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Specification of rain gauge representativity error for dataassimilation

Abstract

The comparison of precipitation fields produced by numerical weather prediction models with rain
gauge observations is often difficult because the former areassumed to represent grid box averages,
while the latter can be considered as point measurements. Obtaining a reasonable estimate of the
representativity error (RE) for rain gauges is a prerequisite to their proper use in model validation
and above all in data assimilation.

In this work, RE is evaluated in terms of the spatial variability of precipitation over a typical model
grid box. It is also assumed that the total RE of rain gauges can be split into a large-scale and a
small-scale contribution. The large-scale component is estimated from various ground-based radar
precipitation datasets, while the small-scale component is derived from several high-density rain
gauge networks.

A quantitative estimation of RE is obtained for rain rate (RR) as well as for its logarithmic transform
(ln[RR+ 1]), as used in ECMWF’s 4D-Var assimilation of radar precipitation data. Results confirm
that for a given rain rate, the RE of a single observation increases with the size of the target grid box
and the occurrence of convective precipitation (i.e. during mid-latitude summer and in the tropics),
and decreases with the accumulation period. The contribution to RE from the small scales turns out
to be usually lower than that from the large-scales, but is not negligible. The relative total RE exceeds
100% for weak precipitation, but can drop down to 20% or less for heavier precipitation. This drop
in relative RE is even more pronounced for ln(RR+1) than forRR, while the range of RE values is
expectedly much reduced in terms of ln(RR+1).

Since limited availability of real-time information on rain gauge spatial variability is anticipated,
this study proposes a simple parametrisation of RE in terms of ln(RR+ 1) that only depends on
target resolution and day of the year, with a distinction between mid-latitudes and tropical regions.
A month-dependent parametrisation of precipitation spatial correlations as a function of separation
distance has also been formulated. Finally, the reduction of RE due to spatial correlations of the
rain field and to the availability of multiple nearby rain gauges is considered. These parametrisations
are expected to be applicable to mid-latitude and tropical rainfall over flat terrain and to 6-hour rain
accumulations only.

1 Introduction

Rain gauge (RG hereafter) observations have been used for more than a century to improve our knowl-
edge of the spatial and temporal distribution of precipitation over land areas worldwide. Mainly three dif-
ferent types of RG are employed: (1) non-recording gauges (asimple bucket), (2) weighing instruments
(time evolution of the bucket weight) and (3) tipping-bucket (TB hereafter) gauges, which electronically
counts the number of tips of a small (0.2-0.5 mm) seesaw-likecontainer, as precipitation fills it.

Even though the measurement principle is quite simple, actual RG observations may be affected by a
large variety of errors.

First, systematic instrumental errors (WMO 2008) can occuras a result of

• wind-induced undercatch due to aerodynamic effects aroundthe RG (increases with collector height
above ground, wind velocity and in the presence of light rainor snow),

• mis-calibration of TBs,

• loss through the wetting of the inner walls (all RGs) and during emptying of the container (especially
for non-recording RGs),

• splashing away from the collector,
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• evaporation between consecutive measurements (especially for 6-hourly synoptic station observa-
tions with non-recording RGs).

The error associated to wind is usually the largest (typically 2 to 10% for rain, up to 10 to 50% for snow).

The second type of errors are ”local” random errors, which mainly include

• discrete time sampling errors of TBs,

• variations of the wind effect caused by turbulent airflow around the RG,

• clogging of the collector (e.g., due to leaves or insects),

• failure of a TB to tip (mechanical or electrical problem).

Experimental studies using several RG over areas well below100 metres in size (e.g., Ciach 2003, Subedi
and Fullen 2009) suggested that local random errors for accumulations longer than 1 hour should remain
below 5%, except in very light rain rate or in snow. Besides, ”local” random errors usually decrease with
accumulation length.

