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Summary 

This paper represents a preliminary investigation into the use of ensembles of analyses to estimate flow-dependent 
variances of background error. We study small-scale, dynamically-active systems in the mid latitudes (the storms over 
France during 26-28th December 1999) and in the tropics (Hurricane Isabel, 6-29th September 2003). We demonstrate 
that the use of ensemble-based estimates of background error variance can improve the analysis of such systems. 
Although the approach has considerable potential, we note that good analyses of such small-scale systems are unlikely 
to be produced unless they are adequately resolved both by the main analysis system, and by the members of the 
analysis ensemble. We believe that a small ensemble of relatively high resolution members may be preferable to a 
larger ensemble of lower resolution members. We also highlight the tendency of the analysis ensemble to under-
estimate the variance of analysis and background error, particularly in dynamically inactive regions. We consider a few 
simple measures that try to correct this under-estimate, but note that a better understanding (and representation) of the 
effects of model error, and of the spatial and inter-channel correlation of observation error, is needed before such ad hoc 
measures can be eliminated. 

1. Introduction 
Data assimilation for Numerical Weather Prediction (NWP) blends observations with a priori (background) 
information from a short-range forecast to produce an analysis of the current state of the atmosphere. The 
success of this blending, which is crucial to the accuracy of the subsequent forecast, depends on the 
provision of good estimates of the statistical properties of the observation and background errors. 

In this paper, we consider one component of these error statistics: the variances of background error. These 
are difficult to determine, since we do not have knowledge of the true state of the atmosphere. They are 
frequently estimated from surrogate quantities with statistical and dynamic properties assumed similar to 
those of the unknown errors (e.g. Parrish and Derber, 1992). The properties are built into the background-
error covariance matrix for data assimilation, the purpose of which is to spread observed information to 
nearby grid points and levels and to other variables. 

In the current ECMWF analysis system, variances of background errors are estimated using the method 
proposed by Fisher and Courtier (1995), and implemented operationally in 1996. The method may be divided 
into three stages. First, a randomization technique is used to diagnose the variances of background error in 
effect for the current cycle. This step is necessary because the variances for some variables are not directly 
specified, but are defined implicitly through the action of linear operators (describing balance, radiative 
transfer, etc.) on the specified background error covariance matrix. Next, the variances are reduced to 
produce an estimate of the variances of analysis error. The reduction is determined as a function of the 
leading eigenvectors of the Hessian matrix of the analysis cost function. Finally, a simple error-growth 
model (Savijärvi, 1995) is applied in order to account for the growth in error during the forecast. The result is 
an estimate of error variance for the short-term forecast that provides the background for the next cycle of 
analysis. The method is repeated at each analysis cycle. 

The current method for estimating background error variance incorporates a degree of flow-dependence. 
This arises from the use of balance operators that depend on the background state, and because the 
eigenvectors of the 4D-Var Hessian incorporate a knowledge of the dynamical evolution during the analysis 
window. However, the error-growth model that propagates errors from cycle to cycle is extremely simple, 
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and does not take into account the nature of the flow. As a consequence, current background errors are 
largely a function of data density, with a fairly weak dependence on the underlying flow. 

A further shortcoming of the current approach arises from the use of a truncated eigenvector expansion to 
determine the difference between background error and analysis error. This results in an over-estimate of the 
variance of analysis error. Moreover, since the leading eigenvectors correspond to the best observed features, 
the best estimates of analysis error variance occur in well-observed regions and for well-observed variables, 
whereas the variance in poorly-observed regions and for poorly-observed variables may be significantly 
over-estimated. 

In this paper we investigate an alternative method for estimating the variances of analysis and background 
error. In this approach, an ensemble of analyses is run in parallel with the main analysis/forecast system. 
Each member of the ensemble is perturbed in such a way that the spread of the ensemble provides an 
estimate of the required variance. This approach to determining background error statistics is fundamental to 
the ensemble Kalman filter (Houtekamer and Mitchell, 1998; Evensen, 2003). However, unlike the ensemble 
Kalman filter, we do not attempt to determine the correlation structure of background error from the 
ensemble, but restrict ourselves to estimating their variance. 

