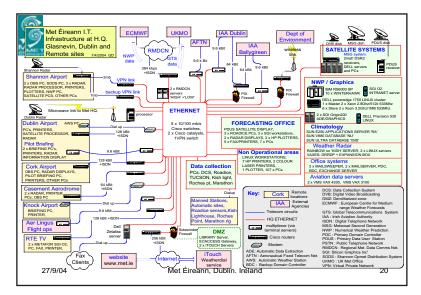
IRELAND

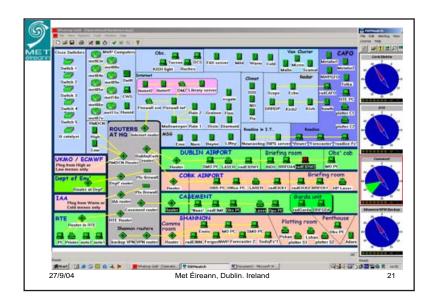




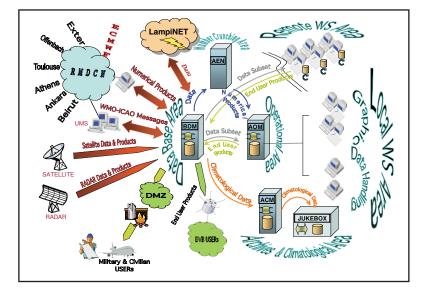


IRELAND


IRELAND



IRELAND


IRELAND

€

ITALY

ITALY

Giuseppe Tarantino – Italian Meteorological Service

Experience

More or less ${\bf 115}\ {\bf users}\ {\rm using}\ {\rm ECMWF}\ {\rm services},\ {\rm most}\ {\rm of}\ {\rm them}\ {\rm use}\ {\rm INTERNET}\ {\rm access};$

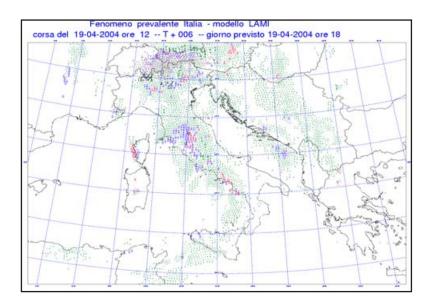
- University
- Regional Meteorological Services
- Research Agencies
- Environmental Agencies
- Armed Forces
- •Environmental Hazard Department

The main usage of ECMWF services is retrieval of MARS data associated with the decoding software to run either models or MAGICS and METVIEW applications.

ECMWF GRIB data

- Are routed in real/delayed time to Special Users for their operational duties (environmental hazard, agriculture, pollution etc.)
- At the Operational Center are also used as:
 - support for the operational meteorological activities
 - boundary condition for the local models
 - input for post processing programs
 - input to produce information and maps useful for aeronautical duties

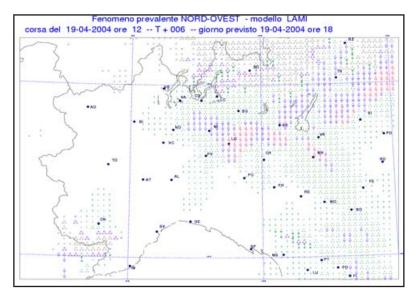
ITALY

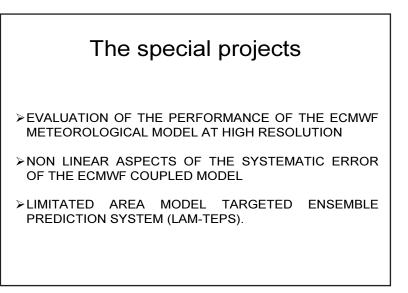

ITALY

Projects (1/3)

A test suite of the Lokal Model runs daily at ECMWF to verify the impact of Boundary Condition (originated from IFS) versus the operational version running with BC from GME. Moreover the model is tested by introducing additional parameters like cloud ice content. A selection of these products is archived on the Member State MARS area.

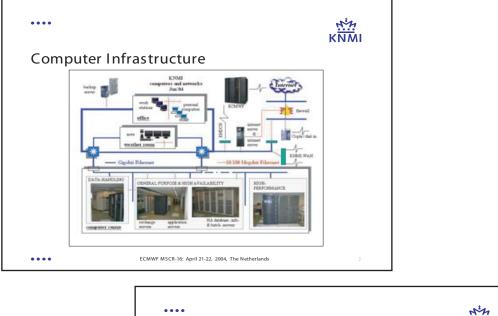
Projects (2/3)

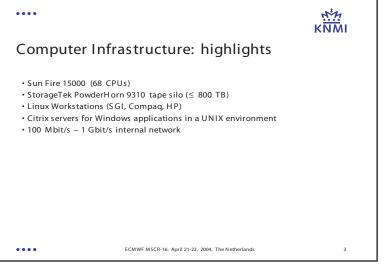

An operational suite of the Lokal Model fields postprocessing algorithm (AWI - Automatic Weather Interpretation) runs daily at ECMWF in order to get automatic weather interpretation in standard synoptical-like maps and data format (BUFR). An objective study about the reliability of postprocessing algorithm is in progress and we trust to obtain a full set of verification results by the end of this year.

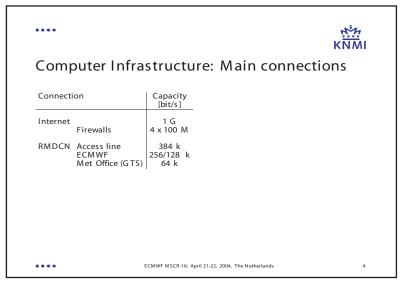

€

ITALY

ITALY

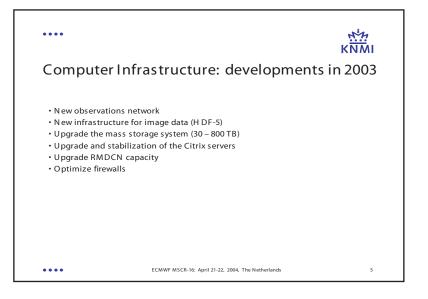

Projects (3/3) An increased resolution (0.25° grid spacing) version of the hydrostatic HRM model is integrated up to +72h over the Euro-Atlantic domain. The model runs on the HPCA platform using 14 processors in MPI mode. Boundary conditions are from IFS. Initial conditions for the model are from the Italian Air Force Met Service 3D-Var assimilation system, which is also run on the ECMWF HPCA using 60 processors in MPI mode.

