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Part VII: ECMWF Wave Model

Chapter 1

Introduction

Table of contents

1.1 Background

1.2 Structure of the documentation

This document is partly based on Chapter III of “Dynamics and Modelling of Ocean Waves” by Komen
et al. (1994). For more background information on the fundamentals of wave prediction models this book
comes highly recommended. A comprehensive and more recent account of the theory of surface gravity
waves (such as the coupling between wind and waves, nonlinear wave-wave interactions and freak waves)
and the verification of model results is given by Janssen (2004). Here, after a historical introduction, we
will describe the basic evolution equation, including a discussion of the parametrization of the source
functions. This is then followed by a brief discussion of the ECMWF wave data assimilation scheme. The
document closes with a presentation of the ECMWF version of the numerical scheme and the structure
of the software.

1.1 BACKGROUND

The principles of wave prediction were already well known at the beginning of the 1960s. Yet none of the
wave models developed in the 1960s and 1970s computed the wave spectrum from the full energy balance
equation. Additional ad hoc assumptions have always been introduced to ensure that the wave spectrum
complies with some preconceived notions of wave development that were in some cases not consistent
with the source functions.The reasons for introducing simplifications in the energy balance equation
were twofold. On the one hand, the important role of the wave–wave interactions in wave evolution was
not recognized. On the other hand, the limited computer power in those days precluded the use of the
nonlinear transfer in the energy balance equation.

The first wave models, which were developed in the 1960s and 1970s, assumed that the wave components
suddenly stopped growing as soon as they reached a universal saturation level (Phillips, 1958). The
saturation spectrum, represented by the one-dimensional f−5 frequency spectrum of Phillips and an
empirical equilibrium directional distribution, was prescribed. Nowadays it is generally recognized that a
universal high-frequency spectrum (in the region between 1.5 and 3 times the peak frequency) does not
exist because the high-frequency region of the spectrum not only depends on whitecapping but also on
wind input and on the low-frequency regions of the spectrum through nonlinear transfer. Furthermore,
from the physics point of view, it has now become clear that these so-called first generation wave models
exhibit basic shortcomings by overestimating the wind input and disregarding nonlinear transfer.

The relative importance of nonlinear transfer and wind input became more evident after extensive wave
growth experiments (Mitsuyasu, 1968, 1969; Hasselmann et al., 1973) and direct measurements of the wind
input to the waves (Snyder et al., 1981; Hasselmann et al., 1986). This led to the development of second
generation wave models which attempted to simulate properly the so-called overshoot phenomenon and
the dependence of the high-frequency region of the spectrum on the low frequencies. However, restrictions
resulting from the nonlinear transfer parametrization effectively required the spectral shape of the wind
sea spectrum to be prescribed. The specification of the wind sea spectrum was imposed either at the outset
in the formulation of the transport equation itself (parametrical or hybrid models) or as a side condition
in the computation of the spectrum (discrete models). These models therefore suffered basic problems in
the treatment of wind sea and swell. Although, for typical synoptic-scale wind fields the evolution towards
a quasi-universal spectral shape could be justified by two scaling arguments (Hasselmann et al., 1976),
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nevertheless complex wind seas generated by rapidly varying wind fields (in, for example, hurricanes or
fronts) were not simulated properly by the second generation models.

The shortcomings of first and second generation models have been documented and discussed in
the SWAMP wave-model intercomparison study (SWAMP Group (1985)). The development of third
generation models was suggested in which the wave spectrum was computed by integration of the energy
balance equation, without any prior restriction on the spectral shape. As a result the WAM Group
was established, whose main task was the development of such a third generation wave model. In this
document we shall describe the ECMWF version of the so-called WAM model.

Komen et al. (1994) gave an extensive overview of what is presently known about the physics of wave
evolution, in so far as it is relevant to a spectral description of ocean waves. This covers detailed knowledge
of the generation of ocean waves by wind and the impact of the waves on the air flow, the importance of
the resonant nonlinear interactions for wave evolution, and the state of knowledge on spectral dissipation
of wave energy by whitecapping and bottom friction.

1.2 STRUCTURE OF THE DOCUMENTATION

In this document we will try to make optimal use of the knowledge of wave evolution in the context of
numerical modelling of ocean waves. However, in order to be able to develop a numerical wave model
that produces forecasts in a reasonable time, compromises regarding the functional form of the source
terms in the energy balance equation have to be made. For example, a traditional difficulty of numerical
wave models has been the adequate representation of the nonlinear source term. Since the time needed
to compute the exact source function expression greatly exceeds practical limits set by an operational
wave model, some form of parametrization is clearly necessary. Likewise, the numerical solution of the
momentum balance of air flow over growing ocean waves, as presented in Janssen (1989), is by far too
time consuming to be practical for numerical modelling. It is therefore clear that a parametrization of
the functional form of the source terms in the energy balance equation is a necessary step to develop an
operational wave model.

The remainder of this document is organised as follows. In Chapter 2 we discuss the kinematic part
of the energy balance equation: advection in both deep and shallow water, refraction due to currents
and bottom topography. Chapter 3 is devoted to a parametrization of the input source term and the
nonlinear interactions. The adequacy of these approximations is discussed in detail, as is the energy
balance in growing waves.

In Chapter 4 a brief overview is given of the method that is used to assimilate Altimeter wave height
data. This method is called Optimum Interpolation (OI) and is more or less a one to one copy obtained
from the work of Lorenc (1981). A detailed description of the method that is used at ECMWF, including
extensive test results is provided by Lionello et al. (1992). SAR data may be assimilated in a similar
manner.

Next, in Chapter 5 we discuss the numerical implementation of the model. We distinguish between a
prognostic part of the spectrum (that part that is explicitly calculated by the numerical model) (WAMDI
Group (1988)), and a diagnostic part. The diagnostic part of the spectrum has a prescribed spectral shape,
the level of which is determined by the energy of the highest resolved frequency bin of the prognostic part.
Knowledge of the unresolved part of the spectrum allows us to determine the nonlinear energy transfer
from the resolved part to the unresolved part of the spectrum. The prognostic part of the spectrum
is obtained by numerically solving the energy balance equation. The choice of numerical schemes for
advection, refraction and time integration is discussed. The integration in time is performed using a
fully-implicit integration scheme in order to be able to use large time steps without incurring numerical
instabilities in the high-frequency part of the spectrum. For advection and refraction we have chosen
a first order, upwinding flux scheme. Advantages of this scheme are discussed in detail, especially in
connection with the so-called garden sprinkler effect (see SWAMP Group (1985), p. 144). Alternatives to
first order upwinding, such as the semi-Lagrangian scheme which is gaining popularity in meteorology,
will be discussed as well.

4 IFS Documentation – Cy33r1



Part VII: ECMWF Wave Model

Chapter 6, is devoted to software aspects of the WAM model code with emphasis on flexibility, universality
and design choices. A brief summary of the detailed manual accompanying the code is given as well
(Günther et al., 1992). In Chapter 7 we give a list of applications of wave modelling at ECMWF, including
the two-way interaction of winds and waves, while in Chapter 8 a brief description is given of a method
to provide statistical information on extreme sea states from the two-dimensional wave spectrum.
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Chapter 2

The kinematic part of the energy balance
equation

Table of contents

2.1 Basic transport equation

2.2 Properties of the basic transport equation

2.2.1 Great circle propagation on the globe

2.2.2 Shoaling

2.2.3 Refraction

2.2.4 Current effects

2.3 Concluding remark

In this chapter we shall briefly discuss some properties of the energy balance equation in the absence
of sources and sinks. Thus, shoaling and refraction – by bottom topography and ocean currents – are
investigated in the context of a statistical description of gravity waves.

2.1 BASIC TRANSPORT EQUATION

Let x1 and x2 be the spatial coordinates and k1, k2 the wave coordinates, and let

z = (x1, x2, k1, k2) (2.1)

be their combined four-dimensional vector. The most elegant formulation of the “energy” balance equation
is in terms of the action density spectrum N which is the energy spectrum divided by the so-called intrinsic
frequency σ. The action density plays the same role as the particle density in quantum mechanics. Hence
there is an analogy between wave groups and particles, because wave groups with action N have energy
σN and momentum kN . Thus, the most fundamental form of the transport equation for the action
density spectrum N(k, x, t) without the source term can be written in the flux form

∂

∂t
N +

∂

∂zi
(żiN) = 0 (2.2)

where ż denotes the propagation velocity of a wave group in the four-dimensional phase space of x and k.
This equation holds for any field ż, and also for velocity fields which are not divergence-free in four-
dimensional phase space. In the special case when x and k represent a canonical vector pair – this is the
case, for example, when they are the usual Cartesian coordinates – the propagation equations for a wave
group (also known as the Hamilton–Jacobi propagation equations) are

ẋi =
∂

∂ki
Ω (2.3a)

k̇i = − ∂

∂xi
Ω (2.3b)

where Ω denotes the dispersion relation

ω = Ω(k, x, t) = σ + k · U (2.4)

with σ the so-called intrinsic frequency

σ =
√

gk tanh(kh) (2.5)
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where the depth h(x, t) and the current U(x, t) may be slowly-varying functions of x and t.

The Hamilton–Jacobi equations have some intriguing consequences. First of all, (2.3a) just introduces
the group speed ∂Ω/∂ki while (2.3b) expresses conservation of the number of wave crests. Secondly, the
transport equation for the action density may be expressed in the advection form

d

dt
N =

∂N

∂t
+ żi

∂

∂zi
N = 0 (2.6)

because, due to (2.3a) and (2.3b), the field ż for a continuous ensemble of wave groups is divergence-free
in four-dimensional phase space so

∂

∂zi
żi = 0 (2.7)

Thus, along a path in four-dimensional phase space defined by the Hamilton–Jacobi equations (2.3a) and
(2.3b), the action density N is conserved. This property only holds for canonical coordinates for which
the flow divergence vanishes (Liouville’s theorem – first applied by Dorrestein (1960) to wave spectra).
Thirdly, the analogy between Hamilton’s formalism of particles with Hamiltonian H and wave groups
obeying the Hamilton–Jacobi equations should be pointed out. Indeed, wave groups may be regarded as
particles and the Hamiltonian H and angular frequency Ω play similar roles. Because of this similarity
Ω is expected to be conserved as well (under the restriction that Ω does not depend on time). This can
be verified by direct calculation of the rate of change of Ω following the path of a wave group in phase
space,

d

dt
Ω = żi

∂

∂zi
Ω = ẋi

∂

∂xi
Ω + k̇i

∂

∂ki
Ω = 0 (2.8)

The vanishing of dΩ/dt follows at once upon using the Hamilton–Jacobi equations (2.3a) and (2.3b).
Note that the restriction of no time dependence of Ω is essential for the validity of (2.8), just as the
Hamiltonian H is only conserved when it does not depend on time t. The property (2.8) will play an
important role in our discussion of refraction.

Now turn to the important case of spherical coordinates. When one transforms from one set of coordinates
to another there is no guarantee that the flow remains divergence-free. However, noting that (2.2) holds
for any rectangular coordinate system, the generalization of the standard Cartesian geometry transport
equation to spherical geometry is straightforward (see also Groves and Melcer (1961) and WAMDI Group
(1988)). To that end let us consider the spectral action density N̂(ω, θ, φ, λ, t) with respect to angular
frequency ω and direction θ (measured clockwise relative to true north) as a function of latitude φ and
longitude λ. The reason for the choice of frequency as the independent variable (instead of, for example,
the wavenumber k) is that for a fixed topography and current the frequency Ω is conserved when following
a wave group; therefore the transport equation is simplified. In general, the conservation equation for N̂
thus reads

∂

∂t
N̂ +

∂

∂φ
(φ̇N̂) +

∂

∂λ
(λ̇N̂) +

∂

∂ω
(ω̇N̂) +

∂

∂θ
(θ̇N̂) = 0 (2.9)

and since ω̇ = ∂Ω/∂t the term involving the derivative with respect to ω drops out in the case of time-
independent current and bottom. The action density N̂ is related to the normal spectral density N with
respect to a local Cartesian frame (x, y) through N̂ dω dθ dφ dλ = N dω dθ dx dy, or

N̂ = NR2 cos φ (2.10)

where R is the radius of the earth. Substitution of (2.10) into (2.9) yields

∂

∂t
N + (cos φ)−1 ∂

∂φ
(φ̇ cos φN) +

∂

∂λ
(λ̇N) +

∂

∂ω
(ω̇N) +

∂

∂θ
(θ̇N) = 0 (2.11)

With cg the magnitude of the group velocity,

φ̇ = (cg cos θ − U|north)R−1 (2.12a)

λ̇ = (cg sin θ − U|east)(R cos φ)−1 (2.12b)

θ̇ = cg sin θ tan φR−1 + (k̇ × k)k−2 (2.12c)

ω̇ = ∂Ω/∂t (2.12d)

8 IFS Documentation – Cy33r1



Part VII: ECMWF Wave Model

represent the rates of change of the position and propagation direction of a wave packet. Equation (2.11)
is the basic transport equation which we will use in the numerical wave prediction model. The remainder
of this chapter is devoted to a discussion of some of the properties of (2.11). We first discuss some
peculiarities of (2.11) for the infinite depth case in the absence of currents and next we consider the
special cases of shoaling and refraction due to bottom topography and currents.

2.2 PROPERTIES OF THE BASIC TRANSPORT EQUATION

2.2.1 Great circle propagation on the globe

From (2.12a)–(2.12d) we infer that in spherical coordinates the flow is not divergence-free. Considering
the case of no depth refraction and no explicit time dependence, the divergence of the flow becomes

∂

∂φ
φ̇ +

∂

∂λ
λ̇ +

∂

∂θ
θ̇ +

∂

∂ω
ω̇ = cg cos θ tan φ/R 6= 0 (2.13)

which is non-zero because the wave direction, measured with respect to true north, changes while the
wave group propagates over the globe along a great circle. As a consequence wave groups propagate
along a great circle. This type of refraction is therefore entirely apparent and only related to the choice
of coordinate system.

2.2.2 Shoaling

Now discuss finite depth effects in the absence of currents by considering some simple topographies. We
first discuss shoaling of waves for the case of wave propagation parallel to the direction of the depth
gradient. In this case, depth refraction does not contribute to the rate of change of wave direction θ̇
because, with (2.3b), k × k̇ = 0. In addition, we take the wave direction θ to be zero so that the longitude
is constant (λ̇ = 0) and θ̇ = 0. For time-independent topography (hence ∂Ω/∂t = 0) the transport equation
becomes

∂

∂t
N + (cos φ)−1 ∂

∂φ
(φ̇ cos φN) = 0 (2.14)

where
φ̇ = cg cos θR−1 = cg/R (2.15)

and the group speed only depends on latitude φ. Restricting our attention to steady waves we immediately
find conservation of the action density flux in the latitude direction so that

cg cos φ

R
N = const (2.16)

If, in addition, it is assumed that the variation of depth with latitude occurs on a much shorter scale
than the variation of cos φ, the latter term may be taken constant for present purposes. It is then found
that the action density is inversely proportional to the group speed cg so

N ∼ 1/cg (2.17)

and if the depth is decreasing for increasing latitude, conservation of flux requires an increase of the action
density as the group speed decreases for decreasing depth. This phenomenon, which occurs in coastal
areas, is called shoaling. Its most dramatic consequences may be seen when tidal waves, generated by
earthquakes, approach the coast resulting in tsunamis. It should be emphasized though, that in the final
stages of a tsunami the kinetic description of waves, as presented here, breaks down because of strong
nonlinearity.

2.2.3 Refraction

The second example of finite depth effects that we consider is refraction. We again assume no current
and a time-independent topography. In the steady state the action balance equation becomes

(cos φ)−1 ∂

∂φ

(

cg

R
cos θ cos φN

)

+
∂

∂λ

(

cg sin θ

R cos φ
N

)

+
∂

∂θ
(θ̇oN) = 0 (2.18)
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where

θ̇o =

(

sin θ
∂

∂φ
Ω − cos θ

cos φ

∂

∂λ
Ω

)

(kR)−1 (2.19)

In principle, (2.18) can be solved by means of the method of characteristics. The details of this are not
given, but we would like to point out the role of the θ̇o term for the simple case of waves propagating
along the shore. Consider, therefore, waves propagating in a northerly direction (hence θ = 0) parallel to
the coast. Suppose that the depth only depends on longitude such that it decreases towards the shore.
The rate of change of wave direction is then positive as

θ̇o = − 1

kR cos φ

∂

∂λ
Ω > 0 (2.20)

since ∂Ω/∂λ < 0. Therefore, waves which are propagating initially parallel to the coast will turn towards
the coast. This illustrates that, in general, wave rays will bend towards shallower water resulting in, for
example, focussing phenomena and caustics. In this way a sea mountain plays a similar role for gravity
waves as a lens for light waves.