The third type of errors, which arise when RGs are used to infer precipitation information well beyond
their immediate vicinity, are referred to as representativity errors (RE hereafter). For instance, RE can be-
come significant when RGs are to be compared with precipitation fields produced by numerical weather
prediction (NWP) models, since the latter are usually assumed to be spatial averages on the model hor-
izontal grid (from 100 m in cloud resolving models to 300 km inclimate models). The discrepancy
between individual RG point measurements and corresponding grid-box averaged observed precipitation
values is expected to grow when the grid becomes coarser, butalso over steep orography or in convective
precipitation events (due to increased small-scale variability). At the same time, RE is likely to increase
when time accumulation length gets shorter. In terms of magnitude, RE is expected to be the dominant
source of observational errors for most applications involving the comparison of RG data to equivalent
NWP model fields. This is true in model validation exercises,but also in the context of data assimilation,
which is the primary goal of this work.

The aim of data assimilation is to blend information coming from a set of observations with a priori
information originating from an NWP model in order to produce optimal three-dimensional representa-
tions of the atmospheric state (called the analyses). Theseanalyses can then be used to initialize NWP
forecasts. Over the last decade, various data assimilationapproaches have been implemented by several
operational weather centres (e.g., USA, Japan, UK, France)to assimilate instantaneous ground-based
radar observations from their national networks, with somedegree of success. These methods include
latent heat nudging (Macpherson 2001), diabatic initialization (Ducrocqet al. 2002) and variational data
assimilation, such as 3D-Var (Caumontet al. 2010) or 4D-Var (Lopez and Bauer 2007 ; Lopez 2011;
Sun 2005; Koizumiet al. 2005). Besides, it has recently become possible to assimilate ground-based
radar precipitation estimates that are accumulated over several hours (Lopez 2011), which was shown to
improve the validity of the fundamental linearity assumption in 4D-Var.

However, as far as RGs are concerned, the lack of informationabout RE estimates has hindered the
progress towards their use in operational global data assimilation systems. Indeed, the assimilation pro-
cess requires the specification of reasonably accurate error statistics for each observation, which should
include RE. Therefore, the aim of the present study is to quantify RE for point measurements of precip-
itation at spatial scales ranging from 15 to 80 km and for timeaccumulations between 15 minutes and
6 hours. This is achieved by estimating the spatial variability of precipitation from both ground-based
weather radar data and high-density RG observations, over different regions of the globe. In addition,
an estimation of the reduction of RE due to precipitation spatial correlations and to the availability of
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multiple nearby RGs is proposed.

It should be emphasised that RE estimates obtained in this study will only be valid for relatively flat
terrain regions, since orography often degrades the quality and representativity of both RG and radar
observations (e.g.,̌Saleket al. 2004). Their applicability to polar regions will also be questionable due
to the unavailability of relevant precipitation datasets at high latitudes.

Section2 introduces the methodology employed here to obtain RG RE estimates, while section3 offers
a brief description of each observational dataset used in this work. Statistical results are presented in
section4. A discussion is given in section5 on how these statistics have been utilised to establish a
simple definition of RE that might be included in the future assimilation of RG observations in 4D-Var.
Section6 summarises the findings from this study and their potential applications.

2 Methodology

2.1 Estimation of representativity error

The main assumption in the present work is that reasonable estimates of RG RE can be obtained for
selected target horizontal resolutions (15, 40 and 80 km here) by computing the spatial variability of
precipitation measurements inside horizontal boxes with matching area.

More generally, ifn rain observations (RRi, with i = 1, . . . ,n) are available inside a certain domain with
sizeA, RE can be approximated by the rainfall spatial standard deviation

σ =

√
1

n−1

n

∑
i=1

[
f (RRi)− f (RR)

]2
(1)

whereRR denotes the mean of all rain observations over the domain. Therefore it is assumed that
RE andσ mean the same thing and both terms will be used indiscriminately hereafter. Functionf in
Eq.(1) is a variable transform that may be applied to the precipitation field, for instance for the purpose
of making the distribution of background errors closer to normality in the context of data assimilation.
Here, statistics will be computed both for the precipitation rate itself (RRin mm h−1) and for the quantity
ln(RR[mm h−1] + 1) (LRRhereafter). This logarithmic transform was initially proposed by Mahfouf
et al. (2007) and subsequently implemented by Lopez (2011) to assimilate ground-based radar data
in ECMWF’s 4D-Var system. Since it is likely to be used also infuture attempts to assimilate RG
observations, it is essential to obtain RE estimates for this particular variable as well.