The rest of the paper is divided into four main sections. Section 2 describes the use of data assimilation 
ensembles to estimate background errors. In section 3, we discuss experiments for the ‘French Storm’ cases, 
26-28th December 1999. Section 4 presents results for the tropical cyclone ‘Hurricane Isabel’ cases, 6-29th 
September 2003. We present some tentative conclusions in the final section. 

2. Methodology 
Suppose we add random perturbations to the background, observations and sea surface temperature (SST) of 
the analysis system. The result will be a perturbed analysis. Suppose now that a short forecast is run from the 
perturbed analysis, such as is required to produce the background field for the next analysis cycle. The result 
will be a perturbed forecast. Furthermore, provided the input perturbations have the appropriate statistical 
characteristics (and neglecting the effects of model error), the perturbation to the forecast will have the 
statistical characteristics of short-term forecast (background) error.  

If we run a new cycle of analysis with perturbed inputs, we may use the perturbed forecast to provide the 
analysis with perturbed background fields. This allows a second perturbed analysis and forecast to be 
produced without requiring us explicitly to specify new perturbations to the background. This process may 
be continued for many analysis cycles. Furthermore, after a few days, the statistical characteristics of the 
perturbations of the analysis and forecast fields will depend only weakly on the initial background 
perturbation, so that a sequence of background fields may be generated whose statistical characteristics are 
essentially independent of the initial background perturbation (Fisher, 2003).  

If we run the perturbed analysis-forecast system several times for the same period, with different random 
perturbations, we may generate an ensemble of perturbed members. Differences between the background 
fields of ensemble members provide surrogates for samples of background error (Fisher, 2003). 

The method is illustrated schematically in Figure 1, in which time is running from left to right, and each row 
represent an independent, cycling 4D-Var analysis ensemble member. The blown-up portion of the figure (in 
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the dashed box) shows that each input of the analysis is perturbed: the background xb, the observation vector 
y and the surface fields (here represented by SST), with errors εb, εo and εSST, respectively. Provided the 
perturbations are drawn from distributions with the true random errors of the inputs, then the output 
perturbations will have the statistical characteristics of analysis error (εa) and forecast error (εf). The input 
perturbations for each member of the analysis ensemble are provided by independent random draws from the 
appropriate distribution. For each analysis cycle, and at each grid point, we calculate the standard deviation 
of background error as the ensemble spread, among the all members, of the short-range forecasts that provide 
the background fields for the next analysis cycle. This estimate of background error is used in a separate, 
unperturbed analysis, indicated by the two boxes at the bottom of Figure 1. In the experiments presented 
here, the unperturbed analysis was run at a higher horizontal resolution than the ensemble members. 

A description of the method we used to perturb the observations was presented by Žagar at al. (2005). For 
most observations, we applied independent Gaussian perturbations with zero mean and variance equal to the 
prescribed variance of observation error. Spatially correlated perturbations were applied to Atmospheric 
Motion Vectors (AMVs), according to the model of Bormann et al. (2003). 

The sea surface temperature used in the ECMWF analysis system is taken from an independent analysis 
(Thiebaux et al. 2001). Since it is an input to the analysis system, it must be perturbed in the ensemble 
members according to its assumed error characteristics. For this purpose, we used Vialard et al.’s (2005) 
estimate of random error in the sea surface temperature analysis. No perturbations were applied to surface 
fields over land. 

In principle, the effect of model error could be represented as a stochastic forcing of the model. However, the 
statistical characteristics of model error are very poorly known, and we chose not to force the model in this 
way. We comment later that this may contribute to a lack of spread of the ensemble, particularly in 
dynamically inactive regions. 
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Figure 1: Schematic illustration of the analysis-ensemble method. Estimates of the standard deviations of 

analysis and short-range forecast error are shown as ( )2

1

1 N

i
i

x x
N =

−∑ , and provide input to the main 

analysis, represented by the bottom two boxes. 

3. French Storms 
Two storms hit central Europe with unprecedented violence on 26th and 27th December 1999. In Southern 
Germany, Switzerland, Austria, and particularly in France, these Storms caused more than 100 deaths, felled 
over 270 million trees, and caused damage amounting to billions of US dollars (Bell et al. 2000). The 
atmospheric flow during this period was very complex, with small-scale vortices developing and interacting 
while moving very rapidly in a strong zonal flow. Global forecasts issued on successive days showed strong 
inconsistencies, confirming the difficulty for prediction of this episode (Buizza and Hollingsworth, 2002 ).  