2.2.4 Current effects

Finally, we consider some current effects on wave evolution. First of all, a horizontal shear may result
in wave refraction; the rate of change of wave direction follows from (2.18) by taking the current into
account

θ̇c =
1

R

(

sin θ

[

cos θ
∂

∂φ
Uφ + sin θ

∂

∂φ
Uλ

]

− cos θ

cos φ

[

cos θ
∂

∂λ
Uφ + sin θ

∂

∂λ
Uλ

])

(2.21)

where Uφ and Uλ are the components of the water current in latitudinal and longitudinal directions.
Considering the same example as in the case of depth refraction, we note that the rate of change of the
direction of waves propagating initially along the shore is given by

θ̇c = − 1

R cos φ

∂

∂λ
Uφ (2.22)

which is positive for an along-shore current which decreases towards the coast. In that event the waves
will turn towards the shore.

The most dramatic effects may be found when the waves propagate against the current. For sufficiently
large current, wave propagation is prohibited and wave reflection occurs. This may be seen as follows.
Consider waves propagating to the right against a slowly varying current Uo. At x →−∞ the current
vanishes, decreasing monotonically to some negative value for x → +∞. Let us generate at x →−∞
a wave with a certain frequency value Ω0. Following the waves, we know from (2.8) that for time-
independent circumstances the angular frequency of the waves is constant, hence for increasing strength
of the current the wavenumber increases as well. Now, whether the surface wave will arrive at x → +∞
or not depends on the magnitude of the dimensionless frequency Ω0Um/g (where Um is the maximum
strength of the current); for Ω0Um/g < 1/4 propagation up to x → +∞ is possible, whereas in the opposite
case propagation is prohibited. Considering deep water waves only, the dispersion relation reads

Ω =
√

gk − kUo (2.23)

and the group velocity ∂Ω/∂k vanishes for k = g/4U2
o so that the value of Ω at the extremum is

Ωc = g/4Uo. At the location where the current has maximum strength the critical angular frequency
Ωc is the smallest. Let us denote this minimum value of Ωc by Ωc,min(= g/4Um). If now the oscillation
frequency Ω0 < Ωc,min is in the entire domain of consideration, then the group speed is always finite and
propagation is possible (this of course corresponds to the condition Ω0Um/g < 1/4), but in the opposite
case propagation is prohibited beyond a certain point in the domain. What actually happens at that
critical point is still under debate. Because of the vanishing group velocity, a large increase of energy
at that location may be expected suggesting that wave breaking plays a role. On the other hand, it
may be argued that near such a critical point the usual geometrical optics approximation breaks down
and that tunnelling and wave reflection occurs (Shyu and Phillips, 1990). A kinetic description of waves
which is based on geometrical optics then breaks down as well. This problem is not solved in the WAM
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model. In order to avoid problems with singularities and nonuniqueness (note that for finite Ωc one
frequency Ω corresponds to two wavenumbers) we merely transform to the intrinsic frequency σ (instead
of frequency Ω) because a unique relation between σ and wavenumber k exists.

2.3 CONCLUDING REMARK

Note that a global third generation wave model solves the action balance equation in spherical coordinates.
By combining previous results of this chapter, the action balance equation becomes

∂

∂t
N + (cos φ)−1 ∂

∂φ
(φ̇ cos φN) +

∂

∂λ
(λ̇N) +

∂

∂ω
(ω̇N) +

∂

∂θ
(θ̇N) = S (2.24)

where

φ̇ = (cg cos θ − U|north)R−1 (2.25a)

λ̇ = (cg sin θ − U|east)(R cos φ)−1 (2.25b)

θ̇ = cg sin θ tan φR−1 + θ̇D (2.25c)

ω̇ = ∂Ω/∂t (2.25d)

and

θ̇D =

(

sin θ
∂

∂φ
Ω − cos θ

cos φ

∂

∂λ
Ω

)

(kR)−1 (2.26)

and Ω is the dispersion relation given in (2.4). Before discussing possible numerical schemes to
approximate the left-hand side of (2.24) we shall first discuss the parametrization of the source term
S, where S is given by

S = Sin + Snl + Sds + Sbot (2.27)

These terms represent the physics of wind input, wave–wave interactions, dissipation due to whitecapping,
and bottom friction.
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Chapter 3

Parametrization of source terms and the
energy balance in a growing wind sea

Table of contents

3.1 Introduction

3.2 Wind input and dissipation

3.2.1 Wind gustiness and air density

3.2.2 Use of neutral winds

3.3 Nonlinear transfer

3.4 The energy balance in a growing wind sea

In this chapter we will be faced with the task of providing an efficient parametrization of the source terms
as they were introduced in Komen et al. (1994).

3.1 INTRODUCTION

The need for a parametrization is evident when it is realized that both the exact versions of the nonlinear
source term and the wind input require, per grid point, a considerable amount of computation time, say
10 seconds, on the fastest computer that is presently available. In practice, a typical one day forecast
should be completed in a time span of the order of two minutes, so it is clear that compromises have to be
made regarding the functional form of the source terms in the action balance equation. Even optimization
of the code representing the source terms by taking as most inner do-loop, a loop over the number of grid
points (thus taking optimal advantage of vectorisation) is not of much help here as the gain in efficiency
is at most a factor of 10 and as practical applications usually require several thousands of grid points or
more. Furthermore, although modern machines have parallel capabilities which result in a considerable
speed up, there has been a tendency to use this additional computation power for increases in spatial
resolution, and angular and frequency resolution rather then introducing more elaborate parametrizations
of the source terms. The present version of the ECMWF wave prediction system has a spatial resolution
of 40 km while the spectrum is discretized with 24 directions and 30 frequencies.

In Section 3.2 we discuss a parametrization of wind input and dissipation while Section 3.3 is devoted
to a discrete-interaction operator parametrization of the nonlinear interactions. The adequacy of the
approximation for wind input and nonlinear transfer is discussed as well. Dissipation owing to bottom
friction is not discussed here because the details of its parametrization were presented in Komen et al.
(1994, chapter II) as well as the relative merits of this approach being fully discussed. We merely quote
the main result

Sbot = −Cbot

k

sinh(2kh)
N (3.1)

where the constant Cbot = 0.038/g.

Finally, in Section 3.4 in which we study the energy balance equation in growing wind sea, the relative
importance of the physics source terms will be addressed.

3.2 WIND INPUT AND DISSIPATION

Results of the numerical solution of the momentum balance of air flow over growing surface gravity
waves have been presented in a series of studies by Janssen (1989), Janssen et al. (1989b) and Janssen
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(1991). The main conclusion was that the growth rate of the waves generated by wind depends on the
ratio of friction velocity and phase speed and on a number of additional factors, such as the atmospheric
density stratification, wind gustiness and wave age. So far systematic investigations of the impact of
the first additional two effects have not been made, except by Janssen and Komen (1985) and Voorrips
et al. (1994). It is known that stratification effects observed in fetch-limited wave growth can be partly
accounted for by scaling with u∗ (which is consistent with theoretical results). The remaining effect is
still poorly understood, and is therefore ignored in the standard WAM model. In this section we focus
on the dependence of wave growth on wave age, and the related dependence of the aerodynamic drag on
the sea state (the effect of which is fully included in the WAM model).

A realistic parametrization of the interaction between wind and wave was given by Janssen (1991), a
summary of which is given below. The basic assumption Janssen (1991) made, which was corroborated
by his numerical results of 1989, was that even for young wind sea the wind profile has a logarithmic
shape, though with a roughness length that depends on the wave-induced stress. As shown by Miles
(1957), the growth rate of gravity waves due to wind then only depends on two parameters, namely

x = (u∗/c) cos(θ − φ) and Ωm = gzo/u2
∗

(3.2)

As usual, u∗ denotes the friction velocity, c the phase speed of the waves, φ the wind direction and θ
the direction in which the waves propagate. The so-called profile parameter Ωm characterizes the state
of the mean air flow through its dependence on the roughness length zo. Thus, through Ωm the growth
rate depends on the roughness of the air flow, which, in its turn, depends on the sea state. A simple
parametrization of the growth rate of the waves follows from a fit of numerical results presented in
Janssen (1991). One finds

γ

ω
= ǫβx2 (3.3)

where γ is the growth rate, ω the angular frequency, ǫ the air–water density ratio and β the so-called
Miles’ parameter. In terms of the dimensionless critical height µ = kzc (with k the wavenumber and zc

the critical height defined by Uo(z = zc) = c) the Miles’ parameter becomes

β =
βm

κ2
µ ln4(µ), µ ≤ 1 (3.4)

where κ is the von Kármán constant and βm a constant. In terms of wave and wind quantities µ is given
as

µ =

(

u∗

κc

)2

Ωm exp(κ/x) (3.5)

and the input source term Sin of the WAM model is given by

Sin = γN (3.6)

where γ follows from (3.3) and N is the action density spectrum.

The stress of air flow over sea waves depends on the sea state and from a consideration of the momentum
balance of air it is found that the kinematic stress is given as (Janssen, 1991)

τ = (κU(zobs)/ ln(zobs/zo))
2 (3.7)

where
zo = α̂τ/g

√

1 − y , y = τw/τ (3.8)

Here zobs is the mean height above the waves and τw is the stress induced by gravity waves (the “wave
stress”)

τw = ǫ−1g

∫

dω dθ γN~k (3.9)

The frequency integral extends to infinity, but in its evaluation only an f−5 tail of gravity waves is
included and the higher level of capillary waves is treated as a background small-scale roughness. In
practice, we note that the wave stress points in the wind direction as it is mainly determined by the
high-frequency waves which respond quickly to changes in the wind direction.
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The relevance of relation (3.8) cannot be overemphasized. It shows that the roughness length is given by
a Charnock relation (Charnock, 1955)

zo = ατ/g (3.10)

However, the dimensionless Charnock parameter α is not constant but depends on the sea state through
the wave-induced stress since

α = α̂/

√

1 − τw

τ
(3.11)

Evidently, whenever τw becomes of the order of the total stress in the surface layer (this happens, for
example, for young wind sea) a considerable enhancement of the Charnock parameter is found, resulting
in an efficient momentum transfer from air to water. The consequences of this sea-state-dependent
momentum transfer is discussed in Chapter 7.

This finally leaves us with the choice of two unknowns namely α̂ from (3.11) and βm from (3.4). The
constant α̂ was chosen in such a way that for old wind sea the Charnock parameter α has the value
0.0185 in agreement with observations collected by Wu (1982) on the drag over sea waves. It should be
realised though, that the determination of α̂ is not a trivial task, as beforehand the ratio of wave-induced
stress to total stress is simply not known. It requires the running of a wave model. By trial and error the
constant α̂ was found to be α̂ = 0.01.

The constant βm is chosen in such a way that the growth rate γ in (3.3) is in agreement with the numerical
results obtained from Miles’ growth rate. For βm = 1.2 and a Charnock parameter α = 0.0144 we have
shown in Fig. 3.1 the comparison between Miles’ theory and (3.3). In addition observations as compiled by
Plant (1982) are shown. Realizing that the relative growth rate γ/f varies by four orders of magnitude it is
concluded that there is a fair agreement between our fit (3.3), Miles’ theory and observations. We remark
that the Snyder et al. (1981) fit to their field observations, which is also shown in Fig. 3.1, is in perfect
accordance with the growth rate of the low-frequency waves although growth rates of the high-frequency
waves are underestimated. Since the wave-induced stress is mainly carried by the high-frequency waves
an underestimation of the stress in the surface layer would result.

We conclude that our parametrization of the growth rate of the waves is in good agreement with
the observations. The next issue to be considered is how well our approximation of the surface stress
compares with observed surface stress at sea. Fortunately, during HEXOS (Katsaros et al., 1987) the wind
speed at 10 m height, U10, surface stress τ and the one-dimensional frequency spectrum were measured
simultaneously so that our parametrization of the surface stress may be verified experimentally. For a
given observed wind speed and wave spectrum, the surface stress is obtained by solving (3.7) for the stress
τ in an iterative fashion as the roughness length zo depends, in a complicated manner, on the stress. Since
the surface stress was measured by means of the eddy correlation technique, a direct comparison between
observed and modelled stress is possible. The work of Janssen (1992) shows that the agreement is good.

It is concluded that the parametrized version of quasi-linear theory gives realistic growth rates of the
waves and a realistic surface stress. However, the success of this scheme for wind input critically depends
on a proper description of the high-frequency waves. The reason for this is that the wave-induced stress
depends in a sensitive manner on the high-frequency part of the spectrum. Noting that for high frequencies
the growth rate of the waves (3.3) scales with wavenumber as

γ ∼ k3/2 (3.12)

and the usual whitecapping dissipation scales as

γd ∼ k (3.13)

an imbalance in the high-frequency wave spectrum may be anticipated. Eventually, wind input will
dominate dissipation due to wave breaking, resulting in energy levels which are too high when compared
with observations. Janssen et al. (1989a) realized that the wave dissipation source function has to be
adjusted in order to obtain a proper balance at the high frequencies. The dissipation source term of
Hasselmann (1974) is thus extended as

Sds = −Cds〈ω〉(〈k〉2m0)
2[(1 − δ)k/〈k〉 + δ(k/〈k〉)2]N (3.14)
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Figure 3.1 Comparison of theoretical growth rates with observations compiled by Plant (1982). Full line:
Miles’ theory; full squares: parametrization of Miles’ theory (3.3); dashed line: the fit by Snyder et al.
(1981).

where Cds and δ are constants, m0 is the total wave variance per square metre, k the wavenumber, and
〈ω〉 and 〈k〉 are the mean angular frequency and mean wavenumber, respectively. The choice of the above
dissipation source term may be justified as follows. In Hasselmann (1974), it is argued that whitecapping
is a process that is weak-in-the-mean, therefore the corresponding dissipation source term is linear in the
wave spectrum. Assuming that there is a large separation between the length scale of the waves and the
whitecaps, the power of the wavenumber in the dissipation term is found to be equal to one. For the
high-frequency part of the spectrum, however, such a large gap between waves and whitecaps may not
exist, allowing the possibility of a different dependence of the dissipation on wavenumber.

Before Cy29r1, the mean frequency 〈ω〉 was defined by means of the inverse mean frequency

〈ω〉 =

∫

d~k F (~k)/

∫

d~k F (~k)/ω (3.15)

with F (~k) the wavenumber spectrum, ~k the wavenumber and ω the angular frequency. A similar relation
for the mean wavenumber 〈k〉 is used

√

〈k〉 =

∫

d~k F (~k)/

∫

d~k F (~k)/
√

k. (3.16)

Using the discrete interaction approximation (DIA) to the nonlinear transfer, Janssen (see Komen et al.,
1994) found optimal results with δ = 0.5 and Cds = 4.5.

Upon inspection of (3.15) and (3.16), it is apparent that the mean steepness and mean frequency
parameters used in the above parametrization of the dissipation are to a considerable extent determined
by the low frequency part of the spectrum (swell) rather than by the windsea part of the spectrum.
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As discussed in Bidlot et al. (2006), this had unwanted consequences when both swell and windsea are
present.