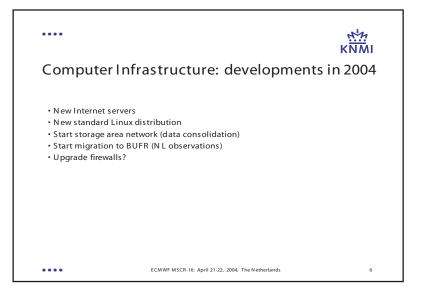


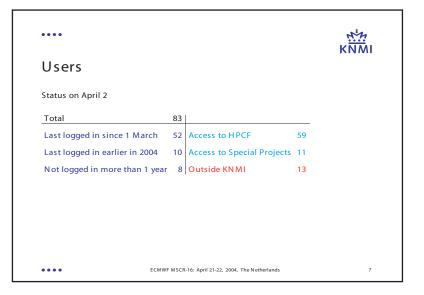

NETHERLANDS

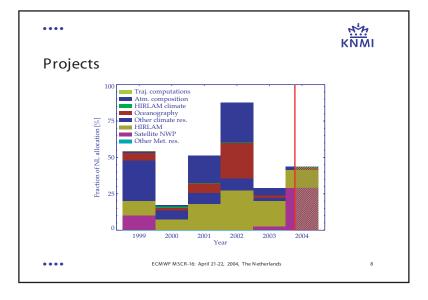
NETHERLANDS

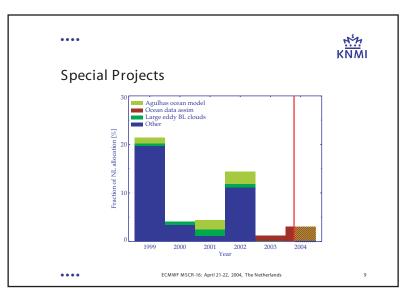
Hans de Vries – KNMI

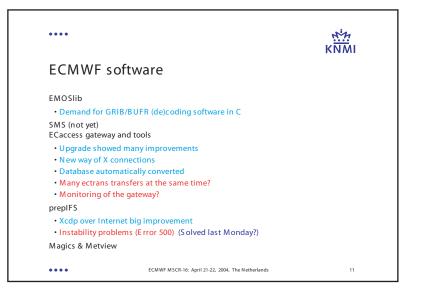


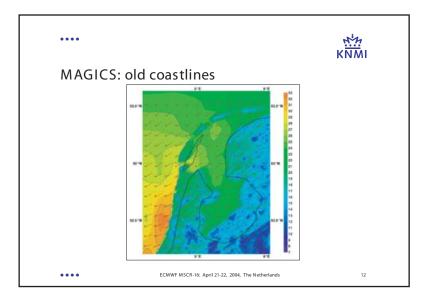


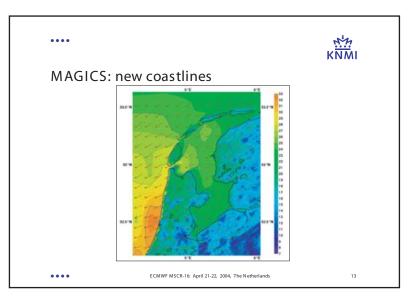


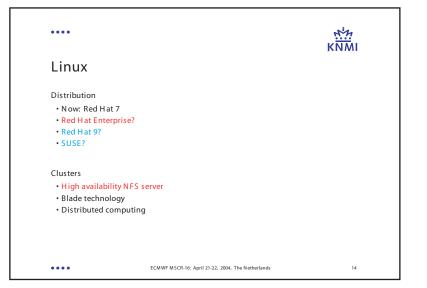

NETHERLANDS



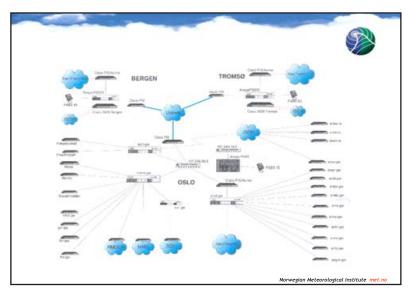

NETHERLANDS

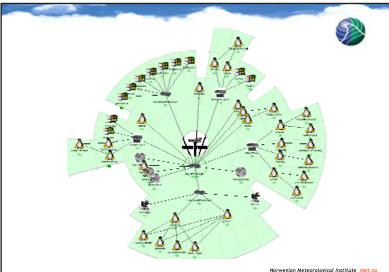


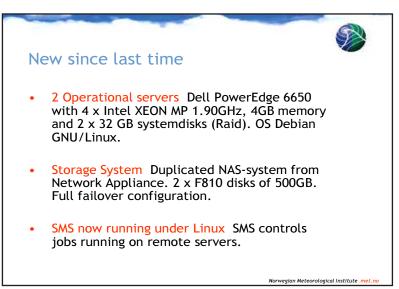



NETHERLANDS

NETHERLANDS

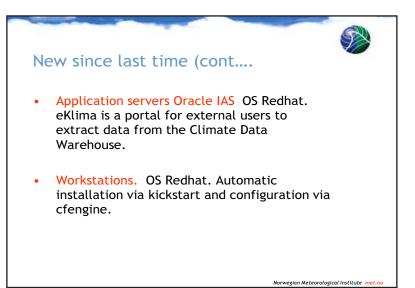

••••		برین KNMI
Comments	;	
General		
• The support fro Greenaway), Ca cards in time)	m ECMWF is very much appreciated, e.g. Use II Desk (Petra did a great job in supplying man	er Support (John by spare SecurID
• More disk space	e required (\$SCRATCH for HIRLAM, \$HOME gen	erally)
ECMWF web servio	es	
• Much very usefu	Il information (calendar, manuals)	
• User (de)registr	ation over the Web?	
• How to find Con	nputing Representatives?	
Access to restrice	ted areas (TAC)?	
	ECMWF MSCR-16: April 21-22, 2004, The Netherlands	15

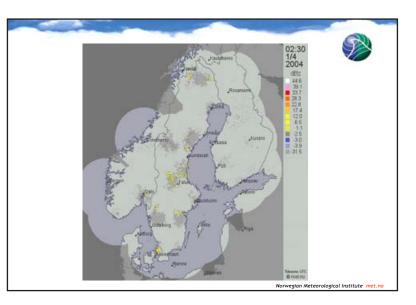

€


NORWAY

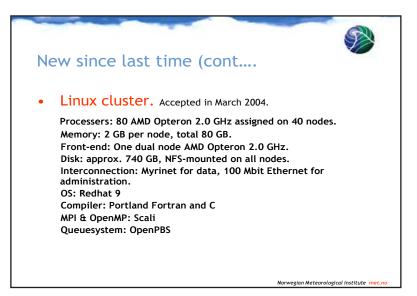
NORWAY

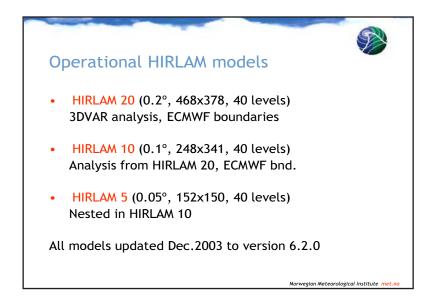
Rebecca Rudsar – Norwegian Meteorological Institute, met.no

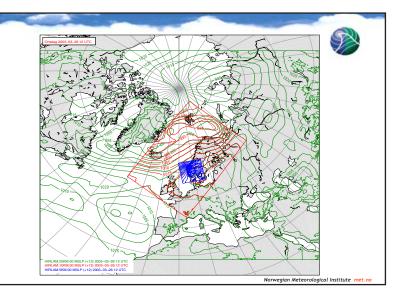


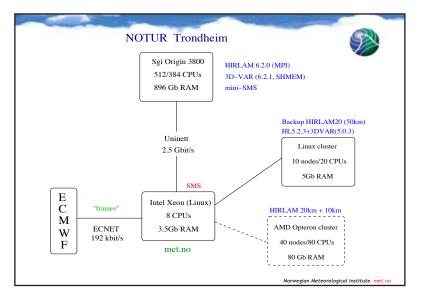

Report on the fourteenth meeting of Member State Computing Representatives, 27-28 May 2002