Since no high-density precipitation observations are available on the global scale, the strategy proposed
here is to assess rain spatial variability from ground-based radar precipitation estimates, on the one
hand, and from high-density RG networks, on the other hand. Radar data should help to assess the
contribution to RE from scales larger than a few kilometres,which is denotedσL. On the other hand, RG
measurements are expected to provide a rough estimate of thecontributions from all scales below the size
of the RG network, in particular from sub-kilometre scales.Given that most high-density RG networks
used in this study do not cover an area larger than 16 km2, the main contribution to RE estimates based
on RGs will come from scales smaller than a few kilometres andwill be denotedσS.

It can be shown that total RE (in other wordsσ ) can be approximated by summing up the two variances
that are computed for the large and the small scales (i.e. from radars and small-size high-density RG
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networks, respectively), that is

σ ≈

√
σ2

L + σ2
S (2)

It should be noticed that RGs can allow the direct estimationof total RE only when the size of the RG
network exceeds the target resolution, which is the case here only with the South Korean RG dataset (see
section3.4).

2.2 Display of statistics

For each dataset used here, the scatter plot ofσ versusf (RR) is plotted and a fitting curve is constructed
based on a locally weighted scatterplot smoothing (LOESS) method (Cleveland 1979). In this fitting
procedure, a least-square-weighted local polynomial fit isobtained, in which a higher weight is assigned
to nearby points than to remote ones. The fitting algorithm employed in the present work is identical to
the one applied by Woodet al. (2000) to their rain gauge observations.

A Monte-Carlo bootstrapping method (Efron and Tibshirani 1986) similar to that employed by Wood
et al. (2000) is used to assess the uncertainty of the LOESS fitted curve. In this approach, the original
dataset of lengthL is split into blocks of lengthLb << L and a random re-sampling with replacement of
certain blocks is performed in order to construct several hundreds of new datasets of lengthL, for each
of which a LOESS fitted curve can be calculated. The spread of the distribution of these fitted curves
yields an estimate of the uncertainty. Practically here, vertical bars show the spread between the 5th and
95th percentiles of the statistical distribution of all y-values of the LOESS fitted curves.

An example of scatter plot ofσ versusRR, with superimposed LOESS fitted curve (for the original non-
resampled dataset) and associated uncertainty bars, is displayed in Fig.1. In the following, the cloud
of individual points will be omitted so as to improve plot legibility and to permit the superimposition of
various datasets.
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Figure 1: Example of scatter plot (grey crosses) ofσ (y-axis) versusRR (x-axis) with LOESS fitted curve
(blue line) and associated uncertainty bars (vertical bluebars). Red dotted isolines of the ratioσ/RR in

% are also drawn.
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3 Description of datasets

3.1 NCEP Stage IV precipitation data

NCEP (National Centers for Environmental Prediction) Stage IV hourly precipitation data combine pre-
cipitation estimates from about 150 Doppler NEXt-generation RADars (NEXRAD) with about 5500 rain
gauge measurements over the conterminous USA (Baldwin and Mitchell 1996; Lin and Mitchell 2005).
During the production process, data from the original radarpixels (the size of which increases with radar
range) are averaged onto a 4-km resolution polar-stereographic grid.