Hence, since Cy29r1, the mean wave number 〈k〉 and mean frequency 〈ω〉 are defined using weighted
spectral integrals that put more emphasis on the high frequencies. The mean angular frequency 〈ω〉 is
now defined by means of the first ω-moment of the spectrum

〈ω〉 =

∫

d~k ωF (~k)/

∫

d~k F (~k) (3.17)

A similar relation for the mean wavenumber 〈k〉 is also used

√

〈k〉 =

∫

d~k
√

kF (~k)/

∫

d~k F (~k) (3.18)

This concludes the description of the input source term and the dissipation source term due to
whitecapping. Although the wind input source function is fairly well-known from direct observations,
there is relatively little hard evidence on dissipation. Presently, the only way out of this is to take the
functional form for the dissipation in (3.14) for granted and to tune the constants Cds and δ in such a
way that the action balance equation (2.24) produces results which are in good agreement with data on
fetch-limited growth and with data on the dependence of the surface stress on wave age. In addition, a
reasonable dissipation of swell should be obtained. A tuning exercise was performed in such a way that
the duration limited growth curve for significant wave height and the time evolution of the Charnock
parameter resembled as much as possible the corresponding results of the previous version of the wave
model. As a result we found that

Cds = 2.1, δ = 0.6 and α̂ = 0.0095 (3.19)

3.2.1 Wind gustiness and air density

The input source term given in (3.6) and (3.3) assumes homogeneous and steady wind velocity within
a model grid-box and during a time-step. Assuming that the wind speed variations with scales much
larger than both the spatial resolution and the time step are already resolved by the atmospheric model,
we need to include the impact of the wind variability at scales comparable to or lower than the model
resolution (which is called wind gustiness). To achieve this, an enhanced input source term with the mean
impact of gustiness can be estimated as

γ̄(u∗) =
1

σ∗

√
2π

∫

∞

−∞

exp

{

− (u∗ − ū∗)
2

2σ2
∗

}

γ(u∗)du∗ (3.20)

where u∗ represents the instantaneous (unresolved) wind friction velocity, σ∗ is the standard deviation
of the friction velocity and the over-barred quantity represents the mean value of the quantity over the
whole grid-box/time-step. Note that this is the (gust-free) value obtained from the atmospheric model.
The integral above can be approximated using the Gauss-Hermite quadrature as

γ̄(u∗) = 0.5 [γ(ū∗ + σ∗) + γ(ū∗ − σ∗)] (3.21)

The magnitude of variability can be represented by the standard deviation of the wind speed. To estimate
the standard deviation value, one can use the empirical expression proposed by Panofsky et al. (1977)
which can be written as

σ10

u∗

=

{

b +
1

2

(zi

L

)

}1/3

(3.22)

where σ10 is the standard deviation of the 10 m wind speed, zi is the height of the lowest inversion,
L is the Monin-Obukhov length, and b is a constant representing the background gustiness level that
exists all the times irrespective of the stability conditions. The quantity zi/L, which is a measure for the
atmospheric stability, is readily available in the atmospheric model. The impact of the background level
of gustiness is already included implicitly in the parameterisations of the atmospheric model as well as
in the wave model. Therefore, the constant value is used as 0 (Abdalla and Bidlot, 2002).
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The growth rate of waves is proportional to the ratio of air to water density, ǫ, as can be seen in (3.3).
Under normal conditions, seawater density varies within a very narrow range and, therefore, it can be
assumed to be constant. On the other hand, air density has a wider variability and needs to be evaluated
for better wave predictions. Based on basic thermodynamic concepts, it is possible to compute the air
density using the formula

ρair =
P

RTv
(3.23)

where P is the atmospheric pressure, R ≃ 287.04 J kg−1 K−1 is a constant defined as R = R+/ma, with
R+ the universal gas constant (R+ ≃ 8314.36 J kmol−1 K−1) and ma is the molecular weight of the dry
air (≃ 28.966 kg kmol−1), and Tv is the virtual temperature. The virtual temperature can be related to
the actual air temperature, T , and the specific humidity, q, by: Tv ≃ (1 + 0.6078q)T . In particular, the
surface pressure is used for P , the skin temperature is used for T , and the humidity at 2 m height is used
for q (Abdalla and Bidlot, 2002).

3.2.2 Use of neutral winds

The WAM model was developed in term of surface stress as expressed by the friction velocity u∗. The
relation between u∗ and the wind speed at a given height (currently 10 m) is assumed to be given by
the logarithmic profile corresponding to neutral stability condition. The wave model should therefore be
forced by surface stresses. However it is usually forced by wind speeds because they are readily available.
Hence, these winds should be transformed into their neutral wind counterparts. In the coupled IFS/WAM
system, this transformation can easily be achieved on the IFS side by using the atmospheric surface stress
and the logarithmic wind profile with the roughness length based on the Charnock parameter (Fig. 3.2).
This conversion has been successfully tested and implemented in Cy28r1.

Figure 3.2 Schematic representation of the interface between the IFS and WAM.
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3.3 NONLINEAR TRANSFER

In Komen et al. (1994) the derivation of the source function Snl, describing the nonlinear energy transfer,
was given from first principles. For surface gravity waves the nonlinear energy transfer is caused by four
resonantly interacting waves, obeying the usual resonance conditions for the angular frequency and the
wave numbers. Owing to resonant four-wave interactions the rate of change of the action density spectrum
N = gF (~k)/ω (where F is the wave variance spectrum) is given by

Snl = 4

∫

d~k1,2,3T
2
1,2,3,4δ(

~k1 + ~k2 − ~k3 − ~k4)Ri(∆ω, t) [N1N2(N3 + N4) − N3N4(N1 + N2)] , (3.24)

where for resonant waves Ri(∆ω, t) = πδ(ω1 + ω2 − ω3 − ω4) and T1,2,3,4 is a known interaction
coefficient.The evaluation of Snl therefore requires an enormous amount of computation because a three-
dimensional integral needs to be evaluated. In the past several attempts have been made to try to obtain
a more economical evaluation of the nonlinear transfer. The approach that was most successful to date
is the one by Hasselmann et al. (1985). The reason for this is that their parametrization is both fast and
it respects the basic properties of the nonlinear transfer, such as conservation of momentum, energy and
action, while it also produces the proper high-frequency spectrum.

To this end, Hasselmann et al. (1985) constructed a nonlinear interaction operator by considering only a
small number of interaction configurations consisting of neighbouring and finite distance interactions. It
was found that, in fact, the exact nonlinear transfer could be well simulated by just one mirror-image pair
of intermediate range interactions configurations. In each configuration, two wavenumbers were taken as
identical k1 = k2 = k. The wavenumbers k3 and k4 are of different magnitude and lie at an angle to the
wavenumber k, as required by the resonance conditions. The second configuration is obtained from the
first by reflecting the wavenumbers k3 and k4 with respect to the k-axis. The scale and direction of the
reference wavenumber are allowed to vary continuously in wavenumber space.

The simplified nonlinear operator is computed by applying the same symmetrical integration method
as is used to integrate the exact transfer integral (see also Hasselmann and Hasselmann, 1985), except
that the integration is taken over a two-dimensional continuum and two discrete interactions instead
of five-dimensional interaction phase space. Just as in the exact case the interactions conserve energy,
momentum and action.

For the configurations

ω1 = ω2 = ω

ω3 = ω(1 + λ) = ω+ (3.25)

ω4 = ω(1 − λ) = ω−

where λ = 0.25, satisfactory agreement with the exact computations was achieved. From the resonance
conditions the angles θ3, θ4 of the wavenumbers k3(k+) and k4(k−) relative to k are found to be
θ3 = 11.5◦, θ4 = −33.6◦.

The discrete interaction approximation has its most simple form for the rate of change in time of the
action density in wavenumber space. In agreement with the principle of detailed balance, we have

∂

∂t





N
N+

N−



 =





−2
+1
+1



 Cg−8f19[N2(N+ + N−) − 2NN+N−]∆k (3.26)

where ∂N/∂t, ∂N+/∂t, ∂N−/∂t are the rates of change in action at wavenumbers k, k+, k− due to the
discrete interactions within the infinitesimal interaction phase-space element ∆k and C is a numerical
constant. The net source function Snl is obtained by summing 3.26 over all wavenumbers, directions and
interaction configurations.

For a JONSWAP spectrum the approximate and exact transfer source functions have been compared in
Komen et al. (1994). The nonlinear transfer rates agree reasonably well, except for the strong negative
lobe of the discrete-interaction approximation. This feature is, however, less important for a satisfactory
reproduction of wave growth than the correct determination of the positive lobe which controls the down
shift of the spectral peak.
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The usefulness of the discrete-interaction approximation follows from its correct reproduction of the
growth curves for growing wind sea. This is shown in Fig. 3.3 where a comparison is given of fetch-limited
growth curves for some important spectral parameters computed with the exact nonlinear transfer, or,
alternatively, with the discrete-interaction approximation. Evidence of the stronger negative lobe of the
discrete interaction approximation is seen through the somewhat smaller values of the Phillips constant
αp. The broader spectral shape corresponds with the smaller values of peak enhancement γ for the
parametrized case. On the other hand, the agreement of the more important scale parameters, the energy
ǫ∗ and the peak frequency ν∗, is excellent (note that as always an asterisk denotes non-dimensionalisation
of a variable through g and the friction velocity u∗).

Figure 3.3 Comparison of fetch-growth curves for spectral parameters computed using the exact form
and the discrete interaction approximation of Snl. All variables are made dimensionless using u∗ and g.

The above analysis considered deep water waves only. Finite-amplitude deep-water waves are subject to
modulational instability which results in a nonlinear energy transfer among the components in the wave
spectrum, which eventually can lead to the formation of extreme waves. However, in shallow water, finite-
amplitude surface gravity waves generate a current and deviations from the mean surface elevation. This
stabilizes the modulational instability, and as a consequence, in a fairly wide range around kD = 1.363
the nonlinear transfer becomes small. In addition, while for kD > 1.363 there is nonlinear focussing giving
the possibility of the formation of extreme waves, in the opposite case the process of nonlinear focussing
ceases to exist. This is a well-known property of surface gravity waves.

Janssen and Onorato (2007) have discussed the consequences of the generation of a wave-induced
current for the evolution of the wave spectrum. For wave forecasting purposes the evaluation of the
three dimensional integral given in (3.24) is too time consuming and in practice we resort to the
Direct-Interaction Approximation (DIA) of Hasselmann et al. (1985) described above. In the direct
interaction approximation, the strength of the nonlinear interactions is estimated using the narrow-band
approximation as given by (3.24). Hence, in DIA the nonlinear interactions scale with the scaling factor
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S given by

S =
k2T 2

0,0,0,0

|ω′′

0 |
, (3.27)

where ω′′

0 is the second derivative of angular frequency with respect to carrier wavenumber k. The second
derivative stems from the delta-function for the frequencies in the limit of a narrow-band spectrum. For
surface gravity waves on water of finite depth D the dispersion relation reads

ω0 =
√

gk0T0, T0 = tanh x, x = k0D, (3.28)

while the first and second derivative become

vg = ω′

0 =
1

2
c0

{

1 +
2x

sinh 2x

}

, c0 =
ω0

k0

, (3.29)

and

ω′′

0 = − g

4ω0k0T0

× Ω′′, (3.30)

with

Ω′′ =
{

T0 − x
(

1 − T 2
0

)}2
+ 4x2T 2

0

(

1 − T 2
0

)

. (3.31)

Note that for any value of the depth D the second derivative is always negative. Finally, the narrow-band
limit of the interaction coefficient is given by

T0,0,0,0/k3
0 = Xnl =

9T 4
0 − 10T 2

0 + 9

8T 3
0

− 1

k0D

{

(2vg − c0/2)
2

c2
S − v2

g

+ 1

}

. (3.32)

with cS =
√

gD which is the shallow water wave velocity. Notice that the interaction coefficient consists
of two terms where the first term is connected with the nonlinear dispersion relation for surface gravity
waves, while the second term is due to effects of wave-induced current and corresponding changes in the
mean sea level. These two terms are of definite sign so they may cancel each other, which, in fact, happens
for x = k0D = 1.363. Hence, for intermediate water depth waves the nonlinear interactions are expected
to play a relatively minor role. So far this property of the nonlinear transfer has not been incorporated
in modern wave prediction models.

It is of interest to study the scaling factor S in the deep water limit first. Then, T0,0,0,0 → k3
0 ,

ω′′

0 →−g/4k0ω0, while ω0 →
√

gk0. The scaling factor becomes, apart from a constant,

S =
ω19

0

g10
, (3.33)

which is the usual scaling factor found in the deep-water DIA. In the general case one finds

S =
ω0k

9
0

g

T0X
2
nl

Ω′′
=

ω19
0

g10

1

T 8
0

X2
nl

Ω′′
, (3.34)

and as a natural extension of the deep-water DIA towards shallow waters we have introduced the scaling
factor (3.34) into Cy33r1 of the ECMWF wave model software. This scaling factor will give rise to an
expected reduction of the strength of the nonlinear transfer around k0D = 1.363, which has consequences
for the frequency downshift of the spectrum in shallow waters. Note that for very shallow water, the
scaling factor can become, very large. In the current implementation, we have limited its value. Namely,

S =
ω19

0

g10
max

(

1

T 8
0

X2
nl

Ω′′
, 10

)

. (3.35)

As expected, this new addition to S is only active in shallow water. On a global scale, its impact will
be limited to the few shallow areas around the world. Furthermore, as discussed in Janssen and Onorato
(2007) there are also implications for the determination of the surface elevation kurtosis (and therefore
for the generation of extreme events) as for k0D < 1.363 the nonlinear transfer gives rise to defocussing
rather than focussing (as happens in the opposite case of k0D > 1.363).
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3.4 THE ENERGY BALANCE IN A GROWING WIND SEA

Having discussed the parametrization of the physics source terms we now proceed with studying the
impact of wind input, nonlinear interaction and whitecap dissipation on the evolution of the wave
spectrum for the simple case of a duration-limited wind sea. To this end we numerically solved (2.24) for
infinite depth and a constant wind of approximately 18 m/s, neglecting currents and advection. Typical
results are shown in Fig. 3.4 for a young wind sea (T = 3 h) and in Fig. 3.5 for an old wind sea (T = 96 h).
In either case the directional averages of Snl, Sin and Sds are shown as functions of frequency. First of all
we observe that, as expected from our previous discussions, the wind input is always positive, and the
dissipation is always negative, while the nonlinear interactions show a three lobe structure of different
signs. Thus, the intermediate frequencies receive energy from the airflow which is transported by the
nonlinear interactions towards the low and high frequencies.

Figure 3.4 The energy balance for young duration-limited wind sea.

Figure 3.5 The energy balance for old wind sea.
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Concentrating for the moment on the case of young wind sea, we immediately conclude that the one-
dimensional frequency spectrum in the “high”-frequency range must be close to f−4, because the nonlinear
source term is quite small (see the discussion in chapter II.3.10 of Komen et al. (1994) on the energy
cascade caused by the four-wave interactions and the associated equilibrium shape of the spectrum).
We emphasize, however, that because of the smallness of Snl it cannot be concluded that the nonlinear
interactions do not control the shape of the spectrum in this range. On the contrary, a small deviation
from the equilibrium shape would give rise to a large nonlinear source term which will drive the spectrum
back to its equilibrium shape. The role of wind input and dissipation in this relaxation process can only
be secondary because these source terms are approximately linear in the wave spectrum. The combined
effect of wind input and dissipation is more of a global nature in that they constrain the magnitude of
the energy flow through the spectrum (which is caused by the four-wave interactions).

At low frequencies we observe from Fig. 3.4 that the nonlinear interactions maintain an “inverse”
energy cascade by transferring energy from the region just beyond the location of the spectral peak (at
f ≃ 0.12 Hz) to the region just below the spectral peak, thereby shifting the peak of the spectrum towards
lower frequencies. This frequency downshift is, however, to a large extent determined by the shape and
magnitude of the spectral peak itself. For young wind sea, having a narrow peak with a considerable peak
enhancement, the rate of downshifting is significant while for old wind sea this is much less so. During the
course of time the peak of the spectrum gradually shifts towards lower frequencies until the peak of the
spectrum no longer receives input from the wind because these waves are running faster than the wind.
Under these circumstances the waves around the spectral peak are subject to a considerable dissipation so
that their wave steepness becomes reduced. Consequently, because the nonlinear interactions depend on
the wave steepness, the nonlinear transfer is reduced as well. The peak of the positive low-frequency lobe
of the nonlinear transfer remains below the peak of the spectrum, where it compensates the dissipation.
As a result, a quasi-equilibrium spectrum emerges. The corresponding balance of old wind sea is shown
in Fig. 3.5. The nature of this balance depends on details of the directional distribution (see Komen
et al. (1984) for additional details). The question of whether an exact equilibrium exists appears of little
practical relevance. For old wind sea the timescale of downshifting becomes much larger than the typical
duration of a storm. Thus, although from the present knowledge of wave dynamics it cannot be shown
that wind-generated waves evolve towards a steady state, for all practical purposes they do!
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Chapter 4

Data assimilation in WAM

Table of contents

4.1 Introduction

4.2 Wave height analysis

4.2.1 The analysed wave spectrum

4.2.2 Retrieval of a wind sea spectrum

4.2.3 Retrieval of a swell spectrum

4.2.4 The general case

4.3 Wave spectrum analysis

4.3.1 Assimilation of wave data

4.3.2 SAR data

4.3.3 SAR data assimilation

The optimal interpolation method described in this chapter was developed for the WAM model and is
operational at ECMWF (Lionello et al., 1992). Similar single-time level data assimilation techniques for
satellite altimeter wave heights have been applied by Janssen et al. (1987, 1989a), Hasselmann et al.
(1988), Thomas (1988), and Lionello and Janssen (1990).

4.1 INTRODUCTION

We are dealing with the well-known problem that there are more degrees of freedom than observations
because the altimeter only provides us with significant wave height. Thus, instead of estimating the full
state vector, we estimate only the significant wave height field H (the index S in the notation for the
significant wave height is dropped in the following discussion). The data vector df consists then of the
first-guess model wave heights, interpolated to the locations of the altimeter observations, while do are
the actually observed altimeter wave heights.