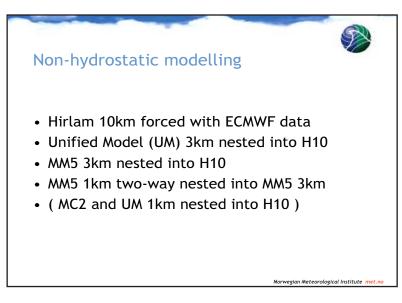
\mathbf{C}

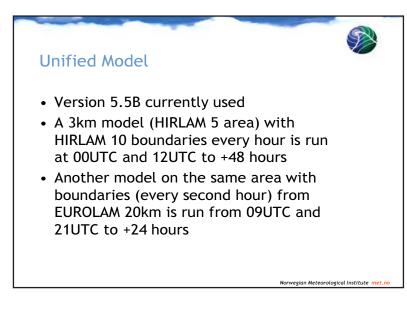

NORWAY



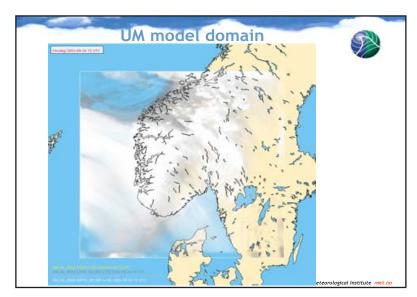


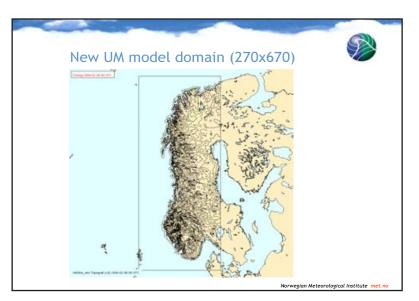

NORWAY





NORWAY





NORWAY

NORWAY

ECMWF Products

- via RMDCN DA, EF, Wave, BC1 and BC2 : 440 Mbyte
- via Internet DA and EF : 2260 Mbyte

vegian Meteorological Institute

NORWAY

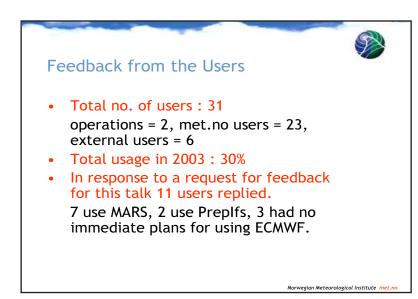
•

•

ECMWF Projects

HIRLAM project.

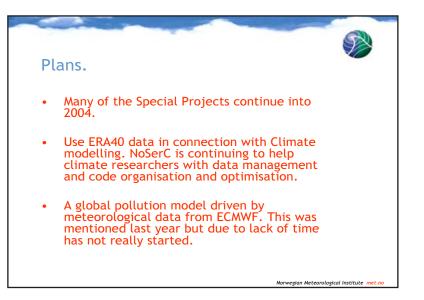
models.

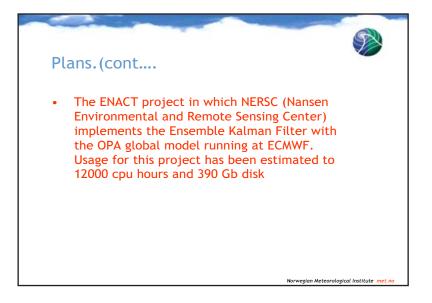

Ozone as a climate gas.

REGCLIM: Regional Climate Modelling.

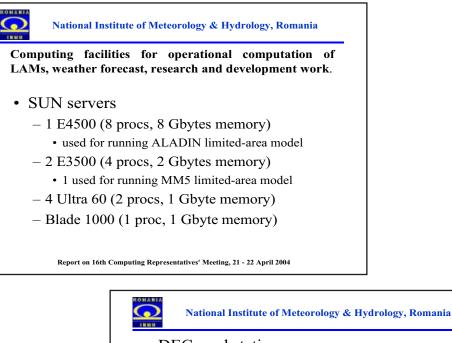
Targeted ensembles providing

boundary values for limited area

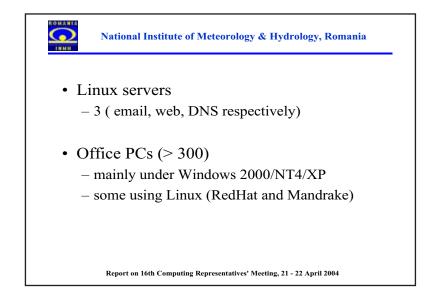



Norwegian Meteorological Institute n

NORWAY

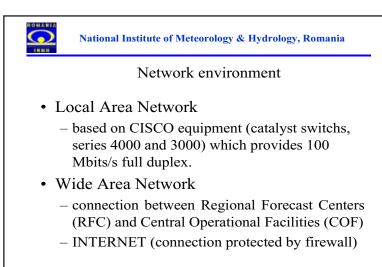


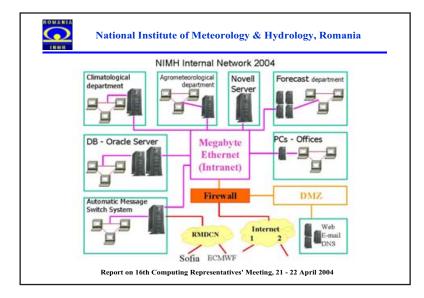
ROMANIA

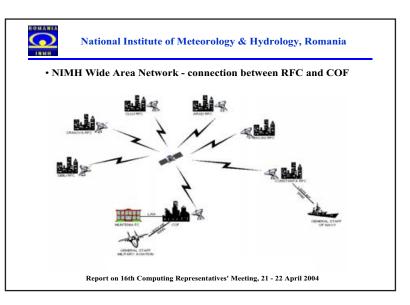

ROMANIA

Elena Toma – National Institute of Meteorology & Hydrology, Romania

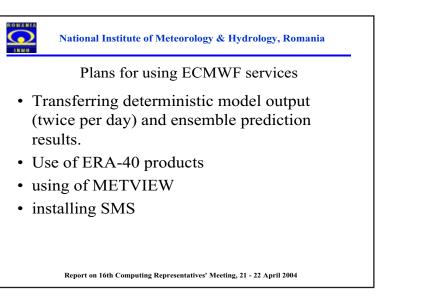
- DEC workstations
 - 1 ALPHA 500
 - 1 ALPHA 250
 - used mainly for pre- and post-processing of NWP products
- HP servers
 - 1 Proliant (2 procs, 1Gbyte memory)
 - used for climatological database
 - 1 Proliant (1 proc, 500 Mbytes memory)
 - NOVELL server


Report on 16th Computing Representatives' Meeting, 21 - 22 April 2004



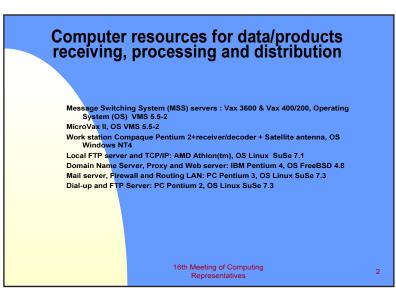

ROMANIA

ROMANIA



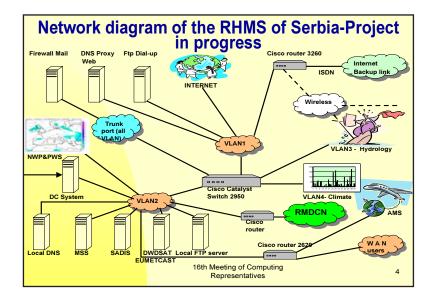
Report on 16th Computing Representatives' Meeting, 21 - 22 April 2004