The First “French Storm” (26th December 1999) was small-scale and moved very rapidly. An initially weak 
low pressure system moved across the North Atlantic on 25th December while moderately deepening. At 
0000 UTC on 26th December it was situated off the Brittany coast, with a central pressure of 980 hPa. Over 
the following six hours this low pressure system deepened rapidly by 20 hPa and reached the mouth of the 
Seine River at 0600 UTC. This rapid deepening was mainly caused by the interaction of the low pressure 
system with the left exit region of an exceptionally strong jet in the upper troposphere, which was 
characterized by strong divergence in the upper troposphere and positive vorticity advection at mid-levels 
(Wernli et al. 2002). 
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The Second Storm (27th December 1999) was larger in scale than the first. It produced winds which reached 
150 km/h and spread a trail of destruction along the north coast of Spain, in south-west France and across 
many countries bordering the Mediterranean Sea. This storm killed 12 people in France, and a further 5 in 
Spain. Electricity supplies to a million homes were disrupted. 

3.1 Description of the experiments 

For this study we applied the analysis-ensemble method described in section 2 using two ensembles of 
different sizes. For the first experiment, background errors were obtained from a 5-member ensemble. For 
the second experiment, we used a 10 member ensemble. Each member of the analysis ensemble was run for 
the period 12th to 30th December 1999 using version CY29R1 of ECMWF’s Integrated Forecast System (IFS) 
and T255, L60 resolution. The analysis method was 4D-Var with a 12-hour analysis window. 

Figure 2a shows the standard deviation of 12-hour forecast error for geopotential height at 500hPa for 2100 
UTC 26th December 1999, diagnosed from the 10-member ensemble. Maximum errors are located over the 
Atlantic, in the region corresponding to the area of cyclogenesis (the second “French Storm”). The maximum 
value is 3.7m, and the smallest errors (0.1m) are over the North Sea. 

These estimates are small compared with the estimates provided by the method used in the current 
operational system (Figure 2d). Although the latter are unlikely to be particularly accurate, and certainly 
show no obvious dynamical features, it seems clear that the ensemble method severely under-estimates the 
magnitude of background error in this case. For this reason, an inflation factor of two was applied to the 
standard deviations. The resulting background errors are shown in Figure 2b. However, whereas inflating the 
background errors increases them significantly over the dynamically active region, estimated errors over the 
North Sea remain locally below 0.5m. It seems that a constant scaling factor is not enough to increase errors 
to realistic values in regions of very small spread. We believe that this under-estimation of forecast error 
variance in dynamically inactive regions may, in part, be a consequence of the lack of any representation of 
the effects of model error in our ensemble. In addition, there are sources of error that are common to all 
ensemble members (due to inappropriate error correlations, mis-specification of observation error variances, 
etc.). These do not contribute to the spread of the ensemble, but nevertheless contribute to analysis and 
forecast error. 

To address the lack of ensemble spread in dynamically inactive regions, we devised a hybrid method 
whereby the background error variance was computed using the relationship 

 ( )2 2
1 1 2 2max ,b

2σ β σ β σ=  (1) 

Here, 2
1σ  is the background error variance obtained from analysis ensemble members (as described in 

section 2), and 2
2σ  is the variance provided by the current operational method. The parameters βi are fixed 

weights. The function attempts to use the flow-dependent estimate of background error provided by the 
ensemble in dynamically active regions, but uses the static estimate in relatively inactive regions, where the 
ensemble has very little spread. Figure 2c shows the hybrid background error estimate for 

1 22, 0.5β β= = . 
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Figure 2: 12h forecast errors of geopotential height (m), 26th December 1999, 2100 UTC. Errors are 
shown for model level 39 (approximately 500 hPa). Panel (a) shows the errors obtained from a 10-
member T255 ensemble of data assimilation . Panel (b) shows the same errors, inflated by a factor of 2. A 
hybrid estimate of background error (see text for details) is shown in panel (c), and errors calculated 
using the current operational method are shown in panel (d). 
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Experiments were run to assess the impact on the analysis system of replacing the standard deviations of 
background error with estimates derived from the analysis ensembles. These estimates were used both in the 
quality control (first-guess check) and in the definition of the background cost function. All these 
experiments were run using 4D-Var at a resolution of T511/T159 for the period 17th to 30th December 1999. 
Note that the initial date for these experiments is five days later than the initial date of the ensembles. This is 
to allow the ensemble members time to spread out from their identical initial conditions. The experiments are 
summarised in Table 1. 