The assimilation procedure consists of two steps.

• An analysed field of significant wave heights is created by optimum interpolation, in accordance with
the general optimum interpolation (OI) approach outlined in Lorenc (1981) and with appropriate
assumptions regarding the error covariances.

• This field is used to retrieve the full two-dimensional wave spectrum from a first-guess
spectrum, introducing additional assumptions to transform the information of a single wave height
measurement into separate corrections for the wind sea and swell components of the spectrum.

The problem of using wave height observations for correcting the full two-dimensional spectrum was first
considered by Hasselmann et al. (1988) and Bauer et al. (1992), who assimilated SEASAT altimeter
wave heights into the WAM model by simply applying a constant correction factor, given by the ratio
of altimeter and model wave heights, to the entire spectrum. A shortcoming of this method was that
the wind field was not corrected. Thus, although swell corrections were retained for several days, the
corrected wind sea relaxed back rapidly to the original incorrect state due to the subsequent forcing by
uncorrected winds. Janssen et al. (1987) removed this shortcoming by extending the method to include
wind corrections, but nevertheless achieved only short relaxation times due to the choice of an insufficient
correlation scale (the corrections were essentially limited to a single gridpoint). This was remedied in later
versions of the scheme described below.
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As in most of these schemes, the present method corrects the two-dimensional spectrum by introducing
appropriate rescaling factors to the energy and frequency scales of the wind sea and swell components of
the spectrum, and also updates the local forcing wind speed. The rescaling factors are computed for two
classes of spectra: wind sea spectra, for which the rescaling factors are derived from fetch and duration
growth relations, and swell spectra, for which it is assumed that the wave steepness is conserved. All
observed spectra are assigned to one of these two classes. This restriction will be removed in the planned
extension of the scheme to include SAR wave mode data.

4.2 WAVE HEIGHT ANALYSIS

First, an analysis of the significant wave height field Ha = (Ha
i ) is created by optimum interpolation (cf.

Lorenc, 1981) so that

Ha
i = Hf

i +

nobs
∑

j=1

Wij(H
o
j − Hf

j) (4.1)

where Ho denotes the significant wave height field observed by the altimeter and Hf is the first-guess
significant wave height field computed by the WAM model. Since long-term statistics of the prediction
and observational error covariance matrices equation were not available, empirical expressions were taken
given by

σf
ij = σf exp(−|xi − xj |/L) and σo

ij = δij(σ
o
i /σf

j) (4.2)

Good results were obtained for a correlation length L = 1650 km. This is consistent with the optimal
scale length found by Bauer et al. (1992) using a triangular interpolation scheme. However, at ECMWF
we use a much smaller value of 300 km.

4.2.1 The analysed wave spectrum

In the next step, the full two-dimensional wave spectrum is retrieved from the analysed significant wave
height fields. Two-dimensional wave spectra are regarded either as wind sea spectra, if the wind sea
energy is larger than 3/4 times the total energy, or, if this condition is not satisfied, as swell.

In both cases an analysed two-dimensional wave spectrum F a(f, θ; x, t) is computed from the first-guess
wave spectrum F f(f, θ; x, t) and the optimally interpolated wave heights Ha

i by rescaling the spectrum
with two scale parameters A and B such that

F a(f, θ) = AF f(Bf, θ) (4.3)

Different techniques are applied to compute the parameters A and B for wind sea or swell spectra.

4.2.2 Retrieval of a wind sea spectrum

The parameters A and B in (4.3) can be determined from empirical duration-limited growth laws relating,
in accordance with the scaling laws of Kitaigorodskii (1962), the non-dimensional energy ǫ∗ = u4

∗
ǫ/g2

(where ǫ = (H/4)2), mean frequency f̄∗ = u∗f̄/g and duration T∗ = u∗T/g. Specifically, we take the
following relations

ǫ∗(t∗) = 1918.5[t∗/(t∗ + 0.754× 106)]1.668 (4.4)

and
ǫ∗(f̄∗) = 11.741× 10−4f̄−2.779

∗
(4.5)

These relationships deviate considerably from the ones proposed by Lionello et al. (1992).

The mean frequency is preferred to the peak frequency because its computation is more stable. Since
the first-guess friction velocity was used to generate the waves and the first-guess wave height is known,
an estimate of the duration T of the wind sea can be derived from the duration-limited growth laws.
Assuming this estimated duration is correct, the analysed wave height yields from the growth laws, (4.4)
and (4.5), the best estimates of the friction velocity ua

∗
and mean frequency f̄a. The analysed wave height

and mean frequency determine then the two parameters A and B given by

A =

(

Ha

H f

)2

B and B = f̄ f/f̄a (4.6)
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The corrected best-estimate winds are then used to drive the model for the rest of the wind time step.
In a comprehensive wind and wave assimilation scheme, the corrected winds should be also inserted into
the atmospheric data assimilation scheme to provide an improved wind field in the forecast model.

4.2.3 Retrieval of a swell spectrum

A spectrum is converted to swell and begins to decay at the edge of a storm, before dispersion has
separated the swell into spatially distinct frequencies. One can therefore distinguish between a nonlinear
swell regime close to the swell source and a more distant linear regime, where dispersion has reduced
the swell wave slopes to a level at which nonlinear interactions have become negligible. Because of these
complexities, and also because of a lack of adequate data, there exist no empirical swell decay curves
comparable to the growth curves in the wind sea case. However, Lionello and Janssen (1990) showed that
for the WAM model swell spectra the average wave steepness is

s = 〈k〉H/8π (4.7)

is approximately the same for all spectra at the same decay times, despite the wide range of significant
wave heights and mean frequencies of their data set. Assuming that the effective decay time and therefore
the wave steepness is not affected by the correction of the wave spectrum, the scale factors are then given
by

B = (Ha/H f)
1

2 (4.8)

A = B(Ha/H f)2 (4.9)

Intuitively, this approach appears reasonable, because a more energetic spectrum will generally also have
a lower peak frequency, and increasing the energy without decreasing the peak frequency produces a swell
of unrealistic steepness. Since the swell spectrum is not related to the local stress, and only the local wind
field is corrected in the assimilation scheme, the wind field is not updated in the case of swell.

4.2.4 The general case

It was shown in Lionello et al. (1992) that the wind sea and swell retrieval scheme works well for simple
cases or pure wind sea or swell. If the spectrum consists of a superposition of wind sea and swell, and the
wind sea is well separated from the swell, the wind sea and swell correction methods can, in principle,
still be applied separately to the two components of the spectrum. In this case, however, one needs to
introduce additional assumptions regarding the partitioning of the total wave height correction between
wind sea and swell.

The arbitrariness of the present and similar methods of distributing a single wave height correction
over the full two-dimensional wave spectrum could presumably be partially alleviated by using maximum
likelihood methods based on a large set of observed data, which is now becoming available through ERS-1.
However, a more satisfactory solution is clearly to assimilate additional data, such as two-dimensional
SAR spectral retrievals, to overcome the inherently limited information content of altimeter wave height
data.

4.3 WAVE SPECTRUM ANALYSIS

4.3.1 Assimilation of wave data

The operational wave model at ECMWF has used altimeter wave height observations since August 1993,
first with ERS-1 data and then with ERS-2 until the end of October 2003 when altimeter data from
ENVISAT was used instead of ERS-2 because of the lost of ERS-2 global coverage in June 2003. In
addition, since February 2006 Altimeter data from Jason is used in the operational analysis as well, and
therefore Altimeters provide a good coverage over the world oceans. Until recently, altimeter data was
the only data source in the wave model assimilation. Unfortunately, the altimeter only yields significant
wave heights and wind speeds over a small footprint. A more accurate description of the sea state
requires the full two-dimensional wave energy spectrum. Such observations, albeit neither necessarily
fully comprehensive nor independent, are already available with the ERS synthetic aperture radar (SAR).
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With the launch of ENVISAT, an advanced SAR (ASAR) with a higher spectral resolution operates at
twice the current ERS data coverage by providing data every 100 km along the SAR swath over the
oceans.

4.3.2 SAR data

Spectra as derived from the ERS-2 SAR wave mode imagette spectra are processed operationally
to retrieve ocean wave spectra using an inversion scheme based on the work done by Hasselmann
et al. (1996) at the Max Planck Institut (MPI). The inversion scheme relies on a model first
guess to resolve the directional ambiguity and to provide first guess information on the high
frequency part of the wave spectrum. A basic monitoring of the data is done and reported to ESA
(http://w3ec2.ecmwf.int/wave/ers/ers2-reports.html). Note however, that due to the motion of the
scattering elements induced by the long waves, the SAR only images part of the total wave spectrum.
Waves with wavelength shorter than an observation dependent cut-off wavelength are not detected or
are heavily distorted. In preparation to the assimilation of SAR data, WAM was modified to include the
SAR inversion software as a callable subroutine; therefore all pertinent information from the inversion
can be passed to the assimilation.

4.3.3 SAR data assimilation

So far we have only evaluated a method that has already been tested in previous studies. The method is
based on the assimilation of wave systems as derived from a spectral partitioning scheme, which works
on the principle of the inverted catchment area (Hasselmann et al., 1997; Breivik et al., 1998; Voorrips
et al., 1997). The different wave systems are characterised by means of their mean energy, frequency and
direction. The mean parameters are assimilated using an optimal interpolation scheme following a cross
assignment procedure that correlates the observed and modelled wave systems. The analysed spectra are
reconstructed by resizing and reshaping the model spectra based on the mean parameters obtained from
the OI scheme. The SAR assimilation software has been included in the WAM code and can be called in
conjunction with the inversion package. Note that the SAR assimilation is performed before the altimeter
assimilation as described in Section 4.2.

As reported in the preliminary assessment of the method at the ECMWF workshop on ocean wave
forecasting, difficulties were encountered when the method was tested at the current spectral resolution
of the wave model (24 directions, 30 frequencies). At the end, it was necessary to introduce some smoothing
to reduce the number of spectral partitions and to limit the assimilation to wave systems that are longer
than the cut-off wavelength as determined by the SAR inversion.

Following an extensive testing period (Research Department Memorandum R60.9/JB/0274,
http://w3ec2.ecmwf.int/wave/documents/memo CY25R3.pdf), the scheme became operational in
January 2003. Unfortunately, the ERS-2 global coverage was lost in June 2003 and is now mostly limited
to the North Atlantic. Assimilation of ENVISAT ASAR data commenced in February 2006.
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Chapter 5

Numerical scheme
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In this chapter we discuss the numerical aspects of the solution of the action balance equation as
implemented in the ECMWF version of the WAM model.

5.1 INTRODUCTION

Although, thus far, we have discussed the transport equation for gravity waves for the action density,
because this is the most natural thing to do from a theoretical point of view, the actual WAM model is
formulated in terms of the frequency-direction spectrum F (f, θ) of the variance of the surface elevation.
The reason for this is that in practical applications one usually deals with surface elevation spectra,
because these are measured by buoys. The relation between the action density and the frequency spectrum
is straightforward. It is given by

F (ω, θ) = σN(ω, θ) (5.1)

where σ is the intrinsic frequency (see also (2.4)). This relation is in accordance with the analogy between
wave packets and particles, since particles with action N have energy σN and momentum kN .

The continuous wave spectrum is approximated in the numerical model by means of step functions which
are constant in a frequency-direction bin. The size of the frequency-direction bin depends on frequency.
A distinction is being made between a prognostic part and a diagnostic part of the spectrum. The
prognostic part of the spectrum has KL directional bands and ML frequency bands. These frequency
bands are on a logarithmic scale, with ∆f/f = 0.1, spanning a frequency range fmax/fmin = (1.1)ML−1.
The logarithmic scale has been chosen in order to have uniform relative resolution, and also because the
nonlinear transfer scales with frequency. The starting frequency may be selected arbitrarily. In most global
applications the starting frequency fo is 0.042 Hz, the number of frequencies ML is 25 and the number
of directions KL is 24 (15◦ resolution). For closed basins, such as the Mediterranean Sea where low-
frequency swell is absent, a choice of starting frequency fo of 0.05 Hz is sufficient. The present version
of the ECMWF wave prediction system has 24 directions and 30 frequencies, with starting frequency
fo = 0.035 Hz.

Beyond the high-frequency limit fhf of the prognostic region of the spectrum, an f−5 tail is added, with
the same directional distribution as the last band of the prognostic region. The diagnostic part of the
spectrum is therefore given as

F (f, θ) = F (fhf , θ)

(

f

fhf

)

−5

for f > fhf (5.2)

In the ECMWF version of the WAM model the high-frequency limit is set as

fhf = min{fmax, 2.5〈f〉windsea} (5.3)
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Thus, the high-frequency extent of the prognostic region is scaled by the mean frequency 〈f〉windsea of
the local windsea. A dynamic high-frequency cut-off, fhf , rather than a fixed cut-off at fmax is necessary
to avoid excessive disparities in the response time scales within the spectrum.

A diagnostic tail needs to be added for f > fhf to compute the nonlinear transfer in the prognostic region
and also to compute the integral quantities which occur in the dissipation source function. Tests with an
f−4 tail show that (apart from the calculation of the wave-induced stress) the results are not sensitive
to the precise form of the diagnostic tail. The contribution to the total energy from the diagnostic tail
is normally negligible. Because observations seem to favour an f−5 power law (Birch and Ewing, 1986;
Forristall, 1981; Banner, 1990) this power law is used for the high-frequency part of the spectrum.

The prognostic part of the spectrum is obtained by numerically solving the energy balance equation. We
will now discuss the different numerical schemes and time steps that are used to integrate the source
functions and the advective terms of the transport equation.

5.2 IMPLICIT INTEGRATION OF THE SOURCE FUNCTIONS

An implicit scheme was introduced for the source function integration to enable the use of an integration
time step that was greater than the dynamic adjustment time of the highest frequencies still treated
prognostically in the model. In contrast to first and second generation wave models, the energy balance
of the spectrum is evaluated in detail up to a high cut-off frequency. The high-frequency adjustment time
scales are considerably shorter than the evolution time scales of the energy-containing frequency bands
near the peak of the spectrum, in which one is mainly interested in modelling applications. Thus, in
the high-frequency region it is sufficient to determine the quasi-equilibrium level to which the spectrum
adjusts in response to the more slowly changing low-frequency waves, rather than the time history of the
short time scale adjustment process itself. An implicit integration scheme whose time step is matched
to the evolution of the lower frequency waves meets this requirement automatically: for low-frequency
waves, the integration method yields, essentially, the same results as a simple forward integration scheme,
while for high frequencies the method yields the (slowly changing) quasi-equilibrium spectrum (WAMDI
Group (1988)).

The original WAM model used a time-centred implicit integration scheme, but Hersbach and Janssen
(1999) found that numerical noise occurred which may be avoided by a two-time level, fully implicit
approach. The fully implicit equations (leaving out the advection terms) are given by

Fn+1 = Fn + ∆tSn+1 (5.4)

where ∆t is the time step and the index n refers to the time level.

If Sn+1 depends linearly on Fn+1, (5.4) could be solved directly for the spectrum Fn+1 at the new time
step. Unfortunately, none of the source terms are linear. We therefore introduce a Taylor expansion

Sn+1 = Sn +
∂Sn

∂F
∆F + · · · (5.5)

The functional derivative in (5.5) (numerically a discrete matrix Mn) can be divided into a diagonal
matrix Λn and a nondiagonal residual Nn,

∂Sn

∂F
= Mn = Λn + Nn (5.6)

Substituting (5.5) and (5.6) into (5.4), realizing, in addition, that the source term S may depend on the
friction velocity u∗ at time level n + 1, we obtain

[1 − ∆t{Λn(un+1
∗

) + Nn(un+1
∗

)}]∆F = ∆tSn(un+1
∗

) (5.7)

with ∆F = Fn+1 − Fn. A number of trial computations indicated that the off diagonal contributions were
generally small if the time step was not too large. Disregarding these contributions, the matrix on the
left-hand side can be inverted, yielding for the increment ∆F ,

∆F = ∆tSn(un+1
∗

)[1 − ∆tΛn(un+1
∗

)]−1 (5.8)
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Nevertheless, in practice numerical instability is found in the early stages of wave growth. These are
either caused by the neglect of the off diagonal contributions or by the circumstance that the solution is
not always close to the attractor of the complete source function. Therefore a growth limitation needs to
be imposed. In the ECMWF version of WAM a variant of the growth limiter of Hersbach and Janssen
(1999) is used: the maximum increment in the spectrum, |∆F |max, is given by

|∆F |max = 3 × 10−7gu∗f
−4〈f〉windsea∆t (5.9)

where again 〈f〉windsea is an appropriately defined mean frequency for windsea. For a typical test case,
good agreement was obtained between an explicit integration with a time step of 1 minute and the implicit
scheme with only diagonal terms for time steps up to about 20 minutes.