Technically speaking, NEXRAD corresponds to the so-calledWSR-88D (Weather Surveillance Radar,
1988, Doppler) (Fultonet al. 1998). Each NCEP Stage IV precipitation analysis is initiated 35 min after
the end of each hourly collection period and may be updated over a period of several hours with new
data coming from the twelve USA regional centres. A first inflow of automatically generated precipita-
tion data is available within a few hours after the accumulation time, while a second inflow of updated
manually-quality-controlled data becomes available later (with a delay of up to 12 hours). The spatial
coverage of the early release is usually not far away from itsmaximum extent. In this work, manually
quality controlled data were obtained from the JOSS/UCAR (Joint Office for Science Support/University
Corporation for Atmospheric Research) archive (website:http://www.joss.ucar.edu/codiac/). In the fol-
lowing, these observations will be referred to as ”NEXRAD” observations for simplicity.

These data are representative of a broad range of mid-latitude and tropical weather regimes, depending on
season and latitude. It should also be noted that only data located east of 105◦W have been used in order
to avoid the possible degradation in the quality of ground-based radar rainfall estimates over the Rocky
Mountains (due to radar beam blockage or orographic enhancement of precipitation). Besides, given the
large amount of data to be processed, the data sample has beenlimited to one year for RE computations
(see Table1). Note however that three years (December 2006-November 2009) of NEXRAD data have
been used for the calculations of spatial correlations presented in section5.3.

3.2 OPERA rain composites

The OPERA (Operational Programme for the Exchange of weather RAdar information) Pilot Data Hub
(Holleman 2008) is based at the Met Office in Exeter (UK) and provides 15-mn precipitation rates ob-
tained from about 150 operational ground-based weather radars over Europe. Typically, these 15-mn data
are averages over three successive radar scans. OPERA European composites are produced in quasi-real
time (within 30 minutes) by combining the data received fromeach individual countries, following the
method described in Harrisonet al. (2006). It should be noted that countries may send either single
radar data or already processed national composites to the OPERA Pilot Hub, which might result in
inhomogeneities in the final European composites. At the level of the Data Hub, quality control proce-
dures are applied to single site data to identify and remove ground clutter, anomalous propagation and
occultation occurrences, as well as to correct for verticalprofile effects associated to bright band oc-
currence, resolution degradation with range and orographic enhancement of precipitation. On the other
hand, no particular quality control is performed on the national composites other than the one performed
by the national services themselves. The final OPERA composites are provided in BUFR format and on
a Lambert’s azimuthal equal area projection (tangent point55◦N and 10◦E), with a pixel size of 4 km.

In this study, OPERA data have been restricted to 5◦W-15◦W and 48◦N-53◦N (Germany) so as to be
representative of relatively flat terrain and mid-latitudemeteorological conditions. Another justification
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for this choice lies in the fact that, according to Lopez (2008), OPERA data exhibit their best quality
over Germany. Similar to NEXRAD, the period of the OPERA dataused here extends from 1 December
2008 to 30 November 2009.

3.3 Darwin radar data

Rainfall estimates obtained from the ground-based scanning C-band polarimetric precipitation radar lo-
cated near Darwin in Australia (location: 131◦03’E/12◦15’S; Keenanet al. 1998) were provided by
Monash University, Melbourne, for three consecutive rainyseasons (November to April) from 2004 to
2007. The spatial and temporal resolutions of the CAPPI (Constant Altitude Plan Position Indicator)
precipitation data are 2.5 km and 10 mn, respectively. This dataset is representative of monsoon-type
tropical weather regimes, often characterised by intense convective activity and heavy rainfall.

3.4 South Korea rain gauge data

South Korea benefits from a rather high-density network of about 520 TB RGs (Sohnet al. 2010), which
corresponds to an average separation distance just below 15km. Data were obtained in the form of hourly
accumulations for each rain gauge and for the year 2009. These data are expected to be representative of
a wide range of weather regimes, from cold mid-latitude conditions in winter to subtropical conditions
during summer.