Control Errors obtained using the current operational method. 

anENS/5 Errors obtained from a 5-member ensemble. 

anENS/5/2x Errors obtained from a 5-member ensemble, and inflated by a factor of 2. 

anENS/10 Errors obtained from a 10-member ensemble. 

anENS/10/2x Errors obtained from a 10-member ensemble, and inflated by a factor of 2. 

anENS/Hyb Errors obtained using the hybrid method from a 10-member ensemble. 

Table 1: Analysis Experiments for the French Storms. 

Figure 3a shows the geopotential height and wind at 1000hPa from the control experiment for 0600 UTC on 
27th December 1999. The other panels in Figure 3 show estimates of 12-hour forecast error for wind speed on 
model level 57 (approximately 1000hPa) at 0900 UTC. 

Figure 3b shows the background error of wind speed for the control experiment. Errors are between 2 and 3 
m/s over the Atlantic and 1 to 2 m/s over the North Sea and much of Europe. There is no obvious connection 
between the errors and the underlying dynamical situation. By contrast, errors derived from the analysis 
ensembles (panels c to f) show a clear maximum associated with the developing low-pressure system.  

Figure 3c (anENS/5/2x) shows the standard deviation of 12-hour forecast error, obtained from the 5-member 
ensemble and scaled by a factor of two. The corresponding un-scaled standard deviations are shown in 
Figure 3d. The small size of the 5-member ensemble results in some noise in the estimated standard 
deviations. This noise is reduced in the estimates derived from the 10-member ensemble, as shown by Figure 
3e (anENS/10/2x). 

The hybrid background error estimate (Figure 3f) is identical to the corresponding ensemble estimate (Figure 
3e) over most of the Atlantic, where background errors in the control experiment are assumed to be small. 
Over land, the regions of unrealistically small errors have been eliminated.  
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Figure 3: Panel (a): 1000 hPa analysis of height (dm) and wind (ms-1) at 0600 UTC on 27th December 
1999. The contour interval is 5 dm. The remaining panels show estimates of 12-Hour ensemble-based 
forecast errors of wind speed (ms-1) for 26th December 1999, 2100 UTC, t+12 at model level 57 
(approximately 1000 hPa). Panel (b): control run; (c) anENS/5/2x; (d) anENS/5; (e) anENS/10/2x; (f) 
anENS/hyb. 

3.2 Performance of Analysis-Ensemble  

Figure 4 shows the MSLP analyses at 1200 UTC on 26th December (the first “French Storm”) for the 
experiments defined in Table 1. The low pressure system is located over Germany. All experiments produced 
very similar analyses in terms of location and central pressure. For anENS/5 (Figure 4b) the central pressure 
is 0.4 hPa deeper than for the control run (Figure 4a). The experiment using a hybrid error estimate 
(ansEN/hyb) produced a low 0.6hPa weaker than the control (Figure 4f). 