At the end of the integration time step, the wave-induced stress τw and the total stress τ are evaluated
using the spectrum Fn+1 at the next time level. This is important in case of rapidly varying circumstances,
and had a noticable impact on cases of rapid cyclogenesis and on atmospheric scores (Janssen and Bidlot,
2001).

5.3 ADVECTIVE TERMS AND REFRACTION

The advective and refraction terms in the energy balance equation have been written in flux form. We
shall only consider, as an example, the one-dimensional advection equation

∂

∂t
F = − ∂

∂x
Φ (5.10)

with flux Φ = cgF , since the generalization to four dimensions λ, φ, θ and ω is obvious. Two alternative
propagation schemes were tested, namely a first order upwinding scheme and a second order leap frog
scheme (for an account of the numerical schemes of the advection form of the energy balance equation
see WAMDI Group (1988)). The first order scheme is characterized by a higher numerical diffusion, with
an effective diffusion coefficient D ∼ ∆x2/∆t, where ∆x denotes grid spacing and ∆t is the time step.
For numerical stability the time step must satisfy the inequality ∆t < ∆x/cg, so that D > cg∆x. The
advection term of the second order scheme has a smaller, inherent, numerical diffusion, but suffers from
the drawback that it generates unphysical negative energies in regions of sharp gradients. This can be
alleviated by including explicit diffusion terms. In practice, the explicit diffusion required to remove the
negative side lobes in the second order scheme, is of the same order as the implicit numerical diffusion of
the first order scheme, so that the effective diffusion is generally comparable for both schemes.

As shown in WAMDI Group (1988) both schemes have similar propagation and diffusion properties. An
advantage of the second order scheme is that the lateral diffusion is less dependent on the propagation
direction than in the first order scheme, which shows significant differences in the diffusion characteristics
for waves travelling due south-north or west-east compared with directions in between. The first order
scheme has the additional problem that there is excessive shadowing behind islands when waves are
propagating along the coordinate axes. However, these undesirable features in the first order upwinding
scheme may be alleviated by rotating the spectra by half its angular resolution, in such a way that no
spectral direction coincides with the principle axes of the spatial grid. In general, the differences between
the model results using first or second order propagations methods were found to be small, but there is
a preference for the first order scheme because of its efficiency and simplicity.

Historically, the main motivation for considering the second order scheme in addition to the first order
scheme was not to reduce diffusion, but to be able to control it. In contrast to most other numerical
advection problems, an optimal propagation scheme for a spectral wave model is not designed to minimize
the numerical diffusion, but rather to match it to the finite dispersion associated with the finite frequency-
direction spectral resolution of the model (SWAMP Group (1985), appendix B). In this context, it should
be pointed out that an ideal propagation scheme would give poor results for sufficiently large propagation
times, since it would not account for the dispersion associated with the finite resolution in frequency and
direction (the so-called garden sprinkler effect). Now, the dispersion due to the different propagation
velocities of the different wave components within a finite frequency-direction bin increases linearly with
respect to propagation time or distance, whereas most propagation schemes yield a spreading of the wave
groups which increases with the square root of the propagation time or distance. However, Booij and
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Holthuijsen (1987) have shown that linear spreading rates may be achieved by introducing a variable
diffusion coefficient proportional to the age of the wave packets. This idea has been tested in the context
of a third generation wave model by Chi Wai Li (1992) and Tolman (2000) who use an averaged age of
the wave packets per ocean basin.

To summarize our discussion, we have chosen the first order upwinding scheme because it is the simplest
scheme to implement (requiring less computer time and memory) and because in practice it gives
reasonable results. Applied to the simple advection scheme in flux form (5.10) we obtained the following
discretization, where for the definition of grid points we refer to Fig. 5.1.

j–1 j+1j

j–1/2 j+1/2

∆x

Figure 5.1 Definition of grid points for first order upwinding scheme.

The rate of change of the spectrum ∆Fj in the jth grid point is given by

∆Fj = − ∆t

∆x
(Φj+1/2 − Φj−1/2) (5.11)

where ∆x is the grid spacing and ∆t the propagation time step, and

Φj+1/2 =
1

2
[vj + |vj |]Fj +

1

2
[vj − |vj |]Fj+1 (5.12)

where vj = 0.5(cg,j + cg,j+1) is the mean group velocity and the flux at j − 1/2 is obtained from (5.12)
by replacing j + 1/2 with j − 1/2. The absolute values of the mean speeds arise because of the upwinding
scheme. For example, for flow going from the left to the right the speeds are positive and, as a consequence,
the evaluation of the gradient of the flux involves the spectra at grid points j − 1 and j.

From Cy33r1 onwards the above upwinding scheme was improved by considering the corner points as
well. In order to appreciate this point we study the simple case of the advection in x,y space. The wave
energy balance equation in flux form becomes

∂

∂t
F +

∂

∂x
(ugF ) +

∂

∂y
(vgF ) = 0, (5.13)

where F is the wave variance spectrum and (ug,vg) are the group speed x and y- components. Until
Cy33r1, (5.13) was solved using a first order upwinding scheme. One of the drawbacks of using this
scheme is that it only considers contributions from neighbouring grid points in the x and y directions, no
contributions from the corners of the grid are considered. The simple upwinding scheme can be extended
to account for the corner points by using the so-called Corner Transport Upstream (CTU) scheme. One
way to understand how the CTU algorithm works is to follow how a grid box cell, centered at point (i, j)
is advected backwards over one time step by the group speed velocites on each gridbox facet (ug(i ± 1/2),
vg(j ± 1/2)) Fig. 5.2.

ug(i ± 1/2) =
ug(i) + ug(i ± 1)

2
, vg(j ± 1/2) =

vg(j) + vg(j ± 1)

2
. (5.14)

Following the location of the gridbox at time level n + 1 back in time, one gets the picture in Fig. 5.2,
where the transported cell overlaps on three upstream cells. The area of intersections represents the
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Figure 5.2 Schematic representation of the volumes swept in the corner transport method

weights to attibute to F on the original grid but at the previous time level n. The scheme can then be
written as:

Fn+1
i,j = (1 − Cd

u)(1 − Cd
v )Fn

i,j + Cu
u (1 − Cd

v )Fn
i−1,j + Cu

v (1 − Cd
u)Fn

i,j−1 + Cu
uCu

v Fn
i−1,j−1 (5.15)

where the Courant numbers in x and y directions are

Cu
u =

ug(i − 1/2)∆t

∆x
, Cu

v =
vg(j − 1/2)∆t

∆y
, (5.16)

Cd
u =

ug(i + 1/2)∆t

∆x
, Cd

v =
vg(j + 1/2)∆t

∆y
.

As in the upwinding scheme, stability is conditional on all Courant numbers to be between 0 and 1. This
scheme was generalised for spherical coordinates and for irregular lat-lon grid as used in operations.

This new scheme will yield a slightly more uniform propagation in all directions. However, in the mean,
the main impact of the scheme is along coastlines and around islands as can be seen in Fig. 5.3.

We furthermore remark that one could consider using a semi-Lagrangian scheme for advection. This
scheme is gaining popularity in meteorology because it does not suffer from the numerical instabilities
which arise in conventional discretization schemes when the time step is so large that the Courant–
Friedrichs–Levy (CFL) criterion is violated. The wave model community has, so far, not worried too
much about this problem because advection is a relatively inexpensive part of the computations. In
addition, in most applications, the propagation time is larger or equal to the source time step, which is
usually 20 min. According to the CFL criterion, short propagation time steps (less than, say, 10 min)
are only required for very high resolution (∆x < 20 km). But in these circumstances the advection will
induce changes in the physics on a short time scale, so that it is advisable to decrease the source time step
accordingly. Nevertheless, adopting a pragmatic point of view, this may result in a considerable increase
in computation time and in the present versions of the ECWAM model it is therefore allowed to have a
propagation time step which is less or equal to the source time step.

We finally comment on the so-called pole problem in the case of the use of spherical coordinates. When
moving towards the poles, the distance in the latitudinal direction decreases. Clearly, close to the poles
violation of the CFL criterion occurs. In the ECMWF version of the WAM model this problem is solved
by choosing an irregular spherical grid in such a way that the distance in the latitude direction is more
or less fixed to its value at the equator (this is effectively a polar stereographic grid). An example of such
a grid from the present operational ECMWF WAM model is shown in Fig. 5.4. The advection scheme is
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Figure 5.3 Mean difference in significant wave heights over 3 months between a hindcast run with the new
corner transport scheme (f11m) and a run with the original upwinding scheme (f0sn). Both experiments used the
40 km standalone ECWAM, forced by 10 m neutral winds from the operational analysis.

still formulated in terms of spherical coordinates but the gradient in the longitudinal fluxes is evaluated
by linear interpolation of the fluxes from the closest neighbours. The additional advantages of the use of
an irregular spherical grid is a reduction in the total number of grid points by 30%, giving a substantial
reduction in the cpu consumption.

5.4 BOUNDARY CONDITIONS AND GRID NESTING

Normally the wave model grid is surrounded by land points. Therefore, the natural boundary conditions
are no energy flux into the grid and free advection of energy out of the grid at the coast line.

The generation and propagation of ocean waves covers a wide range of space and time scales. In the open
ocean, the scale of a wind sea system is determined by the size of a depression, which typically has scales
of the order of 1000 km. On the other hand, near the coast, the scale of a wave system is determined
by the coastal geometry and bottom topography, which have usually much smaller scales. A wave model
which covers all scales uniformly is not practicable because of computer limitations. In addition, running
a high-resolution wave model for the open ocean seems a waste of computer time.

There are several ways out of this problem. One approach would be to run a wave model with a variable
grid, having a high resolution whenever needed (for example near the coast) and having a coarse resolution
in the open ocean. So far this approach has not been followed. The WAM model was developed with the
practical application in mind of running a global ocean wave model at ECMWF and running limited area
models at the European National Weather Centres. Therefore, preference was given to another solution,
in which one has the option to run the model on nested grids. This gives the opportunity to use results
of a coarse mesh model from a large region in a fine mesh regional model. Several successive levels of
nesting may be necessary. The two-dimensional spectra computed by the coarse mesh model are saved
at grid points which are on the boundary of the limited area, high-resolution grid. These spectra are
then interpolated in space and time to match the high resolution at the grid boundaries. It should be
pointed out, however, that a straightforward linear interpolation of spectra gives problems because the
interpolated spectra are usually not well balanced, resulting in their rejection when used as boundary
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Figure 5.4 Irregular grid for North Atlantic area on a polar stereographic projection.

conditions for a fine mesh run. To circumvent this problem, the following interpolation procedure is
used. Instead of linearly interpolating the spectra from the adjacent points of the coarse grid directly,
we rescale these spectra in such a way that the rescaled spectrum has the same mean frequency, mean
wave direction and wave energy as found from a linear interpolation of these mean quantities to the fine
mesh grid point. The wave spectrum at the fine mesh grid point is then found by linearly interpolating
the rescaled spectra. This procedure seems to give satisfactory results.

5.5 PARAMETRIZATION OF SUBGRID BATHYMETRY

5.5.1 The problem

By looking at monthly mean analysis wave height increments, especially during the northern hemisphere
summer, it appears that there are areas where the wave model first guess is systematically too high or
too low. The underestimation in wave heights tends to be located in the active storm track areas or
in areas affected by the Indian sub-continent monsoon. It is known that this underestimation is likely
caused by too weak model winds. On the other hand, the overestimation for most of the tropical and
northern Pacific cannot be explained in terms of local winds. After further scrutiny, it appears that these
systematic overestimations are often present in areas where small island chains exist (French Polynesia
and Micronesia in the Pacific Ocean, Maldives Islands and Andaman Islands in the Indian Ocean and
Azores and Cape Verde Islands in the Atlantic Ocean, ...).

Hence, it appears that small islands and submerged bathymetric features that are not at all resolved by the
coarse wave model grid (55 km) may have a larger impact on the wave climate than it is usually assumed.
Although, in the operational grid up to Cy28r1, the representation of some islands were artificially
enhanced to produce the necessary blocking to wave propagation, the results were not very satisfactory.
A more appropriate and automatic procedure has been designed to deal with small and not so small
islands and reefs. This simple parametrization was successfully implemented in Cy28r1.

5.5.2 Treatment of unresolved bathymetry

Up to Cy28r1, the operational 55 km wave model grid was based on the ETOPO5 data set that represents
the land and sea-bottom elevation on a 5-minute latitude/longitude grid. This data set is available from
the National Geophysical Data Center (http://www.ngdc.noaa.gov/mgg/). Recently, NGDC produced a
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finer data set, namely ETOPO2 that has a 2-minute resolution. Fig. 5.5 shows the bathymetry for an
area centred on the Tuamotu Archipelago in the South Pacific as derived from the ETOPO2 data (only
sea points with water depth less than 300 m are shown). The complexity of the bathymetry is clearly
visible. This data set can be used to produce the wave model grid by averaging the depths of all ETOPO2
sea points within a model grid box and vice-versa for land points. A model grid box is considered to be
over sea if more than half the ETOPO2 points are sea points and a small area 4 by 4 minutes centred
on the model grid point is not land. Fig. 5.6 shows the resulting mean depth for the 55 km grid. Much
of the shallow features of the archipelago are gone. It is therefore not surprising that, when model swell
propagates across this area, very little attenuation is experienced (even with the model shallow water
physics switched on).

Based on a similar idea as in Tolman (2003) and Hardy et al. (2001), we have modified the wave
propagation scheme to limit the amount of wave energy that can be advected through these sub grid
bathymetric features. The WAM model uses a simple first order upwind scheme that requires the
knowledge of the wave spectral flux entering a given grid box in the upwind direction. These incoming
fluxes are specified by the product of the wave spectral component and the corresponding mean group
velocity perpendicular to the upwind grid box facet. However, in reality, if small islands or shallow water
features are present, only part of incoming energy will reach the central grid point. With the availability of
a finer resolution topographic data set such as ETOPO2, it is possible to estimate how much obstruction
these features would produce.

For each model grid point, the 2-minute data are analysed line by line in all four cardinal directions from
the model grid point up to the neighbouring grid points. If land or shallow water features are present,
then the proportion of how much energy would have propagated from the neighbouring points to the
grid point along each line is reduced accordingly. Land and very shallow features are entirely blocking
the flux along the respective line, provided deeper data points on both sides surround them (in order to
be an obstruction and not a coastline). On the other hand, points, which are shallow enough to affect
the incoming waves but deep enough that they do not block the waves, are only reducing the flux in
proportion to the total number of points in a line. How relatively shallow the water is depends on the
frequency (wavelength) of the spectral component under consideration. Very shallow features are defined
such that their respective depth is less than 0.1/k, where k is the deep water wave number (ω2 = gk)
of the incoming waves. If waves are not entirely obstructed by the small bathymetric features, they are
however assumed to be partially blocked if the depth is of the order 2/k or less and the mean grid point
depth is at least 10 times larger than that threshold.

The total obstruction for each upwind flux is then obtained by summing over all lines that are intersecting
the corresponding grid box facet. High frequency waves are less affected by the bathymetry than low
frequency components. Thus, at each grid point there is a transmission factor for each discretised
frequency bin corresponding to all four cardinal directions. Fig. 5.7 shows how much energy is allowed
to propagate towards the north for the first frequency bin of the model (wavelength 1360 m) for the
same area as in Fig. 5.5. These long waves will indeed be quite attenuated as they cross the Archipelago.
On the other hands, the short waves should be a lot less affected by the unresolved bathymetry. Fig. 5.8
displays the corresponding transmission coefficient for the very short waves in the model (wavelength 6
m). The impact of the unresolved bathymetry is indeed much reduced.

The net benefit of using this new parametrization was illustrated in Bidlot and Janssen (2003) and in
the e-suite for Cy28r1.
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Figure 5.5 ETOPO2 bathymetry obtained from the National Geophysical Data Center (only sea points
shallower than 300 m are shown).

Figure 5.6 WAM bathymetry (only sea points shallower than 300 m are shown) for the 55 km grid.

Figure 5.7 Percentage of the wave energy that is allowed to propagate northwards for the lowest frequency
bin (0.035 Hz).
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Figure 5.8 Percentage of the wave energy that is allowed to propagate northwards for the highest frequency
bin (0.55 Hz).
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Chapter 6

WAM model software package
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6.7 Computation of Integral Parameters

6.8 Technical changes and bugfixes

The WAM model development was finished in the early 1990s. Since then there has been continuous
effort at ECMWF to streamline the software in areas such as input-output (IO), archiving, vectorization
and to adapt the code to the new massive parallel (vector) machines. Nevertheless, many of the original
features of the WAM model have been retained. These are described below, followed by a description of
the additional features that have been introduced at ECMWF.