ROMANIA



ROMANIA

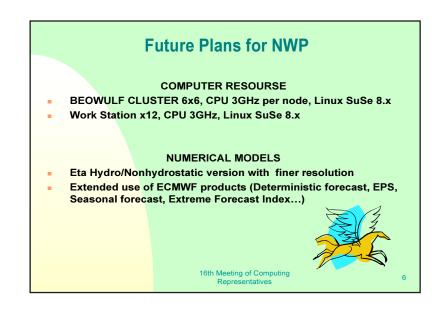
SERBIA MONTENEGRO


SERBIA MONTENEGRO

Vladimir Dimitrijevic – Republic Hydrometeorological Service of Serbia

Numerical Weather Prediction and Public Weather Service - Computer resources

Local Area Netw <mark>ork</mark>	Jobs			
Dual Pentium CPU2x1.0GHz	Eta model (DWD LBC) Resolution 52km/ 120 hours in advance			
Pentium III CPU 600MHz	Eta model (AVN LBC) Resolution 52km/ 48 hours in advance			
Sgi Indigo2 , Sgi O2 x 3, Sg <mark>i Indy, Sgi</mark> 550	Postprocessing, NCAR, GraDS, Archive,			
BEOWULF cluster 5x4 CPU 1.4MHz	Ftp for LBC and Nonhydrostatic Eta model (DWD LBC) Resolution 18km/ 120 hours in advance.Postprocessing			
IBM Xeon 2GHz x 2 (cluster)	Ftp of ECMWF products.Eta model (ECMWF LBC) Resolution 35km/ 72 hours in advance.Magics and MetView			
Pentium III and Pentium IV (600MHz – 1.2GHz) x 20	Windows (98, 2000, XP) for applications, documents, print, Public weather service			
HP 2.4GHz x2	Linux SuSe 8.x for Back up and Research			
	16th Meeting of Computing 3 Representatives			


SERBIA MONTENEGRO

ECMWF products in operational use

- Products from deterministic forecast in GRIB based on 00Z and 12Z via internet
- Boundary conditions for limited area Eta model based on 00Z and 12Z via internet
- ECMWF software MetView, MAGICS, SMS
- MARS files on request
- Web available daily forecast including EPS

Data type	No.of products	size			
SZD (BC)	70	2.6Mb			
S1D (deterministic)	513	20.1Mb			
S2D (global)	34	3.2Mb			

n Meeting of Computing Representatives

T. Lorenzen, noting that the RHSS received the ECMWF boundary conditions they needed to run ETA via the Internet, enquired the reliability and stability of the service.

M. Dell'Acqua replied that ECMWF had been maintaining statistics and, on average, there had been one outage per month per country. The re-establishment of the link after an outage was often slow, as so many companies are involved and no one wants to accept responsibility.

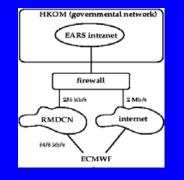
SERBIA MONTENEGRO

SLOVENIA

90

SLOVENIA

Miha Razinger – Environmental Agency of Republic of Slovenia (EARS)


Computers at EARS

- Linux cluster for Aladin/SI (Intel, RedHat, SCore)
- Old cluster (DEC Alpha, RedHat)
- Database server (Intel, RedHat)
- Workservers (Intel, Alpha, RedHat)
- Desktops (Intel, WinXP, Fedora)
- Connections: nfs, ssh, ftp, smb

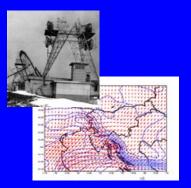
• EARS intranet

- HKOM network (strong policy)
- Internet & RMDCN lines to Reading

Use of ECMWF Services

No HPC facilities

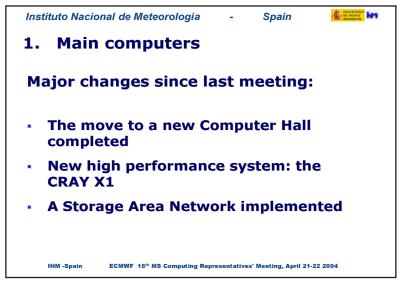
- Daily transfers of deterministic model, EPS, multianalysis data ...
- SMS operational
- Web (Epsgrams,..)
- Occasional MARS retrievals

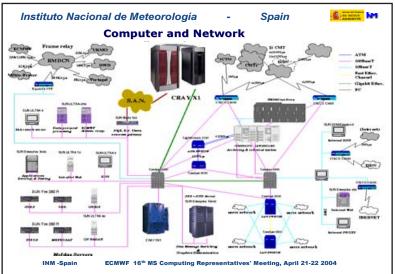

Technical Memorandum No. 438

SLOVENIA

SLOVENIA

Future Plans with ECMWF Services


- Regional reanalysis of ERA-40 data with LAM Aladin/SI (4 TB)
- Preliminary tests promising



SPAIN

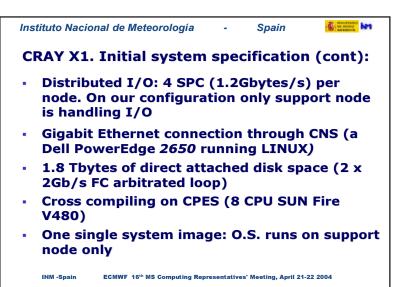
SPAIN

Eduardo Monreal – Instituto Nacional de Meteorolgia

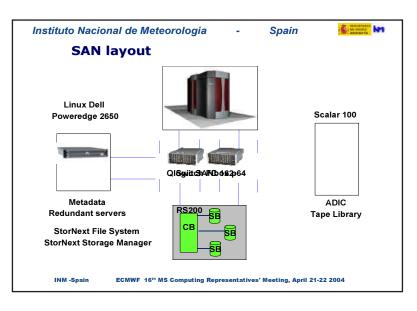
Instituto Nacional de Meteorología - Spain 🏼 🚱 🖬

New High Performance System. The CRAY X1

Initial system installed last August:

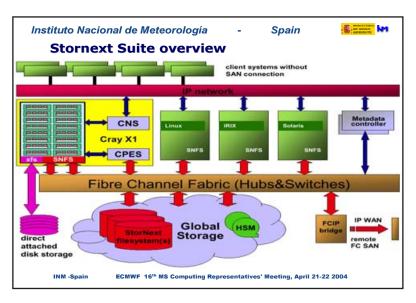

- 100 times the C94A
- 10 computing nodes + 1 support node
- Each node has 4 multi-stream processors (MSP) and 16 Gbytes of high bandwidth (20.5 Gbytes/s) shared memory
- 12.8 Gflops peak performance per MSP
- 2 Mbytes of memory cache per MSP
- 51.2 Gbyte/s full duplex 2D torus between nodes. Cache coherency globally addressable