The next analysis cycle (0000 UTC on 27th December, not shown) still showed little difference between the 
six MSLP analyses. However, at the following cycle (1200 UTC on 27th December), all the experiments that 
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used ensemble-derived errors performed better than the control run. The central pressures of the main 
cyclone (the second “French Storm”) in these analyses (Figure 5b-f) were between 6.3 and 8.2 hPa deeper 
than control analysis (Figure 5a), which was too weak. The analysis produced using hybrid background 
errors (anENS/hyb, Figure 5f) had a higher central pressure than any of the experiments whose background 
errors were derived solely from an ensemble, but was still considerably lower than the control. However, this 
experiment also rejected fewer observations. For example, of the 1179 synoptic observation on the map area 
(36oN/16oW/62.5oN/18oE) between 0009 and 1500 UTC on 27th December, the control run, anENS/10/2x 
and anENS/hyb used respectively 1076, 1057 and 1075 observations. (Note that in the case of anENS/10/2x, 
many of the rejections occured in regions with little dynamic activity, where the ensemble method produced 
unrealistically low estimates of forecast error variance, as discussed in section 3.1.) 
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Figure 4: First French Storm MSLP analysis at 1200 UTC on 26th December 1999. Panel (a) shows the 
control, (b) shows experiment anENS/5, (c) shows enENS/5/2x, (d) shows anENS/10, (e) shows 
anENS/10/2x, and (f) shows anENS/hyb. The contour interval is 4 hPa, with shading for values below 980 
hPa. 
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Figure 5: MSLP analyses for the second “French Storm” at 1200 UTC on 27th December 1999. The 
ordering of the panels is the same as in Figure 4. The contour interval is 4 hPa. Observations used by the 
analysis are shown by green symbols, whereas red symbols show obsevations that were rejected by 
quality control. The central pressures of the low pressure system in the six panels are as follows: (a) 
control 977.44hPa; (b) anENS/5 969.26hPa; (c) anENS/5/2x 969.62hPa; (d) anENS/10 969.16hPa; (e) 
anENS/10/2x 970.03hPa; (f) anENS/hyb 971.08hPa. 

4. Tropical Cyclone Case 
In this section, we discuss the performance of the analysis-ensemble system for Hurricane Isabel (September 
2003): a long-lived Cape Verde hurricane that reached Category 5 status on the Saffir-Simpson Hurricane 
Scale (Simpson and Riehl 1981). Isabel is considered to be one of the most significant tropical cyclones to 
affect portions of north-eastern North Carolina and east-central Virginia since Hurricane Hazel in 1954 and 
the Chesapeake-Potomac Hurricane of 1933 (Beven and Cobb, 2004). 
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Isabel formed from a tropical wave that moved westward from the coast of Africa on 1 September. Over the 
next several days, the wave moved slowly westward and gradually became better organized. By 0000 UTC 
on 5 September, there was sufficient organized convection for satellite-based Dvorak intensity estimates to 
begin (Dvorak, 1975). Development continued, and it is estimated that a tropical depression formed at 0000 
UTC on 6 September, with the depression becoming Tropical Storm Isabel six hours later, and a category 1 
hurricane by 1500 UTC on 7 September. Isabel continued to increase in intensity, and became a category 5 
hurricane at 2100 UTC on 11 September. 

Increased vertical wind shear on 15 September caused Isabel to gradually weaken. The system weakened 
below major hurricane status (96 kt, or Category 3 on the Saffir-Simpson Hurricane Scale) on 16 September. 
It maintained Category 2 status with 85-90 kt maximum winds for the next two days while the overall size of 
the hurricane increased. Isabel made landfall near Drum Inlet, North Carolina at 1700 UTC 18 September, as 
a Category 2 hurricane (Beven and Cobb, 2004). 

4.1 Performance of Analysis-Ensemble  

For this case, we used a 10-member analysis ensemble. Each member was run for the period 1 September to 
7 October 2003 with IFS cycle CY29R1 and a T255/T159, L60, 4D-Var analysis system.. In addition to the 
analysis ensemble, we ran two T511/T155 L60 4D-Var experiments for the period 6 September to 5 October 
2003. The first (control) experiment used the operational method to calculate background errors. The second 
(ENSx2) used background errors calculated from the ensemble spread, and inflated by a factor of two. 
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Figure 6: Background error of sea level pressure (hPa), 2100 UTC 11th September 2003. The left panel is 
for the control run, the right is obtained from the analysis ensemble (scaled by a factor of two). 