6.1 INTRODUCTION

The original WAM model software that has been developed over a period of seven years (1985–1992) is
fairly general. Spectral resolution and spatial resolution are flexible and the model can be run globally
or regionally with open and closed boundaries. Open boundaries are important in case one wishes to use
results from a coarse resolution run as boundary conditions for a fine mesh, limited area run. Options
such as shallow water, depth refraction or current refraction may be chosen. In this section we shall
briefly describe the wave model software with emphasis on flexibility and universality. Before doing this,
we shall first discuss some design choices.

The model was developed with an important application in mind, namely for predicting operationally
waves over the whole globe. With a modest spatial resolution of 3◦ (resulting in approximately 4000 grid
points) and 25 frequencies and 12 directions, it follows that about 1.2 million equations have to be solved.
Since the most expensive part of the numerical code, the nonlinear source term, cannot be vectorized,
vectorization is achieved over the grid points, which are placed in the innermost loop. In order to make
this loop as long as possible, a mapping from the two-dimensional spherical grid to a one-dimensional
array is performed. If there are no limitations to the amount of internal memory of the computer, the
most efficient procedure is to convert the entire global grid to a single one-dimensional array. In practice,
however, there may be restrictions on the amount of memory to be used. For example, in the early days
of the WAM model development, the model was tested on a Cray 1S with an internal memory of only
750,000 words. Clearly, the full model grid would not fit into this small memory. It was, therefore, decided
to split up the globe in blocks of NIBLO grid points. Typically, NIBLO = 512. The blocks are set up
in such a way that the north and south boundaries are either land or open ocean, whereas the east and
west boundaries are land, periodic (this occurs, for instance, in the southern ocean), or open ocean (for
nesting). In order to allow waves to propagate across the north or south boundaries of a block, the blocks
overlap by a number of latitudes, depending on the propagation scheme. Since we have chosen a first
order upwinding scheme, which involves only two neighbouring grid points, the number of overlapping
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latitudes is two. The computations are done from the last but one southerly latitude to the last but one
most northerly latitude (see also Fig. 6.1 and Günther et al. (1991)). Although loading only one block at a
time circumvents the problem of the limited memory, the drawback of this approach is that extensive IO
operations are needed. After performing the computations on block IG, the results have to be written to
disc and the results of the previous time step of block IG + 1 have to be read before the computations on
block IG + 1 may be started. To avoid waiting for IO, an IO scheme is used that allows for simultaneously
writing results of block IG − 1, reading results of the previous time step of block IG + 1, while performing
calculations on block IG. The block structure combined with this IO scheme yields a very efficient and
flexible wave model code. With the preprocessing program PREPROC one may lay out a block structure
according to one’s own choice.

Figure 6.1 Structure of the model grid.

The later generation of computers, such as the CRAY-YMP, allowed the whole globe to be loaded into
the core of the computer, hence a one block structure may be chosen. This is, however, not always the
optimal choice when high resolution applications are considered and/or when the wave model is coupled
to another model, for example an atmospheric model or a storm-surge model.

Later generation of computers are based on the concept of massive parallel computing. In this context it
is important to distinguish between memory shared and memory distributed machines. Machines such as
the CRAY-YMP and the CRAY-C90 are examples of shared memory machines. By using Macrotasking
it was relatively straightforward to develop a version of the WAM model that utilised more processors in
an efficient way. Note that there are limits to the number of processors to be used, because each processor
requires a sufficient amount of work. Therefore, a low-resolution version of the WAM model, such as the
1.5 degree model, could only perform efficiently on about 4 processors, while the high resolution, 55 km,
version ran still efficiently on 16 processors.

The present generation of computers either are memory distributed machines or have memory distribution
over nodes while per node the processors share the memory. In general, a memory distributed machine
requires a different approach which is described in the next subsection.
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6.2 MASSIVE PARALLEL COMPUTING

6.2.1 Overview

Memory distributed machines such as the Fujitsu vpp series require the introduction of message passing
between processors (known as processing elements (PEs)). Therefore, one PE can send a message which
is received by one or more other PEs. In its very basic implementation, the message is nothing more than
a one-dimensional array of a given type containing values that are needed by the other PE(s) plus the
necessary information about the sender and receiver. For a successful message exchange both send and
receive should be completed.

Message passing in the ECMWF version of the WAM model was introduced in 1996 based on the message
passing library MPELIB. This newly developed code can also run on non-distributed memory machines
and on a single PE.

When running in parallel it is important to have an even distribution of work over the PEs in order to
avoid load unbalance. In the case of the WAM model it comes down to splitting the global computation
domain into regions of equal size, keeping in mind that information is only locally known on each PE
and can only be exchanged with the other PEs via message passing (which is a slower process than
computing).

In the present setting the number of processors is determined at run time. Once the message passing
program starts simultaneously on all assigned PEs, the parallel environment and the message passing
protocol is initialised. Also, the total number of PEs is determined as well as the logical PE on which the
code is run. This initialisation procedure is done in CHIEF, or any other start up main program which
calls the WAM model.

Once the total number of PEs is known, MPDECOMP is called to set up an even decomposition of the
total grid into one sub domain per PE. Since the global grid is mapped onto a one-dimensional sea point
array following increasing latitude lines, the sub domains are chosen to be consecutive segments of the
full sea point array (cf. Fig. 6.2).

The length of each segment is determined by the requirement that the work is distributed in an even
manner over the given number of PEs. Thus, each PE will only perform the integration of the source
functions of the energy balance equation of one subdomain. However, the upwind scheme which solves the
advection term, uses neighbouring grid points in the two-dimensional grid that might belong to another
subdomain. The necessary information from the other PEs needed to evaluate the spatial derivatives
of the energy flux are obtained through message passing. Here, the message is constructed using the
geometrical rules displayed in Fig. 6.2, and is similar in spirit as the method that was developed for the
multi-block version of the WAM model. An important difference is, however, that the domain composition
is done at run time, allowing more flexibility.

6.2.2 New model decomposition for massive parallel architecture

Originally, the parallelisation of WAM was conceived for a relatively small number of processors (PEs) by
keeping the number of neighbouring PEs to a minimum (see above). The actual computations in WAM
are only performed for sea points. Therefore, the globe cannot be subdivided in squarish areas wrapping
around the whole earth. However, it is rather straightforward to distribute the sea points in latitudinal
bands, each containing the same number of points (±1) as can be seen in Fig. 6.3. It was assumed that the
number of points on each PE would always be much larger than the number of points on each latitude.
Hence, each PE had at most to communicate with the PE responsible of the area just above and with the
PE responsible of the area just below because WAM advection scheme is only first order. However, as the
number of PEs increases, the size of the message does not decrease, as information along whole latitude
still needs to be exchanged (Fig. 6.4). Furthermore, if the number of PEs becomes too high, a PE will
have to share information with more than two neighbouring PEs since the PE will only be responsible
for a fraction of latitude. This latter fact was not taken into account at the time.

A new decomposition of the computation grid has been introduced to run the wave model on a large
number of processors. It is referred to as the 2-D decomposition because the sea points are grouped in a
squarish area on each processor as displayed in Fig. 6.5, as opposed to the previous 1-D decomposition
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Figure 6.2 Domain decomposition.

where the grid points for each PE are gathered in a latitudinal band (Fig. 6.4). The choice between 1-D or
2-D decomposition is controlled by a namelist variable. Note that the assumption in the 1-D decomposition
that each PE at most communicates with 2 PEs has been removed, therefore the 1-D decomposition also
works when WAM is run on a large number of PEs. The perimeter of the area containing all the points
on a given PE will however not decrease since the area collapses into all grid points.

When computing the 2-D decomposition, the domain is subdivided into as many sub-areas as there are
PEs (NPR) in such a way that each one will contain the same number of sea points (±1). The model grid
is first divided into NY latitudinal bands. This is referred to as the first 1D-decomposition identical to
the decomposition, which was used before. The second decomposition (2D) relies on a similar procedure
to split each latitudinal band into sub-areas of equal number of sea points. To achieve that, the scheme
finds NY CUT such that there are NX sub-areas in the first NY CUT latitudinal bands (starting from
the southern boundary) and NX − 1 sub-areas in the remaining NY − NY CUT bands such that

NPR = NY CUT × NX + (NY − NY CUT ) × (NX − 1) (6.1)

NX , NY , NY CUT are determined by making the sub-areas as square as possible by assuming that the
global extend of the domain is twice as long in the longitudinal direction than in the latitudinal direction
(i.e. NX = 2 × NY ). Note also that in the case of the irregular lat-lon grid (as presented in the figures),
the number of grid points per latitude decreases pole wards, hence the elongated appearance of the areas
nearer to the poles. An example for 32 PEs is shown in Fig. 6.5 and for 512 PEs in Fig. 6.6.
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Figure 6.3 1-D decomposition of the WAM model 0.5 × 0.5 irregular lat-long grid for 8 processors. The
different colour lines indicate grid points sharing information with neighbouring PEs.

Figure 6.4 1-D decomposition of the WAM model 0.5 × 0.5 irregular lat-long grid for 8 processors. The
different colour lines indicate grid points sharing information with neighbouring PEs.

This new decomposition is used both in the forward model and in the data assimilation. For the
assimilation of altimeter data, the number of data per PE is limited to what is actually needed by
the grid points of that PE.

Figure 6.5 2-D decomposition of the WAM model 0.5 × 0.5 irregular lat-long grid for 32 processors. The
different colour lines indicate grid points sharing information with neighbouring PEs.
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Figure 6.6 2-D decomposition of the WAM model 0.5 × 0.5 irregular lat-long grid for 512 processors.
The different colour lines indicate grid points sharing information with neighbouring PEs.

This completes our discussion regarding the design of the WAM model. The remainder of this chapter is
devoted to the model system. A more detailed description of this may be found in the manual Wamodel
cycle 4 by Günther et al. (1991).

The model system consists of three parts.

(i) Pre-processing programs.
(ii) Processing programs.
(iii) Post-processing programs.

The original WAM model is designed to run as a module of a more general system or as a stand-
alone program. The pre-processing programs generate the model grid, bathymetry-dependent dispersion
relation, etc. Post-processing programs are provided for archiving and for further analysis of the model
output.

6.3 PRE-PROCESSING PROGRAMS

Two pre-processing programs are provided.

(i) PREPROC

(ii) PRESET

The program PREPROC generates all time-independent information for the wave model. Starting from a
regional or global topographic data set the model grid is created in the form required for the model. The
standard model grid is a latitude-longitude grid, which may be regular or irregular, but Cartesian grids
can also be chosen. Frequency, angular and group velocity arrays are generated. If the current refraction
option is activated, PREPROC expects a current data set and interpolates the data onto the model grid.
A number of model constants and matrices, such as the surface stress as a function of wind speed and
wave-induced stress, are pre-computed and stored together with the model grid, frequency and angular
information and the currents in two output files. If nested grids are generated, the information for the
output, input and interpolation of boundary spectra are presented and stored in separate files for the
coarse and fine mesh models.

PRESET generates an initial wave field for a wave model cold start in the event that no appropriate initial
conditions are available. Controlled by the user input of PRESET, either the same initial JONSWAP
spectrum is used at all ocean grid points, or the initial spectra are computed from local initial winds,
according to fetch laws with a cos2 directional distribution.

6.4 PROCESSING PROGRAMS

There are two processing programs.
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(i) CHIEF

(ii) BOUINT

The program BOUINT is used for nested grids. It interpolates, in time and space, the output spectra from
a coarse grid model run onto the fine grid along the boundaries of the coarse and fine grids.

CHIEF is the shell program of the stand-alone version of the the wave model which calls the subroutine
version WAVEMDL of the wave model. All time-dependent variables and user-defined parameters are set,
the wind fields are transformed to the wave model grid, and the transport equation is integrated over
a chosen period. The program uses the output files of PREPROC as set-up files and the files generated
by PRESET or a previous model run as initial values. A wind input file has to be provided by the user.
All additional information must be defined in the user input file. The model can be integrated with
independently chosen propagation, source term and wind time steps, under the restriction that all time
step ratios must be an integer, or the inverse of an integer.

A number of model options and parameters may be selected by the user in the program input. The
following model options are implemented.

(i) Cartesian or spherical propagation.
(ii) Deep or shallow water.
(iii) With or without depth refraction or with depth and current refraction.
(iv) Nested grids.
(v) Time interpolation of winds, or no time interpolation.
(vi) Model output at regular intervals, or through a list.
(vii) Printer and/or file output of selected parameters.

All run-time-dependent files are fetched dynamically and follow a fixed file name convention. The user
has control over directory names and paths through the model input. If selected, model results are saved
in four files. These files contain the following.

(i) Gridded output fields of significant wave height, mean wave direction, mean frequency, friction
velocity, wave direction, peak frequency, drag coefficient and normalized wave-induced stress.

(ii) Gridded output field of swell parameters such as wave height, swell direction, mean wind-wave
direction and mean swell frequency.

(iii) Spectra at selected grid points.
(iv) Swell spectra at selected grid points.

A comprehensive view of the program CHIEF, which is clearly the most important part of the model
system, is given in the flow chart of Fig. 6.7. We need not discuss details here and only highlight the
main points. The subroutine INITMDL is only called once. It reads the necessary input generated by
PREPROC and PRESET (or by a previous model run) and sets up the necessary information for the
model run. PREWIND deals with reading of the winds provided by the user and the transformation to the
wave model grid. If required, time interpolation is performed. Furthermore, the subroutine WAMODEL

integrates the energy balance equation. The physics of the wave model is contained in the subroutines
PROPAGS and IMPLSCH which are called in a loop over the blocks of the wave model grid. PROPAGS deals
with propagation and refraction, whereas IMPLSCH performs the implicit integration in time of the source
terms Sin (SINPUT), Snl (SNONLIN), Sds (SDISSIP) and Sbot (SBOTTOM). The remaining subroutines
in WAMODEL are related to the generation of output files or restart files. Finally, the subroutine
WAMASSI assimilates Altimeter wave height data according the optimum interpolation method described
in Chapter 4. The quality control and the correction of the data is performed by the subroutine GRFIELD,
while the increments according to OI method are determined in OIFIELD use the subroutine ANALYSE.
Using scaling laws of swell and wind-wave generation the wave spectra and the surface winds are updated
in UPDATE.

6.5 POST-PROCESSING PROGRAMS

The standard set of programs contains four post-processing programs.
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Figure 6.7 Flow chart of program CHIEF.
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1. PGRID prints gridded output files of mean sea state parameters.
2. PSWGRID prints gridded output files of swell parameters.
3. PRSPP prints spectra output files.
4. PRSPPS prints swell spectra output files.

Evidently, each program corresponds to one of the four output files which are generated by the program
CHIEF. Controlled by the user input, the results of a chosen set of parameters are printed. The files are
dynamically fetched. The user may choose individual fields. If boundary spectra files are produced, both
the course and fine grid file may be printed by PRSPP. As no standard, regarding plotting, seems to exist,
no standard plot software is available.

6.6 ECMWF POST-PROCESSING

Although, the ECMWF version of WAM is basically following the same structure as the original version,
there are also important differences to be noted. In particular, our version takes full advantage of
grib coding and decoding both for the integrated parameters and the two dimensional spectrum. The
advantages of grib coding are that the fields are archived in a platform independent form and that the
size of the fields reduces by a considerable factor. For example the size of an integrated parameter field
reduces by a factor of 3, while the size of a spectral fields reduces by a factor of 9. The large reduction in
the size of spectral fields is accomplished by archiving the logarithm of the spectrum, thereby reducing
the range of the values considerably. Furthermore, rather than archiving one spectrum per grid point,
which would result in spectral fields of a large size, ECMWF archives a particular frequency-direction
bin as one global field. Thus, the global spectral field is split up in ML × KL fields, where ML is the
number of frequencies and KL is the number of directions of the spectrum.

Because IO is relatively slow it is advantageous to minimise the amount of IO. This is accomplished
at initial time by transferring grib coded information from disk to one of the PEs and by transferring
the initial data to one of the other PEs where it is decoded. Next the decoded data is distributed over
all the other PEs. Since spectral data have been split up, the reading of the initial conditions may be
performed in a balanced manner. To that end the spectral file is read on PE 1, which distributes the
fields per frequency and direction to all other PEs where it is decoded. Writing output is accomplished in
a balanced manner by collecting on the first PE the data for the first field from all other PEs, by coding
it and by transferring it to disk, while at the same time the second PE is doing the same task for the
second field etc.