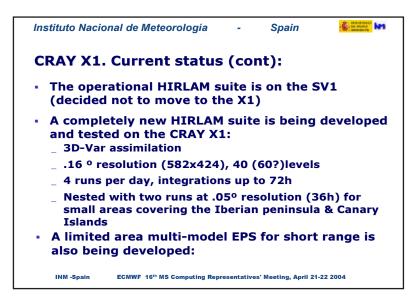
INM -Spain ECMWF 16th MS Computing Representatives' Meeting, April 21-22 2004


C

SPAIN

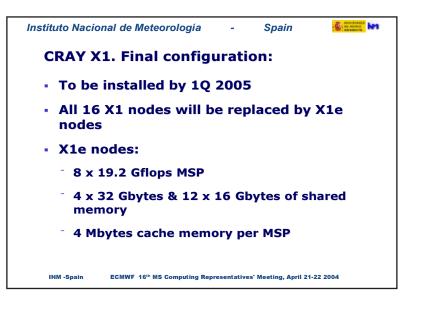
SPAIN

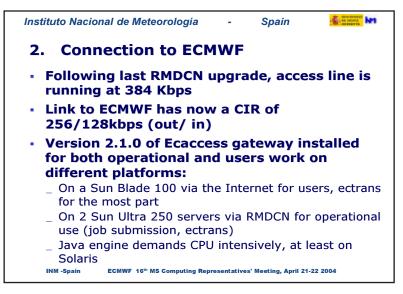




SPAIN

SPAIN


Instituto Nacional de Meteorología	-	Spain	S and the second
CRAY X1. Current stat	us:		
 Performance on benchn CRAY's estimations 	nark	codes less	than
 Negotiations on the fina completed. Contract am progress 		-	
 To fulfil CRAY's commit codes performance for 5 additional nodes will contract is amended 	the in	nitial confi	guration,
 SAN operational since p little use is done so far. performance are quite p 	Fund	ctionality 8	
INM -Spain ECMWF 16 th MS Computing Rep	resentativ	res' Meeting, April 21	-22 2004



C

SPAIN

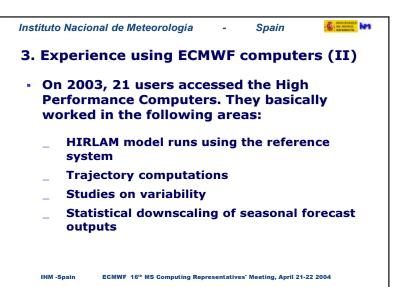
SPAIN

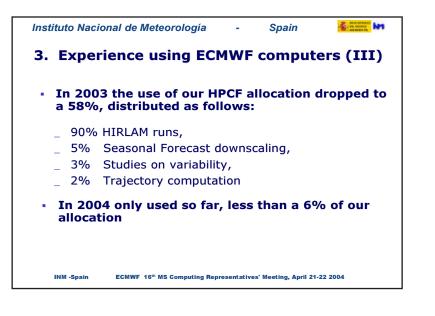
3. Experience using ECMWF computers (I)
 Continues to be an upward trend in the number of registered users

 Currently 67

- _ 58 last year
- About 40 out of the 67 users are active
- Work done is for the most part MARS data retrievals, particularly access to ERA-40 dataset
- Metview used in batch mode to produce derived EPS products

The new ecgate server hardly used so far


INM -Spain ECMWF 16th MS Computing Representatives' Meeting, April 21-22 2004


€

Report on the sixteenth meeting of Computing Representatives, 21-22 April 2004

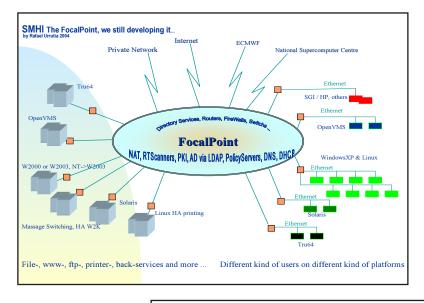
SPAIN

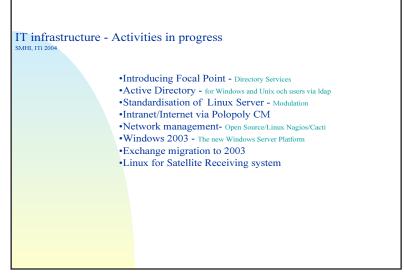
SPAIN

\mathbf{C}

SPAIN

SPAIN


In reply to the question on LIBEMOS, F. Hofstadler explained that Ftn90 extensions were not used for BUFR and GRIBEX decoding, even in the latest version of LIBEMOS. Ftn90 was only used in interpolation.


In reply to L. Gougeon's enquiry, E. Monreal clarified that the request for an sftp plug-in into the ECaccess gateway at ECMWF came from a university user who had no access to the INM gateway.

SWEDEN

SWEDEN

Rafael Urrutia – Swedish Meteorological and Hydrological Institute (SMHI)



IT infrastructure - Directory Services

Active Directory

Will be SMHI The Global Directory Services for both Windows and Unix/Linux systems and application. ill be SMH1 The Global Directory Services for both windows and OntyLinux systems and appreciation. Why?, You need AD for Windows client! AD for Unix? Yes, AD supports Ldap v3 and SSL v2/3 and TLS 1 AD + Unix?, Yes, via 'simple bind with password over SSL' – RFC2829 & RFC2251 Integration, how? Using Idap to AD via PAM_LDAP and NSS_LDAP. Schema mapping is needed. Posix? Yes, via Schema addition done on AD for supporting Unix accounts and gets Posix compatibility.

- .

SWITZERLAND

Peter Roth – MeteoSwiss

SWITZERLAND

Switzerland Peter Roth, MeteoSwiss, Zurich, April 2004

Actual Computer Environment

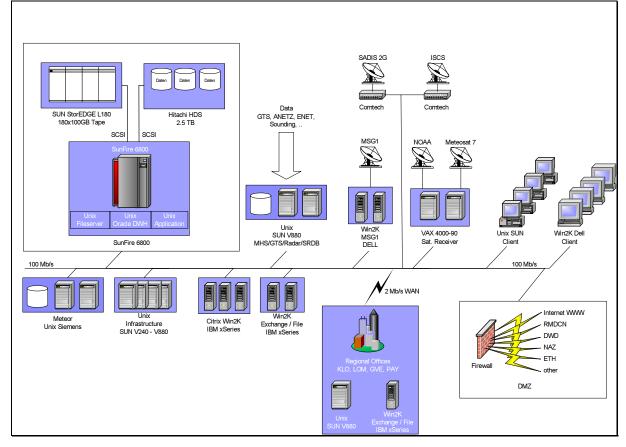
By the end of last year, we finished our project `Server, Storage & Client' (SSC). Now, we have a modern computer equipment. Actually, the main components are:

a) at Zurich

- The heart of the system is a SunFire 6800 with 4 domains running Solaris 8. One domain is used as fileserver controlling the NAS (Network Attached Storage) and the backup/recovery tapes. A second one is used as database server (Oracle) of our climatological database. Another domain is for producing meteorological and climatological products and the last one is scalable to increase the availability of the system.
- The servers for the message handling system (MHS) are SunFire V880 machines. On the same machines, we have integrated the radar servers and the data acquisition system.
- For receiving MSG-1 and DWDSAT data, we have installed a DVB receiver and a processing server running Windows 2000.
- No major changes were done in the DMZ.
- For office applications ('MS-World') and mail services, we use servers from the IBM 345 Series, running an AD server, an Exchange server and a MetaFrame server. Users with a workstation (SUN / Solaris 8) use Outlook from the MetaFrame server.
- The old machines which still are operational are the ENET data acquisition system, the NOAA / Meteosat 7 system and the SADIS/ISCS system. The old mainframe 'Meteor' will be switched off in a few weeks.

b) at the Regional Offices (Zurich-Airport, Geneva, Locarno, Payerne)

The configuration is the same as at Zurich, but with smaller machines (SunFire V880 instead of SunFire 6800) and less storage capacity.