3.5 HYREX data

The Hydrological Radar Experiment (HYREX) was conducted inSomerset in the UK to study the spa-
tial and temporal variability of precipitation over the River Brue catchment area, mainly for hydrolog-
ical purposes (Mooreet al. 2000). A network of 49 TB RGs was installed over the entire catchment
area, with two high-density 4-km2 boxes featuring 8 gauges each. Also available from the HYREX
database were data from the two ground-based C-band precipitation radars located at Wardon Hill, Dorset
(2◦34’W/50◦48’N) and Cobbacombe, Devon (3◦25’W /50◦58’N). In this study, data from the low-relief
4-km2 box RGs as well as from the two radars have been used over the period September 1993 to May
2000. These data were supplied by the British Atmospheric Data Centre from the NERC (Natural Envi-
ronment Research Council) HYREX Dataset (http://www.badc.rl.ac.uk/data/hyrex/).

3.6 Walnut Gulch rain gauges

The 149 km2 Walnut Gulch Experimental Watershed is located in southeastern Arizona (USA; location:
110◦04’W/31◦43’N) and is currently equipped with 88 operational weighing-recording RGs. A more
detailed description of the instrumentation can be found inGoodrichet al. (2008) and data are available
from the USDA-ARS (United States Department of Agriculture/Agricultural Research Service) website
on http://www.tucson.ars.ag.gov/dap/digital/event.asp. This site is characterised by a subtropical semi-
arid climate with dry springs and precipitation peaking around mid-summer (convective). Measurements
used in the present work are those from 12 RGs (namely gauges number 27, 28, 31, 32, 33, 39, 40, 71,
74, 80, 87 and 398) that are located inside a 16 km2 box in the northern part of the watershed, from 1
January 1999 to 31 December 2010.
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3.7 USDA Riesel rain gauges

The USDA-ARS Grassland Soil and Water Research Laboratory watersheds near Riesel, Texas (USA;
location: 96◦53’W/31◦28’N), provide long-time series (since 1937) of precipitation recordings from
up to 57 RGs (see Harmelet al. 2003). Data can be accessed onhttp://www.ars.usda.gov/Research/-
docs.htm?docid=10216. The Riesel region is characterised by flat terrain and a subtropical subhumid
climate, with frontal precipitation in winter and heavy convective rainfall during the warmer season,
peaking in May. To ensure temporal continuity and spatial proximity, only 13 TB RGs (namely gauges
number w1b, w5a, w2a, w6, w4, w3, w2, 84a, 75a, 70a, 89, 70, 69), which are located inside a 4-km2

area, have been selected here, over the period 1 January 1970to 31 December 2010.

Dataset Resol./RG density Location/Domain Temporal coverage Instrument Type

NEXRAD 4 km Eastern half USA Dec 2008-Nov 2009 C-band Dop. Rad.

OPERA 4 km Europe (Germany) Dec 2008-Nov 2009 C-/S-band Dop. Rad.

Darwin 2.5 km Darwin, Australia Dec 2008-Nov 2009 C-band Pol. Rad.

HYREX Rad. 2 km Wardon Hill, UK Sep 1993-Apr 2000 C-band radar
2 km Cobbacombe, UK Feb 1994-Apr 2000 C-band Dop. Rad.

South Korea 520 RGs/105 km2 South Korea Year 2009 TB RG

HYREX RGs 8 RGs/4 km2 Somerset, UK Sep 1993-May 2000 TB RG

Walnut Gulch 12 RGs/16 km2 Arizona, USA Jan 1999-Dec 2010 WR RG

USDA Riesel 13 RGs/4 km2 Texas, USA Jan 1970-Dec 2010 TB RG

Table 1: Main characteristics of precipitation observational datasets used to assess RE: spatial res-
olution or RG density, geographical location, sample length and instrument type. Abbreviations:

Dop.=Doppler, Pol.=polarimetric, Rad.=radar, TB=Tipping-Bucket, WR=Weighting-Recording.
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4 Results