Figure 6 shows the background error of mean sea level pressure for the control run (left panel) and for 
experiment ENSx2 (right panel) at 2100 UTC on 11 September 2003. The corresponding mean sea level 
pressure analyses at 0000 UTC 12 September are shown in Figure 7. It can be seen that the background error 
of the analysis-ensemble is larger than that of the control, and has a local maximum in the same location as 
the tropical cyclone. However, there is little difference between the analyses. The same arguments apply two 
days later, as shown in Figure 8 and Figure 9. 
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Figure 7: Analysis of sea level pressure for 12 September 2003, 0000 UTC. (a) is the control run, with 
background error variance calculated using the current operational method (e.g. Figure 6a). (b) used 
background errors from the 10-member analysis ensemble, scaled by a factor of two (e.g. Figure 6b). The 
contour interval is 2 hPa, with surface observation usage indicated by circles (SYNOPs and SHIPs) and 
triangles (DRIBUs). Green symbols denote used observations. Red symbols denote observations that were 
rejected by quality control. The central pressures are 1001.4 hPa and 1001.0 hPa, respectively. 
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Figure 8: As Figure 6, but for 2100 UTC 13th September 2003. 
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Figure 9: As Figure 7, but for 0000 UTC 14th September 2003. 

A time series of the analysed central pressure of the hurricane is shown in Figure 10 For most analysis 
cycles, the central pressure is lower by several hPa in ENSx2 than in the control experiment. (The large 
discrepancy between the analysed and the observed pressure for both experiments is typical of current 
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analysis systems, and results in part from deficiencies in resolution and from the use of background error 
correlations that are inappropriate to the dynamical situation. We do not address these issues in the current 
study). 

Although background errors generated using the analysis-ensemble are larger than those of the control run 
for the whole period, observation usage is about the same for both experiments (not shown). 
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Figure 10: Time series of centre pressure of Hurricane Isabel for period 20030907 and 20030920. 
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Figure 11: Analyses of 10 metre wind (m/s) at 0000 UTC on 17th September 2003, (a) is control run and 
(b) used background errors derived from the analysis ensemble. Wind speeds larger than 10 m/s are 
shaded, with a contour interval of 5 m/s (see legend). 

Figure 11 shows the analysed 10m winds at 0000 UTC on 17 September. The maximum observed 10m wind 
speed for Hurricane Isabel was 45 m/s on 17th September. The maximum wind speed of ENSx2 was 35 m/s, 
whereas for the control it was 31 m/s. 
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Figure 12: Forecast score for 1000 hPa Geopotential height over North Atlantic for period between 
20030906 and 20031005 for the experiment (blue) which used background error derived from the 10-
member analysis ensemble. The control run is shown red. 

Finally, in Figure 12, we show the anomaly correlation of 1000hPa geopotential between 7 September and 5 

October 2003 for the North Atlantic area. The results are close before t+120, but analysis ensemble-based 
forecasts are better than the control run after t+120. (It should be noted, however, that this result is unlikely 
to be statistically significant, given the small size of the verification area and the relatively small number of 
cases.) 

5. Conclusions 
The results given above represent a preliminary investigation into the use of background errors derived from 
analysis ensembles. As such, we can offer only tentative conclusions. 

In the case of the second “French storm”, there were significant differences between the control analysis and 
the analyses produced using ensemble-derived background errors. It is encouraging that use of the latter 
produced better analyses in this case. The other cases (the first “French storm”, and hurricane Isabel) were 
characterized by small-scale systems that were poorly resolved by the (T511) analysis system, let alone by 
the (T255) ensemble members. As well as resolution, factors such as inappropriately large-scale background 
correlations contribute to the analysis deficiencies for small-scale tropical and mid-lattitude cyclones. It is 
perhaps a tall order to expect changes in the specified background error to produce improvements to the 
analysis without rectifying other shortcomings in the analysis formulation. Nevertheless, it is notable that for 
hurricane Isabel, the wind analysis in the vicinity of the cyclone was improved, and the central pressure was 
significantly reduced for nearly every analysis in the period 7-20 September shown in Figure 10.  
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Our current implementation of the analysis ensemble method underestimates the variance of background 
error. To compensate for the ensembles’ lack of spread, we used two different approaches: constant scaling 
of the variances, and a hybrid approach. A constant scaling factor tuned to increase errors in dynamically 
active regions produced an insufficient increase of the very small spread in well-observed, dynamically 
inactive regions. The hybrid approach rectified this deficiency. But, neither method is satisfactory. Clearly, a 
better understanding of the reasons for the lack of spread of the ensemble is required. 