SWITZERLAND

SWITZERLAND

MeteoSchweiz

The drawing below gives further details

Some figures

a) Equipment

- Unix Server: about 60
- Windows Server: about 20
- VMS Server: 4
- Unix Workstation: about 320
- PC (Windows): about 60

b) Network

- LAN: 100 Mb/s
- WAN: 2 Mb/s (we still have no backup-lines)
- ETH/CSCS: 10 Mb/s
- Internet: 5 Mb/s
- RMDCN:
 - ECMWF: 96 kb/s
 - DWD: 128 kb/s
 - MeteoFrance: 16 kb/s

SWITZERLAND

SWITZERLAND

Plans

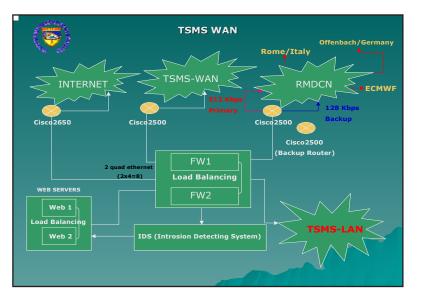
There are plans to migrate to LINUX in about 2 years (first the servers, then the clients). Actually, we make studies how such a migration could proceed.

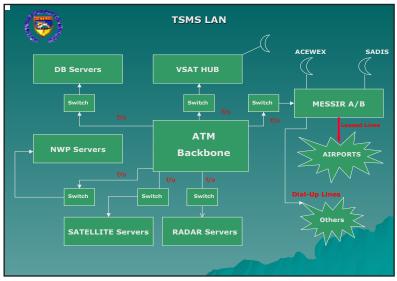
Experience using ECMWF Computer Services

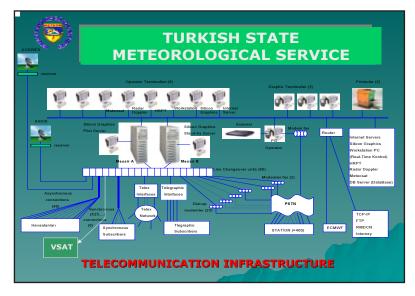
MeteoSwiss makes use of:

- the dissemination system (different data sets)
- MARS
- several services form 'ecaccess'
- MAGICS applications running at ECMWF
- using MetView
- COSMO-LEPS calculations (producing products)
- Global EPS calculations (verifications and producing products)

MeteoSwiss is a member of the ECMWF special project SPCOLEPS

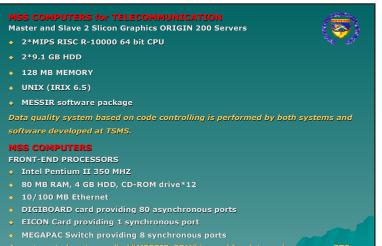

The users in Switzerland are very satisfied of the user support and the services from ECMWF.

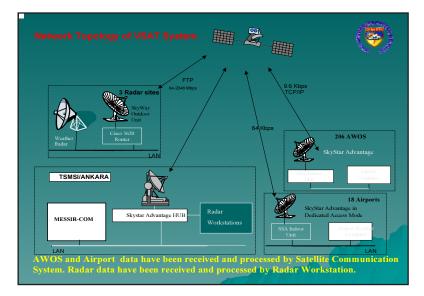

€

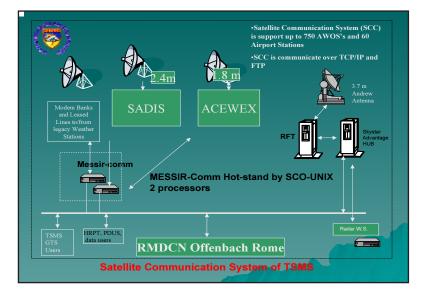

TURKEY

TURKEY

Bülent Yagci – Turkish State Meteorological Service (TSMS)






TURKEY

TURKEY

An automated system called "MESSIR-COM" is used for data exchange over GTS

€

TURKEY

TURKEY

Data Types:	DATABASE
 Climatological Da Meteorological para times a day or hor 	meters have been observed at local hours.
Operating System:	SCO Unix OpenServer 5.04
Database:	Informix IDS 7.3 Relational Database Management System
Server:	Compaq Proliant 6000 2*Pentium Pro 200 Mhz 512 MB RAM 56 GB Disk capacity
Data:	Temperature, Precip. and humidity.
Data	size on disk is about 7 Gb.

2. Upper-Air (Ravinsonde) data	
Operatin	g System: SCO Unix OpenServer 5.04
Database	Informix IDS 7.3 Relational Database Management System
Server:	Compaq Proliant 6000 2*Pentium Pro 200 Mhz Processor 512 MB RAM 56 Gb Disk capacity
	971 – 1995: Significant Level height, temperature, dew oint temperature, wind speed and direction.
p	995 – Now: 400-900 Level Height, temperature, dew oint temperature, humidity, wind speed and direction, oversion, tropopoz and max. Wind level data.
D	ata size on disk is about 3 Gb.

3. Synoptic Data	(\$)
Operating System:	SCO Unix Unixware 7.1
Database:	Sybase ASE 11.9.2 Relational Database Management System
Server:	2*HP LH 6000 4*Pentium 3 700 Mhz
	2 Gb RAM
	360 Gb Disk capacity
Data:	
Synoptic Dat	ta valid from 1980 for synoptic hours.
	ginning of 2004, 200 AWOS Data have been d stored on Database Environment with 1 ncy.
Data size on disk is	s about 10 Gb.
All data on databas	e are in ascii format.

TURKEY

Forecast Period: t+48, Interval : 3 hour

NWP COMPUTER RESOURCES 1. IBM pSeries 690 High Performance Computer: SHT 1 node with 16 CPUs (each 1.3 Ghz) 32 GB total memory size 16x36.4 GB hard disk capacity AIX Operating System Workload Manager (WM) is operationaly used. • MM5 has been run for short-range forecasting with two nests (27km for coarse domain, 9km for inner domain) on SHT since December 2003. • 23 Vertical levels are in use, it will be upgraded to 36 levels. • Boundary and initial conditions are provided from ECMWF BC-Suite Project. • Run Time: 4 times a day operationaly. Time Start Finish 00 UTC 0520 UTC 05300 UTC 05 UTC 14300 UTC 14300 UTC

2. IBM pSeries P630 (Data and Product Server): MEVSIM 4 CPUs (each 1.45 Ghz)
4 GB total memory size
25x36.4 GB hard disk capacity AIX Operating System
MEVSIM is our RMDCN primary gateway. It is also used for post processing.
Metview 3.4 Export Version is run.
Intranet access for operational use.