Finally, the information written to disk is temporarily stored in a sophisticated Fields Data Base (FDB),
where it is picked up by archiving tasks that store the information in the MARS archive. The full list of
products that is being archived is given in Table 6.1. Post-processing may now be accomplished in various
manners. One way is by running programs that read and plot analysed and forecast wave parameters.
A more popular method nowadays is to do post-processing in interactive mode using METVIEW.

6.7 COMPUTATION OF INTEGRAL PARAMETERS

There are two quantities that are actually computed at each grid point of the wave model, namely the
two-dimensional wave spectrum F (f, θ) and the total stress τ for a given wind forcing (U10, V10). In its
continuous form, F (f, θ) describes how the wave energy is distributed as function of frequency f and
propagation direction θ. In the numerical implementation of the wave model F is discretised using ML
frequencies and KL directions. In the current analysis and deterministic forecast configuration ML = 30
and KL = 24. Whenever possible, F (f, θ) is output and archived as parameter 251 since it corresponds
to the full description of the wave field at any grid point. It is however a very cumbersome quantity to
deal with since it consists of ML × KL scalar fields.

In order to simplify the study of wave conditions, integrated parameters are computed from some weighted
integrals of F (f, θ) (with the exception of the peak frequency). We differentiate the wave components of
the spectrum in windsea and swell. Here windsea is defined as those wave components that are subject to
wind forcing while the remaining part of the spectrum is termed swell. To a good approximation, spectral
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Table 6.1 Archived parameters of the ECMWF wave forecasting system.

Code Mars Field Units
Figure Abbrev.

217 TPM Expected Period for Hmax s
218 HMAX Expected Hmax over 3 hour period m
219 DPTH Bathymetry as used by operational Wave Model m
220 MP1 Mean wave period from 1st moment s
221 MP2 Mean wave period from 2nd moment s
222 WDW wave spectral directional width -

223 P1WW Mean wave period from 1st moment of wind waves s
224 P2WW Mean wave period from 2nd moment of wind waves s
225 DWWW Wave spectral directional width of wind waves -

226 P1PS Mean wave period from 1st moment of swell s
227 P2PS Mean wave period from 2nd moment of swell s
228 DWPS Wave spectral directional width of swell -

229 SWH Significant wave height m
230 MWD Mean wave direction ◦

231 PP1D Peak period of 1-D spectra s
232 MWP Mean wave period s
233 CDWW Coefficient of drag with waves -

234 SHWW Significant height of wind waves m
235 MDWW Mean direction of wind waves ◦

236 MPWW Mean period of wind waves s

237 SHPS Significant height of swell m
238 MDPS Mean direction of swell ◦

239 MPPS Mean period of swell s

244 MSQS Mean square slope -
245 WIND 10 m neutral wind modified by wave model m/s

246 AWH Gridded altimeter wave height m
247 ACWH Gridded corrected altimeter wave height m
248 ARRC Gridded altimeter range relative correction m

251 2DFD 2-D wave spectra m2s/rad

252 WSK Kurtosis -
253 BFI The square of the Benjamin-Feir Index -
254 WSP Goda’s Peakedness parameter -

components are considered to be subject to forcing by the wind when

1.2 × 28(u∗/c) cos(θ − φ) > 1 (6.2)

where u∗ is the friction velocity (u2
∗

= τ), c = c(f) is the phase speed as derived from the linear theory
of waves and φ is the wind direction. The integrated parameters are therefore also computed for wind
waves and swell by only integrating over the respective components of F (f, θ) that satisfies (6.2) or not.
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Let us define the moment of order n of F , mn as the integral

mn =

∫

dfdθ fnF (f, θ) (6.3)

and define the frequency spectrum E(f) as

E(f) =

∫

dθ F (f, θ) (6.4)

then the relevant integral parameters are:

a) Significant Wave Height
The wave energy E0 is defined as

E0 = m0 (6.5)

By definition, the significant wave height HS is defined as

HS = 4
√

E0 (6.6)

Hence the definition of parameters 229, 234, and 237.

b) Mean Periods
Originally the mean period T−1 was based on the moment of order -1, that is

Tm1 = m−1/m0 (6.7)

Hence the definition of parameters 232, 235, and 239.
In order to look at different aspects of the wave field, other moments can be used to define a mean
period. Periods can be based on the first moment T1 given by

T1 = m0/m1 (6.8)

Hence the definition of parameters 220, 223, and 226. And periods based on the second moment T2

given by
T2 =

√

m0/m2 (6.9)

Hence the definition of parameters 221, 224, and 227.

c) Mean Direction
By weighting F (f, θ), one can also define a mean direction 〈θ〉 as

〈θ〉 = atan(SF/CF ) (6.10)

where SF is the integral of sin(θ) F (f, θ) over f and θ and CF is the integral of cos(θ) F (f, θ)
over f and θ. Hence the definition of parameters 230, 235, and 238.

d) Directional Spread
Information on the directional distribution of the different wave components can be obtained from
the mean directional spread σθ given by

σθ =
√

2(1 − M1) (6.11)

where

For total sea:
M1 = I1/E0 (6.12)

I1 is the integral of cos(θ − 〈θ〉(f)) F (f, θ) over f and θ, where 〈θ〉(f) is the mean direction at
frequency f :

〈θ〉(f) = atan(sf(f)/cf(f)) (6.13)

with sf(f) the integral of sin(θ) F (f, θ) over θ only and cf(f) is the integral of cos(θ) F (f, θ)
over θ only. Hence the definition of parameter 222.
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For wind waves and swell:
M1 = Ip/E(fp) (6.14)

Ip is the integral of cos(θ − 〈θ〉(fp)) F (fp, θ) over θ only, fp is the frequency at the spectral
peak and 〈θ〉(fp) is given by (6.13), where F (fp, θ) is still split in all calculations using (6.2))
(including in E(fp)). Hence the definition of parameters 225, 228.

Note: As defined by (6.11), the mean directional spread σθ takes values between 0 and
√

2, where
0 corresponds to a uni-directional spectrum (M1 = 1) and

√
2 to a uniform spectrum (M1 = 0).

e) Mean Square Slope
An integrated parameter which can be related to the average slope of the waves is the mean square
slope which is only defined for the total sea as the integral of k2 F (f, θ) over f and θ, where k is
the wave number as given by the linear dispersion relation. Hence parameter 244.

f) Peak Frequency
The peak frequency is defined only for the total sea. Originally, it was defined as the frequency
at which E(f) is maximum and the peak period is then the reciprocal of it. With CY33R1 the
peak frequency is obtained from a parabolic fit to the two-dimensional wave spectrum, giving a
continuous representation. Hence parameter 231.

g) 10 m Neutral Wind Speed
Due to different spatial grids, the forcing neutral winds are interpolated to the wave model grid.
Furthermore, in case of analysed fields, the radar altimeter data assimilation scheme is such that
it produces increments for wave heights but also for wind speeds. Hence, the wind speed which
is actually seen by the wave model can be different than the 10 m neutral wind speed provided
by the atmospheric model. It is therefore archived as parameter 245. The wind direction φ is still
given by the direction of the input 10 m winds.

h) Drag Coefficient
In the wave model, the surface stress depends on the waves. This feature is archived via the drag
coefficient (parameter 233) which relates the surface stress to the square of the neutral wind speed.

i) Radar Altimeter Data
Even though altimeter data are processed observations and thus not as such wave model results,
their processing has required some information from the model.
Following a quality control procedure which discards all spurious data, the raw altimeter wave height
data, which are available in a ±3 hours time window, is collocated with the closest model grid point.
The average value is computed for all grid points with at least two individual observations. The
averaged data are then archived on the same grid as all wave model fields as parameter 246.
Before these gridded altimeter wave heights are presented to the wave model assimilation scheme,
corrections are performed which depend on the type of Altimeter instrument. For example, however
because of a known underestimation of significant wave height by the ERS-2 satellite, which is due to
the inherent non gaussian distribution of the sea surface elevation and the method how wave height
is obtained from the waveform, a correction is derived from the model spectra which is applied to
the altimeter data (Janssen, 2000). Also data from the Altimeters on board of Envisat and Jason-1
are bias corrected. The correction is obtained from a comparison with buoy wave height data. The
corrected data are used by the assimilation scheme and are archived as parameter 247.
The altimeter range observation is also affected by the non gaussianity of the sea surface elevation.
The correction is a fraction of the observed wave height, where the fraction depends on the
nonlinearity of the sea surface. This number is also collocated with the wave model grid and archived
as parameter 248.

The parameters that have been described so far all provide information on the average properties of the
sea state. In recent years there has been a considerable effort in order to understand extreme events such
as freak waves. An individual wave is regarded as a freak wave when its height is larger than twice the
significant wave height. Clearly, in order to be able to describe such extreme events, knowledge on the
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statistical properties of the sea surface is required. Janssen (2003) has presented a general framework
that relates the shape of the probability distribution function (pdf) of the surface elevation to the mean
sea state as described by the two-dimensional frequency spectrum. Under normal circumstances, the
surface elevation pdf has approximately a Gaussian shape, but in the exceptional circumstances that the
waves are sufficiently nonlinear and that the wave spectrum is narrow in both frequency and direction
considerable deviations from Normality may occur, signalling increased probability for freak waves.

The deviations from Normality are measured in terms of the kurtosis C4 (parameter 252) of the surface
elevation pdf. The determination of this parameter from the wave spectrum is described in Chapter 8, and
it is shown that in the narrow-band approximation the kurtosis depends on the Benjamin-Feir Index BFI
(parameter 253) and the directional width at the peak of the wave spectrum. The Benjamin-Feir Index
is the ratio of the integral wave steepness and the relative width of the frequency spectrum. Initially, the
relative width of the frequency spectrum was estimated by using Goda’s peakedness factor Qp (parameter
254) defined as

Qp =
2

m2
0

∫

dω ωE2(ω) (6.15)

The advantage of this integral measure is that, because of its dependence on the square of the frequency
spectrum, peaks in the spectrum are emphasized. From CY33R1 onwards, a sharper estimate of the
width in frequency and direction is obtained from a two-dimensional parabolic fit around the peak of the
spectrum. This procedure then also gives a more accurate estimation of the peak period (parameter 231).

6.8 TECHNICAL CHANGES AND BUGFIXES

An updated version of the high resolution bathymetry data file (ETOPO2) was used to derive
the model mean bathymetry and the sub-grid blocking factors in all configurations. The new
ETOPO2 contains a proper data set for the Caspian Sea and the US great Lakes. It also
eliminates a 1-cell westward bias that was present in the original ETOPO2. (more details at
http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html) A bug in the program using this high resolution
data was removed. It was shifting the data set by one cell northwards. A grid point is now declared as a
model sea point if 40% or more of the high resolution data cells are sea, as before, the mean bathymetry
is computed by averaging over all the cells that are sea.

The ECWAM code was originally written for global scale applications, however, it was extended to also
run on smaller domains and in shallower water. For this reason, the bottom induced wave breaking source
term of Battjes and Janssen was introduced to account for the extra dissipation due to breaking waves
over shallow depths. Similarly, a better discretisation of the depth arrays was necessary for runs in those
very shallow cases.

In this new version, the wave model time step can be as small as 1 second and the source term time step
can be larger than the advection time step. Furthermore, in coupled mode, the time step is determined
by the coupling time step, provided it is not larger than the maximum allowed time step (set by the CFL
criteria). In that case, a sub-multiple of the coupling time step will be calculated that satisfies the CFL
criteria. Therefore, the time steps that are given in the wave model namelist are the maximum values
allowed. In coupled mode, it is therefore recommended to have a coupling time step that is set to the IFS
time step as the wave model will adapt its time steps accordingly. All date variables are handled to the
second.

The sea ice fraction field that is used to determine the wave model ice mask is now provided as often as
the wind forcing. In coupled mode, it means that it is passed by the IFS to WAM as often as the other
fields are exchanged. In stand alone mode, it is input along side the wind fields.

A bug fix in spectral update following SAR data assimilation was introduced leading to more consistent
analysed wave periods.

A better use of altimeter data was put in place by revising the quality control for altimeter wave height.
The altimeter data can also be fed passively into the assimilation system.
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ECWAM can run again with specified surface currents. Input current fields are interpolated onto the
wave model grid from within WAM.

As an example of the capabilities of ECWAM, Fig. 6.8 shows the area of St. Andrew Bay, in North West
Florida, where wind and waves were observed from a buoy as it drifted out to the Gulf of Mexico. The
bathymetry at a scale of the order 100m is also shown. ECWAM was setup with this bathymetry on a
0.001 degree grid, and forced with the observed winds from the buoy. The buoy was deployed at dawn,
as the morning winds were picking up (Hwang and Wang (2004)). The resulting wave height after one
hour is shown in Fig. 6.9 as well as the wave heights along the trajectory of the buoy. Compared to the
buoy observations, the agreement with the model hindcasts is quite satisfactory.

Figure 6.8 St. Andrew Bay bathymetry and trajectory of the drifting buoy where wind and waves were observed.

Figure 6.9 Simulated significant wave height in St. Andrew Bay at 1300 UTC on 12 October 12 (left panel) (one
hour from the start of the run). Temporal evolution (in seconds) of significant wave height along the trajectory of
the drifting buoy (right panel). The observations are shown with the red dots and the solids lines are the model
simulations with the old Snl (blue line), the new Snl without depth induced wave breaking (green) and with it
(orange).
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Chapter 7

Wind wave interaction at ECMWF

In this chapter we briefly describe how wave forecasts are validated and the way we apply wave forecasting
at ECMWF.

An important task of any weather centre is the verification of the forecast. We routinely verify analysed
and forecast wave products against buoy data, and forecast wave height against the analysis. An example
of forecast validation over the northern and the southern hemisphere is given in Fig. 7.1. A more detailed
discussion of the quality of the ECMWF wave forecast is given by Janssen et al. (1997, 2000). Furthermore,
we have been validating extensively the quality of wave products from Altimeter and SAR from ERS1/2
and will do so from ENVISAT which will be launched in the middle of 2001. An account of this work
may be found in Hansen and Günther (1992), Janssen et al. (1997), Janssen (2000) and Janssen (2004).

Following the work of Janssen (1982, 1989, 1991) on the feedback of ocean waves on the airflow we have
made a dedicated effort towards an integrated forecasting system for our geosphere. Ultimately, it is
expected to have a model consisting of the atmosphere and the oceans where the ocean waves are the
agent that transfer energy and momentum across the interface in accordance with the energy balance
equation. This role of the ocean waves is illustrated in Fig. 3.4 and Fig. 3.5. On the one hand ocean
waves receive momentum and energy from the atmosphere through wind input (hence they control to a
large extent the drag of airflow over the oceans), while on the other hand, through wave breaking, the
ocean waves transfer energy and momentum to the ocean, thereby feeding the turbulent and large scale
motions of the oceans. Ocean waves are in general not in an equilibrium state determined by a balance
of the three source functions, because advection and unsteadiness are important as well. Typically, of
the amount of energy gained by wind about 90% is lost locally to the ocean by wave breaking, while the
remaining 10% is either advected away or is spent in local growth.

Presently, we have taken the first step by coupling the IFS atmospheric model with the WAM model in
a two-way interaction mode. This coupled model provides the ten-day weather and wave forecast since
the 29 June 1998. Here, every coupling time step the surface winds are passed through the WAVEMDL

interface towards the wave model, while the Charnock parameter as determined by the sea state (cf.
equation (3.11)) is given to the atmospheric model and is used to estimate the slowing down of the surface
winds during the next coupling time step. An overview of results is given by Janssen et al. (2001) who
show that the introduction of two-way interaction gives improvements in the prediction of surface winds
and waves. As a next step ECMWF is developing a coupled atmosphere, ocean-wave, ocean-circulation
model. A first version of this coupled model is already used in the Centre’s seasonal forecasting and
monthly forecasting suites.

Since December 1992 ECMWF is providing estimates of forecast error by running an ensemble prediction
system. With the introduction of the coupled wind-wave prediction scheme in June 1998, ensemble wave
products became available as well. This new product may provide useful information on the uncertainty
in the sea state prediction (Saetra and Bidlot, 2002, 2004), which could be applied among other things
to ship routes (Hoffschildt et al., 1999; Saetra, 2004).