Finally, we examined the effect of ensemble size. It seems likely that useful information about the variance 
of background error can be extracted from a very small (e.g. 5-member) ensemble. This suggests that for 
estimating background error variance, a small ensemble of fairly high resolution members may be preferable 
to a larger ensemble of low resolution members. 

Acknowledgements 

This paper summarizes the investigations conducted by the first author during his year at ECMWF as a 
Graduate Trainee. We wish to thank the Turkish Meteorological Service for approving his secondment, and 
for their financial support. We also thank colleagues in the Data Division for their valued comments.  

References 

Bell G.D., Halpert M.S., Schnell R.C., Higgins R.W., Lawrimore J., Kousky V.E., Tinker R., Thiaw W., 
Chelliah M., and Artusa A., 2000: Climate assessment for 1999. Bull.Am.Meteor.Soc., 81, 1328-1328. 

Beven, J., and Cobb, H., 2004: National Hurricane Center Reports,  

Buizza, R., and A. Hollingsworth, 2002: Storm prediction over Europe using the ECMWF Ensemble 
Prediction System. ECMWF Tech. Memo. 356, 26pp. (Available from: http://www.ecmwf.int/publications/) 

Bormann N., Saarinen S., Kelly G., and Thépaut J.-N., 2003: The Spatial Structure of Observation Errors in 
Atmospheric Motion Vectors from Geostationary Satellite Data. Mon.Wea.Rev., 131, 706-718. 

Dvorak, V., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon.Wea.Rev., 
103, 420-430. 

Evensen, G. 2003: The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean 
Dyn. 53, 343-367. 

Fisher, M., 2003: Background error covariance modelling. pp45-64 in Proceeding of the ECMWF Workshop 
on Recent Developments in Data Assimilation for Atmosphere and Ocean, 8-12 September 2003, Reading, 
UK.  

Fisher, M. and Courtier, P., 1995: Estimating the covariance matrices of analysis and forecast error in 
variational data assimilation. ECMWF Tech. Memo. 220.   
(Available from: http://www.ecmwf.int/publications/) 



 Use of analysis ensembles in background error covariance modelling

 
 

 
16 Technical memorandum No.492
 

Houtekamer, P.L. and Mitchell, H.L., 1998: :Data Assimilation Using an Ensemble Kalman Filter 
Technique. Mon.Wea.Rev., 126: 796-811 

Parrish, D.F. and Derber, J.C., 1992: National Meteorological Center’s spectral statistical-interpolation 
analysis system. Mon.Wea.Rev., 120, 1747-1763. 

Savijärvi, H., 1995: Error growth in a large numerical forecast system. Mon.Wea.Rev., 123, 212-221. 

Simpson, R.H. and H. Riehl (1981): The Hurricane and Its Impact. Louisiana State Univ. Press, Baton 
Rouge (IBSN 0-8071-0688-7), 398pp. 

Thiebaux, J., Katz, B. and Wang, W., 2001: Mew sea-surface temperature analysis implemented at NCEP. 
pp159-J163 in Preprints of 18th Conf. on Weather Analysis and Forecasting, American Meteorology Society. 

Vialard, J., Vitart, F., Balmaseda, M.A., Stockdale, T.N. and Anderson, D.L.T., 2005: An Ensemble 
Generation Method for Seasonal Forecasting with an Ocean-Atmosphere Coupled Model. Mon.Wea.Rev., 
133, 441-453. 

Wernli, H., S. Dirren, M. A. Liniger, and M. Zillig, 2002: Dynamical aspects of the life-cycle of the winter 
storm ‘Lothar’ (24-26 December 1999). Quart. J. Roy. Meteor. Soc., 128, 405-430 

Žagar, N., Andersson, E., Fisher, M., 2005: Balanced tropical data assimilation based on a study of 
equatorial waves in ECMWF short-range forecast errors, Quart. J. Roy. Meteor. Soc., 131, 987-1011. 

 


	1. Introduction 
	2. Methodology 
	3. French Storms 
	3.1 Description of the experiments 
	3.2 Performance of Analysis-Ensemble  
	4. Tropical Cyclone Case 
	4.1 Performance of Analysis-Ensemble  

	5. Conclusions 