Operational use of ECMWF IFS Deterministic Model run outputs. Horizontal Resolution: 0.5x0.5 Domain: -10.0W- 80.0E/ 60.0N- 30.0N Forecast Period: 10 days Parameters: 1. Geopotansial height 2. MSLP, 3. TP, 4. Wind,

5. Temperature, etc

Operational use of ECMWF EPS Model run outputs. H. Resolution: ~ 80 km Forecast Priod: 1-10 days

Probabilities, group means, etc.

Operational use of ECMWF WAVE Model run outputs (Baltic and Mediterranean).

Resolution:	~ 27 km
precast Period:	5 days
roducts:	Significant wave height
	Mean wave direction
	Mean wave period
	Swell wave height
	Swell wave mean direction
	Swell wave mean period

TURKEY

TURKEY

METU3-WAVE model which is originally developed at Middle East Technical University-Turkey together Dr Saleh ABDALLA from ECMWF is used to produce daily wave forecasts.

ECMWF Deterministic model run outputs are used as boundary and initial conditions for METU3. It provides forecasts for Black Sea, Marmara and Mediterrean Sea.

H. Resolution:	0.25*0.25 (~27km)	
Forecast Period:	T+72	
Products:	Significant wave height	
	Mean wave direction	
	Mean wave period	
Interval:	6 hour	

3. IBM pSeries P630 (with 3-D capability): YAZ
2 CPUs (each 1.45 Ghz)
2 GB total memory size
11x36.4 GB hard disk capacity
AIX Operating System
YAZ is served as our RMDCN secondary gateway. This machine is also used for as a back up for MEVSIM.

• Metview 3.4 Export Version is run.

- GRADS, NCAR Graphics and RIP graphical software packages are also available for postprocessing.
- 4. IBM pSeries P630 (Test Machine): TEMMUZ
- 2 CPUs (each 1.45 Ghz)
- 2 GB total memory size
- 4x36.4 GB hard disk capacity
- AIX Operating System
- INTERNET (ECACCESS) gateway.

 Intel P4 based workstations (10) run under SuS Linux 8.2 and Windows XP under VMWare.
 Ghz CPU

72 GB SCSI hard disk capacity 2 GB RAM

- Metview 3.4 Export version is run on desktops.
- NCAR Graphics and RIP are also available on these machines.

6. SGI ORIGIN 2200 Server, R12000 MIPS: SONBAHAR (300 Mhz x 2 CPU, 1GB memory, 60 GB HDD) IRIX Operating System

7. SGI ONYX2 Workstation, R10000 MIPS: ILKBAHAR (180 Mhz x 2CPU, 256 MB memory, 43 GB HDD) IRIX Operating System 20

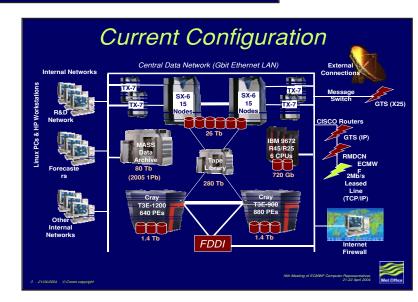
Report on the sixteenth meeting of Computing Representatives, 21-22 April 2004

TURKEY

- MESSIR software package will be upgrated
- MESSIR systems will be upgraded.

TURKEY

UNITED KINGDOM


90

UNITED KINGDOM

Paul Dando – Met Office

Relocation: Exeter

- Relocation to Exeter completed end 2003
 - 925 people moved from Bracknell (Jun Dec)
 - Both Cray T3E supercomputers moved
 - Twin 155 Mb/s data link established to facilitate move and maintain business continuity
- First forecast produced in Exeter: 15 Sep 2003
- New building completed: 18 Dec 2003
- Operational service maintained throughout

NEC SX-6 Supercomputer

- First phase accepted end of Jan 2004
 - 30 node NEC SX-6 system split between 2 halls
 - Accessed via 4 NEC TX-7 front ends
 - Provides 6x performance capability of T3Es
 - 26 Tb of disk space forming a GFS across 2 halls
 - Very reliable
- T3Es and SX-6 run in parallel for 3 months
- Operations will switch to SX-6 late Apr 2004
- Second phase scheduled for early 2005
 - Introduction of 15 node SX-6X to double processing power
 - Increase of disk capacity by 50%
 - Technical Memorandum No. 438

Report on the sixteenth meeting of Computing Representatives, 21-22 April 2004

UNITED KINGDOM

Desktop Replacement Flatscreen PCs used across the Met Office Around 300 Linux desktops for scientists Around 600 Windows XP desktops for other staff HP workstations used as servers for compute intensive work Increase in network capacity Gigabit Ethernet backbone

– 100Mb/s to individual desktop

ECMWF Users

Users Registered

- Currently 123 registered users (129 last year)
 85 Met Office and 38 UK Universities
- Many users make simple MARS data retrievals
 - Find system easy to use
 - Good documentation
- Few users with large / complex data sets
 - Increased access to ERA-15 & ERA-40 data
 - » Increased load on leased line

Use of ECMWF Systems

ECaccess

- Currently running 4 gateway servers (2 research, 2 operational)
- All gateways give access via the leased line
- Some problems improved stability in recent months
- Transition to new ECgate service underway
- Metview
 - Greatly improved response with the new Linux desktop
 - Many local macros
 - Automated MARS retrievals

Use of HPCF

- Unified Model ported to IBM (using MPP code)
- Used 32% of total SBU allocation in 2003

UNITED KINGDOM

UNITED KINGDOM

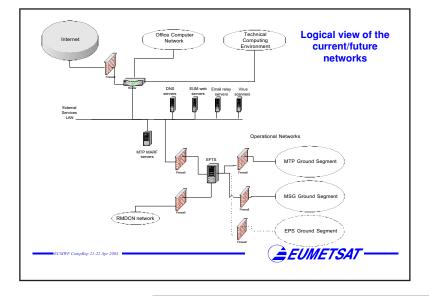
Current use & Projects

- Multi-model ensembles
 - Long range and seasonal forecasting (40 member ensemble runs)
 - DEMETER Project completed covering a total of 43 years
 - ENACT Project (EU FP5) is assessing improvements in ocean data assimilation schemes by forecasts
- Ensemble prediction of anthropogenic climate change
 - Using port of Unified Model to IBM (HadCM3 configuration)
 - Currently verifying model
- FORMOST
 - Experimental post-processing of 51 Member monthly forecast system
- Use of EPS data
 - PREVIN Visualisation of EPS data as forecaster's tool
 - First Guess Early Warning using EPS data
 - Experimental use of EPS to drive NAME model