Results from each available dataset will be presented in theform of fitted curves of the standard deviation
of precipitation observations,σ , plotted against the mean precipitation value,f (RR), as detailed in sec-
tion 2.2. Statistics have been computed for three different target grid box sizes (15, 40 and 80-km) and
for each season of the year as well as for the whole year. Furthermore, three precipitation accumulation
lengths have been considered: 6 hours (for all datasets), 1 hour and 15 mn (for a few datasets). Only a
selected subset of these statistics will be shown here with aparticular focus on the 6-hour accumulation
length. Indeed, the latter is representative of most synoptic station RG measurements and was found to
be the optimal accumulation length for the assimilation of precipitation observations in 4D-Var (Lopez
2011). Lastly, statistics for bothRRandLRRwill be shown on panels (a) and (b) of each figure of this
section, respectively.

4.1 Ground-based radars

Statistics obtained from these datasets provide an estimate of precipitation RE resulting from scales
ranging from a few kilometres to the size of the selected target grid box (15, 40 or 80-km). In other
words, this estimate of RE corresponds toσL in Eq.(2).

Figure2 displaysσL againstf (RR) for 6-hourly precipitation accumulations, for all radar datasets and
for 15-km target grid boxes. This corresponds to the highestspectral truncation (T1279) currently used
in ECMWF’s Integrated Forecasting System (IFS). In this figure, statistics apply to the entire period of
each dataset (see Table1).

Both panels show thatσL monotonically increases withf (RR) for most datasets. Only NEXRAD and
Darwin exhibit a curve which slightly drops for values of ln(RR+ 1) larger than 1.0 (Fig.2.b). As
expected from the application of a logarithmic transform, the range ofσL values is higher forRR(0.08-
7.0 mm h−1) than forLRR(0.07-0.4). It is also remarkable that the spread among all radar datasets is
not too wide, with the exception of Darwin data for whichσL is systematically larger, especially for
lower precipitation rates. This can be explained by the predominance of convection at the tropical site of
Darwin, which is accompanied by strong horizontal variability of the precipitation field.

In relative terms, the ratioσL/ f (RR) usually decreases withf (RR) from around 100% to 20% forRRand
from about 70% to 10% forLRR. For Darwin data, the ratio exceeds 100% for the smaller precipitation
amounts.

It is also worth noting that the smaller sample size of the Wardon Hill and Cobbacombe radar datasets
results in increased uncertainty (i.e. wider error bars, see section2.2). As an illustration of seasonal
variability, Fig.3 displaysσL againstf (RR) for 6-hourly NEXRAD precipitation on a 15-km horizontal
scale and for each season and the whole year. It is clear that RE is weakest in winter and highest in sum-
mer, as a result of the predominance of stratiform versus convective precipitation systems, respectively,
except for higher precipitation rates (mostly convective). On the other hand, spring and autumn exhibit
σL values close to yearly statistics. As an example of the dependence on target horizontal resolution,
Fig. 4 shows NEXRAD statistical results computed at 15, 40 and 80-km resolutions and for the whole
year. For any givenf (RR) value, RE roughly doubles when the size of target boxes is increased from 15
to 80 km. This simply reflects the corresponding reduction inthe amount of information that any single
4-km radar observation can provide about the target-box mean precipitation.
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Figure 2: Standard deviation of 6-hourly accumulated precipitation as a function of mean precipitation
value computed over 15-km boxes and for all radar datasets used in this study: NEXRAD and OPERA
networks, Darwin, Wardon Hill and Cobbacombe individual radar sites. Panels (a) and (b) show statis-
tics in terms of RR and LRR, respectively. Statistics are valid for the periods mentioned in Table1.
Red dotted isolines indicate standard deviation normalised by mean gridbox precipitation (in %). Ver-
tical bars show the uncertainty of each curve, as assessed from the bootstrapping method described in

section2.2.
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Figure 3: Same as in Fig.2, but for NEXRAD data only and for various seasons.
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Figure 4: Same as in Fig.2, but for NEXRAD data only and for target horizontal resolutions of 15, 40
and 80 km.