As described in Chapter 3, the coupling between the IFS and WAM was extended to include air density
and gustiness effects on the wave growth. This change became operational in April 2002 (Cy25r1). Finally,
the flexibility of the coupling interface between the two models was further extended to provide WAM
with 10m neutral winds instead of the usual 10m winds since WAM cycle 4 was derived in term of
friction velocity with the neutral logarithmic profile. This latest change was part of Cy28r1, implemented
in operations in March 2004.
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Figure 7.1 Standard deviation of wave height error of day 1, 3, 5, 7 and day 10 wave forecasts. Here,
the wave forecasts are validated against the wave analyses, and the period is August 1994 until November
2006.
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Chapter 8

Extreme wave forecasting

Table of contents

8.1 Determination of the surface elevation pdf

8.2 Maximum wave height and period.

In this chapter we shall briefly discuss how the sea state as descibed by the two-dimensional wave spectrum
may provide information on the occurrence of extreme waves. The information that can be extracted is
necessarily of a probablistic nature as in the context of operational wave forecasting there is no knowledge
of the phases of the waves at the location and time of interest.

8.1 DETERMINATION OF THE SURFACE ELEVATION PDF

The parameters that have been described so far all provide information on the average properties of the
sea state. In recent years there has been a considerable effort in order to understand extreme events such
as freak waves. An individual wave is regarded as a freak wave when its height is larger than twice the
significant wave height. Clearly, in order to be able to describe such extreme events, knowledge on the
statistical properties of the sea surface is required. Janssen (2003) has presented a general framework
that relates the shape of the probability distribution function (pdf) of the surface elevation to the mean
sea state as described by the two-dimensional frequency spectrum. Under normal circumstances, the
surface elevation pdf has approximately a Gaussian shape, but in the exceptional circumstances that the
waves are sufficiently nonlinear and that the wave spectrum is narrow in both frequency and direction
considerable deviations from Normality may occur, signalling increased probability for freak waves.

The deviations from Normality are measured in terms of the kurtosis C4 of the surface elevation pdf.
With η the surface elevation we use as kurtosis definition

C4 =
〈η4〉

3〈η2〉2 − 1 (8.1)

According to the theory of wave-wave interactions the kurtosis is related to the frequency spectrum
E(ω, θ) by

C4 =
4g

m2
0

P
∫

dω1dω2dω3dθ1dθ2dθ3T1,2,3,4

√

ω4

ω1ω2ω3

E1E2E3

∆ω
(8.2)

where

ω4 = Ω( ~k4) =

√

g|~k1 + ~k2 − ~k3| (8.3)

while ∆ω = ω1 + ω2 − ω3 − ω4, and T1,2,3,4 is a complicated, homogeneous function of the four wave

numbers ~k1, ~k2, ~k3, ~k4 = ~k1 + ~k2 − ~k3 (the last condition expresses the four-wave resonance condition in

wavenumber space). In addition, the angular frequency ω(~k) obeys the dispersion relation ω(~k) =
√

gk,

with k the magnitude of the wavenumber vector ~k. Finally, the symbol P denotes the principle value of the
integral. The integrand contains a singularity in wave number space at ∆ω = 0, and the principle value
integral simply means that one makes in the integration contour a cut of size 2ǫ around the singularity
in a symmetrical fashion, and the limit ǫ → 0 is taken afterwards.

For operational implementation the expression for the kurtosis, as derived in (8.2) is far too involved, and
clearly some simplification is desirable. Freak wave events most likely only occur for narrow band wave
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trains. This corresponds to situations where both the frequency and angular distribution of the waves
are narrow. In the narrow-band approximation it is possible to simplify and evaluate the six-dimensional
integral. In the previous operational system, the dependence on angular width was ignored, resulting in an
expression for the kurtosis which depends on the square of the BFI. However, from experimental evidence
(Waseda, 2006) and numerical simulations (Onorato and Mori, private communication 2006), it is known
that kurtosis also depends in a sensitive manner on the angular width. Therefore, an extension of the
kurtosis calculation has been obtained, and the sensitive dependence on the angular width is confirmed.

The general result for the kurtosis and its relation to the wave spectrum was originally derived for
deep-water waves, but Janssen and Onorato (2007) have shown how to extend it to shallow water. For
narrow-band spectra, it is then straightforward to parametrize the stabilizing effects of shallow water.

Before we start with a detailed calculation of the kurtosis of the sea surface and its dependence on the
wave spectrum, we briefly mention the starting point of ocean waves dynamics, which is the Hamiltonian
formulation of the nonlinear water wave equations. Next, assuming that the waves are weakly nonlinear
and applying a canonical transformation which removes most of the contributions by non-resonant
interactions, one arrives at the well-known Zakharov equation (Zakharov, 1968) for the free wave part
of the action variable. The properties of the Zakharov equation have been studied in great detail by, for
example, D. R. Crawford and Yuen (1981) for deep-water waves and by Janssen and Onorato (2007) for
shallow-water waves. It describes all the known properties of weakly nonlinear waves in deep and shallow
water and is therefore a good starting point for further analysis.

Based on the above theoretical development it should be clear that the expression of the kurtosis of the
pdf of the surface elevation consists of two additive contributions. The first one was derived by Janssen
(2003) and reflects the effects of resonant and non-resonant four-wave interactions, while the second
contribution stems from the canonical tranformation and reflects the contribution from asymmetries in
the shape of the waves. However, the contribution of the canonical transformation gives a very lengthy
expression of several pages and only for narrow band wave trains its form is known explicitely.

Based on results from numerical simulations of the Nonlinear Schrödinger equation, which follows from the
narrow-band limit of the Zakharov equation, Mori and Onorato found the following fit for the maximum
of the kurtosis

Cdyn
4 =

0.031

δθ
× π

3
√

3
BFI2, (8.4)

where the Benjamin-Feir Index BFI is given by

BFI =
ǫ
√

2

δω
. (8.5)

with ǫ the integral steepness parameter, ǫ = k0
√

m0, k0 the peak wave number, m0 the zero moment of
the spectrum and δω the relative width of the frequency spectrum. Therefore, finite directional width δθ

is seen to give a considerable reduction in kurtosis Cdyn
4 . If we include the contribution from the shape

of the waves, the total kurtosis becomes now

C4 = Cdyn
4 + αǫ2. (8.6)

where for deep-water α = 6.

This result holds for deep-water waves. The extension to shallow water is achieved by means of a
redefinition of the Benjamin-Feir Index.1 Recall (see Janssen (2003)) that this dimensionless parameter
just expresses the balance between nonlinearity and dispersion. For the general, shallow water case this
gives a new parameter which is called BS . It is defined as (Janssen and Onorato, 2007)

B2
S = −BFI2 ×

(

vg

c0

)2
gXnl

kω0ω′′

0

, (8.7)

where the relevant symbols are defined in (3.28) to (3.32).

1 Also the parameter α needs adjustment for the shallow water case. However, this depth-dependence has not been
introduced yet operationally as it was only recently obtained by Janssen (2008). So in Cy33r1 α has the value 6.
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The extension of the kurtosis calculation towards shallow water is now simply achieved by replacing in
(8.4) BFI2 by B2

S . Note that in the deep-water limit it can readily be shown that the second part of
the expression for B2

S becomes −1, therefore in this limit B2
S reduces to the usual definition for the

BFI (compare with (8.5)). Studying now the dependence of B2
S on depth it is seen that for decreasing

dimensionless depth k0D the square of the Benjamin-Feir index is slowly decreasing until around
k0D = 1.363 when there is a rapid transition from positive to negative values. Hence for k0D < 1.363
the kurtosis may become negative which implies that there are less extreme events than the norm, while
in the opposite case there are more frequent extreme events.

The estimation of the Benjamin-Feir Index requires knowledge of the significant steepness ǫ and the
spectral width δω in frequency space. In addition, an estimate of the directional width δθ is required
as well. In Cy33r1, it was decided to fit the one-dimensional frequency and directional spectra with a
parabola thus giving sharp estimates for δω and δθ. In fitting the parabola also a sharper estimate of the
peak period Tp may be provided as up to now the peak period did correspond to the maximum of the
one-dimensional frequency spectrum so Tp could only assume discrete values because of the discretization
of the wave spectrum in frequency space.

8.2 MAXIMUM WAVE HEIGHT AND PERIOD.

Here, we would like to introduce a simple measure for extreme sea states. It is common to define as
a freak wave a wave whose height is at least twice the significant wave height. This is a very discrete
and singular approach, which is in practice not easy to verify. Nevertheless, we would like to be able
to quantify extreme sea states and to be able to validate them against observations in a meaningful
manner. This led us to consider the concept of maximum wave height, a concept which is well-known in
engineering practice. For example, Stansell (2005)) uses the ratio of maximum wave height and significant
wave height as a useful indicater for the occurrence of freak waves. Typically, this ratio is of the order
1.5-2 but he reported cases with a ratio as large as 3. It should be realized, as also pointed out extensively
by Mori and Janssen (2006), that the maximum waveheight Hmax not only depends on the shape of the
probability distribution function of the sea surface, but also on the number of waves at hand. Consider
now a time series of significant wave height of length T involving a number of N waves. A good estimate
of the maximum wave height is the expectation value for maximum wave height denoted by 〈Hmax〉.
As an extension of Goda’s work for Gaussian sea states, we will determine 〈Hmax〉 for a pdf with finite
kurtosis and we will compare the result with observations of maximum wave height from buoys. The
agreement is good, and therefore we have introduced this measure for maximum wave height into the
operational ECMWF wave forecasting system.

In order to obtain an expression for the expectation value of maximum wave height the work of Mori and
Janssen (2006) is followed closely. One may then proceed as follows

• Start from the pdf of surface elevation η, which is the well-known Gram-Charlier expansion, i.e. pdf
depends on skewness and kurtosis, which are assumed to be small.

• Obtain the pdf of ’wave height’ defined as twice the envelope. Here the envelope ρ follows implicitely
by writing the surface elevation signal as

η = ρ cos φ

with φ the local phase of the wave train. Local wave height is then defined as H = 2ρ and the wave
height distribution in terms of wave height normalized with the significant wave height becomes:

p(H) = 4H exp(−2H2) [1 + C4AH(H)] (8.8)

where

AH(H) = 2H4 − 4H2 + 1

Note that because of symmetries the pdf of H does not contain skewness.
• The maximum wave height distribution is obtained by simply writing down the probability that for

given number of waves the maximum wave height has a certain chosen value. The maximum wave
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height distribution pm(Hmax) becomes

pm(Hmax) = N [1 − P (Hmax)]
N−1

p(Hmax)

where, with BH(H) = 2H2
(

H2 − 1
)

,

P (H) =

∫

∞

H

dh p(h) = exp(−2H2) (1 + C4BH(H))

is the exceedence probability of wave height, N is the number of waves, and p(Hmax) follows from
Eq. (8.8). In the continuum limit this becomes

pm(Hmax) = Np(Hmax) × exp [−NP (Hmax)]

Notice that the maximum wave height distribution involves a double exponential function.
• The expectation value of maximum wave height follows from

〈Hmax〉 =

∫

∞

0

dHmax Hmax pm(Hmax) (8.9)

Notice that Hmax = F [C4(BFI, δθ), N ], where N = TD/Tp with Tp the peak period and TD the
duration of the timeseries.

The integral in (8.9) may be evaluated in an approximate fashion for large N and small C4. The main
result becomes

〈Hmax〉 =
√

〈z〉, (8.10)

where

〈z〉 = ẑ0 +
γ

2
+

1

2
log

[

1 + C4

{

2ẑ0(ẑ0 − 1) − γ(1 − 2ẑ0) −
1

2
(γ2 +

π2

6
)

}]

, (8.11)

with ẑ0 = 1
2

log N and γ = 0.5772 is Euler’s constant.

Figure 8.1 Map of analyzed maximum wave height for 10 February 2007.

Fig. 8.1 shows an example of a maximum wave height map for a big storm in the North Atlantic that
occurred on 10 February 2007. Here, the maximum wave height refers to time series with a duration TD of
20 minutes and the number of waves N follows from the relation N = TD/Tp. The maximum of significant
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wave height in the North Atlantic was 15.9 m at that time while the extreme value in maximum wave
height is found to be 26.5 m. Notice, however, the dependence of the estimate of the maximum wave
height on the number of waves in the time series of duration TD. Although according to (8.10) it only
depends on the logarithm of N , nevertheless for TD = 3 hours the maximum wave height will increase on
average by about 20% giving an extreme value of 31.6 m.

It is clear that for operational applications a choice for the length of the timeseries needs to be made.
Buoy time series are typically 20–30 minutes long so initially it was thought that, in order to validate the
model results against buoy data, it would make sense to take this period as the length of the time series.
However, for practical application a timescale related to the changes in the synoptic conditions seems
more appropriate. This would mean a much longer duration of say 3 hours. A compromise was found
by choosing a duration of 3 hrs, while for validation purposes we collected 6 consecutive hourly buoy
observations making up an observed duration of 2–3 hours.2 The observed maximum wave height is then
the maximum of the 6 consecutive maximum wave height observations. First results of a comparison of
modelled and observed maximum wave height are shown in Fig. 8.2. For a first comparison the agreement

Figure 8.2 Validation of analyzed maximum wave against observed maximum wave height from a number of
buoys that report maximum wave height (the buoy list is shown as well). Period is February 2006 until January
2008.

between modelled and observed maximum wave height is impressive. The relative positive bias is about
7% while the scatter index is about 19%. For comparison the scatter index for significant wave height for
the same set of buoys and period is about 13%. We were puzzled about this impressive agreement, because
for starters we are actually comparing apples and pears, since the model value is an expectation while
the buoy value is instantaneous. This puzzle was solved when it was realized that the pdf of maximum
wave height is fairly narrow. For linear waves its width σ is approximately

σ

〈Hmax〉
≃ π

2
√

6
(

log N + 1
2
γ
) . (8.12)

2 Note that the difference between a duration of 2 or 3 hours only gives a difference of 3% in maximum wave height, so
this difference will be disregarded for the moment.
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Clearly, the longer the length of the time series the sharper the estimate of maximum wave height becomes.
For a 3 hour duration and a peak period of 10 s one finds σ/〈Hmax〉 ≃ 0.08, therefore the maximum wave
height distribution is indeed fairly narrow.

In closing this Section, we give the corresponding maximum period, which is the average period for given
maximum wave height. So far we have only done work on the case of linear waves, so this still requires
extension into the nonlinear regime. The period is estimated using the joint pdf of normalized envelope
(c.f. (Longuet-Higgins, 1983)),

R =
ρ√
2m0

,

and normalized period

T =
τ

τ
,

where the period τ = 2π/ω = −2π/φ̇, and the mean period τ = 2πm0/m1. This joint pdf reads

p(R, T ) =
2

νπ1/2

R2

T 2
exp

{

−R2

[

1 +
1

ν2

(

1 − 1

T

)2
]}

,

where ν is the width parameter as introduced by Longuet-Higgins (1983),

ν = (m0m2/m2
1 − 1)1/2.

For given normalized envelope height, wave period follows from the conditional distribution of wave
periods p(T |R) = p(R, T )/p(R). One finds

p(T |R) =
R

νπ1/2T 2
exp

[

−R2

ν2

(

1 − 1

T

)2
]

,

The expectation value of the period then becomes

〈T 〉 =
R

νπ1/2

∫

∞

−∞

dT

T
exp

[

−R2

ν2

(

1 − 1

T

)2
]

.

Introducing the parameter ∆ = ν/R the above integral may be evaluated for small ∆ in an approximate
fashion. One finds

〈T 〉 = 1 +
1

2
∆2 +

3

4
∆4 + ...,

and the maximum period then follows from τmax = τ 〈T 〉 and ρ = Hmax/2.

This concludes our discussion of the software aspects of the ECMWF version of the third generation
WAM model. Although the software description only comprises a small part of this document, it should
be realised that the greater part of the efforts of the WAM group was devoted to the development of the
WAM model code. One can imagine how the strong involvement of a number of WAM people in the wave
model development has led to heated debates on aspects of the model design during the yearly WAM
meetings. However, all this has paid off. The present cycle 4 version of the WAM model is a beautiful
looking fortran code. It combines efficiency with flexibility. It has been installed at over 200 institutes
world wide and is used for research and operational applications. Furthermore, at ECMWF we have seen
a steady evolution of the WAM software towards a better integration in the ECMWF software system
and towards a tight coupling with the atmospheric model.
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Hasselmann, K., Hasselmann, S., Bauer, E., Brüning, C., Lehner, S., Graber, H. and Lionello, P. (1988).
Development of a satellite SAR image spectra and altimeter wave height data assimilation system for
ERS-1. ESA Report, Max-Planck-Institute für Meteorologie, Nr. 19, Hamburg, 155 p.

Hasselmann, K., Ross, D. B., Müller, P. and Sell, W. (1976). A parametric wave prediction model.
J. Phys. Oceanogr., 6, 200–228.
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