Special Projects

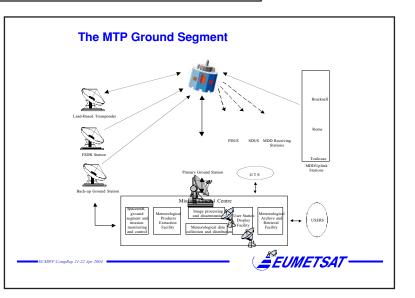
- Five special projects currently running
 - 1. Sensitivity of ERA-40 to differing observing systems and the determination of the global water cycle (Prof. L. Bengtsson, ESSC)
 - 2. Routine back trajectories (Prof. B.J. Hoskins, Reading)
 - 3. Stochastic Physics (Prof. B.J. Hoskins, Reading)
 - Reanalysis for the 1990s using UARS data (Prof. A. O'Neill, DARC, Reading and Prof. R.S. Harwood, Edinburgh)
 - 5. Assessment of ECMWF forecasts over the high latitude areas of the Southern Hemisphere (Dr J. Turner, BAS)

of ECMWF Computer Representatives

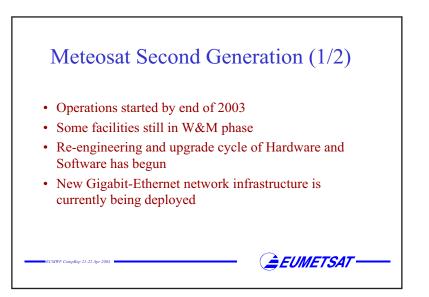

Future Plans

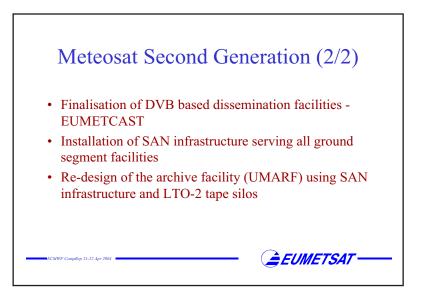
- Continue with long-range and seasonal forecasts
 - ENACT Project (EU FP5) will continue to Dec 2004
 - ENSEMBLES Project (EU FP6) will start soon
 - » Seasonal to decadal predictions of climate with ocean data assimilation
 - » Ensembles will be used to sample uncertainty in both initial conditions and model parameters
- Ensemble prediction of anthropogenic climate change
 - Ensemble generated by varying poorly-constrained model parameters
 - Address model uncertainty in climate change detection and attribution

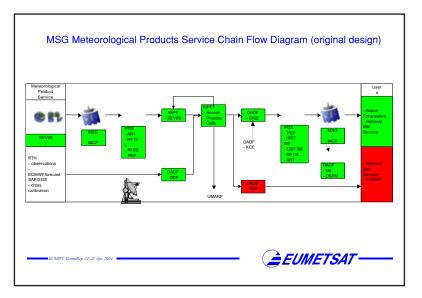
UNITED KINGDOM


EUMETSAT

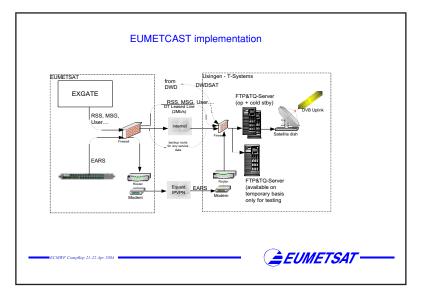
Martin Dillmann – EUMETSAT

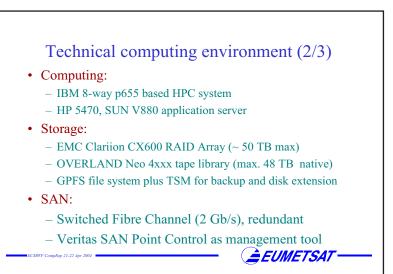

Meteosat Transition Program


- Relocation to new control centre finished in 2003
- Installation of an extended backup control centre in Fucino with full mission capabilities is still ongoing to be finished by mid 2004
- Replacement of the terrestrial link (768 MBit/s) to Fucino with an E1 (2 MBit/s) link plus primary ISDN backup line

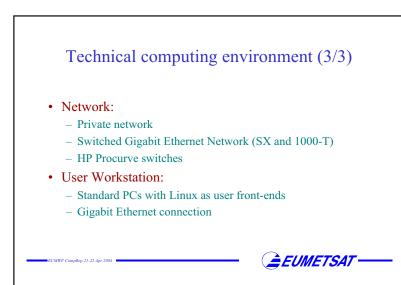


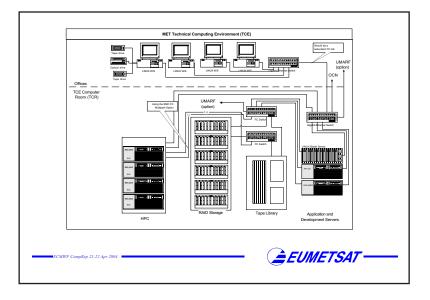
🚔 EUMETSAT


EUMETSAT



EUMETSAT


Technical computing environment (1/3)


- New non-operational system for cpu- and dataintensive computations:
 - MSG MPEF algorithm development
 - EPS simulation
 - EPS algorithm prototyping
- Multi-platform system with 100 TB storage capacity

È EUMETSAT

EUMETSAT

F. Hofstadler asked when EUMETCAST would be fully operational and if there were plans for MDD dissemination. M. Dillmann replied that EUMETCAST was operational, though he was not sure whether the encryptional path was operational. Some testing of MDD dissemination was underway. Report on the sixteenth meeting of Computing Representatives, 21-22 April 2004

ANNEX 1

Sixteenth Meeting of Computing Representatives

ECMWF, Shinfield Park, Reading, U.K., 21-22 April 2004

Participants

rr	
Austria	Gerhard Hermann
Belgium	Liliane Frappez
Czech Republic	Karel Ostatnicky Karel Pesata
Denmark	Thomas Lorenzen
Finland	Kari Niemelä
France	Marion Pithon
Germany	Elisabeth Krenzien
Greece	Ioannis Mallas
Hungary	Laszlo Tölgyesi
Ireland	Paul Halton
Italy	Giuseppe Tarantino
Netherlands	Hans De Vries
Norway	Rebecca Rudsar
Romania	Elena Toma
Serbia & Montenegro	Vladimir Dimitrijevic
Slovenia	Miha Razinger
Spain	Eduardo Monreal
Sweden	Rafael Urrutia
Switzerland	Peter Roth
Turkey	Bülent Yagci
United Kingdom	Paul Dando
Eumetsat	Martin Dillmann
ECMWF:	Sylvia Baylis
	Petra Berendsen
	Jens Daabeck
	Matteo Dell'Acqua
	Richard Fisker
	Helene Garçon
	Laurent Gougeon
	John Greenaway
	Alfred Hofstadler
	Norbert Kreitz
	Dominique Lucas
	Carsten Maass
	Umberto Modigliani
	Pam Prior

Deborah Salmond Neil Storer

Walter Zwieflhofer

Baudouin Raoult

ANNEX 1

ANNEX 2

ANNEX 2

Programme

Wednesday, 21 April

09.30	Coffee
10.00	Welcome
	ECMWF's computer status and plansW. Zwieflhofer
11.00	Member States and Co-operating States presentations
12.30	Lunch
14.00	Member States and Co-operating States presentations (continued)
14.30	HPCF and DHS updateN. Storer
14:50	Early experience on Phase3 test systemD. Salmond
15.10	Data and Services updateB. Raoult
15.30	Graphics update
15.45	ECaccess statusL. Gougeon
16.00	Coffee
16:30	Linux cluster presentations and discussionMS/Co-op + ECMWF
17.30	Cocktails
18:30	Transport to Hotels
19:45	Informal dinner at Pepe Sale Restaurant
Thursday, 22 April	
09.00	Member States and Co-operating States presentations (continued)
10.30	Coffee
11:00	User registration: update and demoP. Kogel
11:20	Web access control changesC. Valiente
11.40	Survey of external users and status of ecgate migrationU. Modigliani
12.00	Discussion
12.30	End of meeting
13:00	Transport to Heathrow