4.2 High-density rain gauge networks

Statistics obtained from these datasets give an estimate ofprecipitation RE on scales finer than a few
kilometres, to complement those obtained from radars. Thisestimate of RE therefore corresponds toσS

in Eq.(2).

Figure5 displaysσS against f (RR) for 6-hourly precipitation accumulations, computed from all high-
density RG datasets and over the respective network areas given in Table1. Statistics are valid for the
entire length of each dataset. The curves show a similar slope to those obtained for radars in Fig.2, but
the differences among RG networks is larger. Walnut Gulch and USDA Riesel networks, both based
in southern USA, exhibitσS values that are between three and four times as large as thosefor the UK-
based HYREX network, which can be attributed to more frequent convection over Arizona and Texas.
The HYREX RGσS/ f (RR) ratio is in fact remarkably low, ranging from 40% for low rainrates to
13% (resp. 7%) for high rain rates inRR (resp. LRR) space. This is the result of the predominance
of stratiform precipitation in North Atlantic cloud systems, throughout the year. Figure6 quantifies
the expected increase ofσS (by a factor between 3 and 5) when precipitation accumulation length is
shortened from 6 hours to 15 mn, in the case of the HYREX RGs. One should also note that the increase
of σS when going from 1 hour to 15 mn is as large as that obtained whengoing from 6 hour to 1 hour
accumulations. Besides, this degradation ofσS seems to be stronger for low rain rates, which might be
related to the occurrence of isolated showers at scales below 2 km.

4.3 South Korean rain gauge network

Statistics calculated from this dataset should be representative of all scales up to the the target horizontal
resolution, including scales finer than the distance between rain gauges. The resulting estimate of RE
therefore corresponds toσ in Eq.(2).
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Figure 5: Standard deviation of 6-hourly accumulated precipitation as a function of mean precipitation
value from all high-density rain gauge datasets used in thisstudy: Walnut Gulch, USDA Riesel and

HYREX networks. Same layout as in Fig.2.
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Figure 6: Standard deviation of precipitation as a functionof mean precipitation value from the HYREX
high-density rain gauge network and for rain accumulation lengths of 15 mn, 1 hour and 6 hours. Same

layout as in Fig.2.
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Figure7 shows RE as a function off (RR) for South Korean RGs, for three seasons (cold, transition and
warm) and for two target horizontal resolutions (0.4 and 0.8degree, i.e.≈ 40 and 80 km). Statistics at
0.15 degree resolution turned out to be impossible to calculate due to the lack of points in each target box,
as the mean separation distance over the South Korean RG network is about 15 km. ”Cold” and ”warm”
seasons refer to the periods December-March and June-September, respectively, while the ”transition”
season comprises the months of April, May, October and November.

Consistent with what was found from NEXRAD data (see Fig.3), RE is clearly higher during the warm
season (convective activity) than during the cold season (stratiform precipitation), with the transition
season lying in-between. Also consistent with Fig.4, RE increases when target horizontal resolution
is changed from 0.4 to 0.8 degree. Quantitatively,σ values from South Korean RG observations are
comparable to those displayed in Fig.4 from NEXRAD data. Indeed, yearly values ofσ for RR(panel
(a)) range from 0.2 for the lowest rain rates to 3.0 mm h−1 for rain rates of 10 mm h−1. In terms ofLRR
(panel (b)),σ varies between 0.15 and 0.4 whenLRR ranges from 0.1 to 2.0. However, the seasonal
spread ofσ for South Korean RGs (Fig.7) is slightly narrower than for NEXRAD data (not shown),
especially for rain rates lower than 1 mm h−1.
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Figure 7: Standard deviation of 6-hourly accumulated precipitation as a function of mean precipitation
value from the South Korean rain gauge network. Statistics are displayed for the cold, transition and
warm seasons and for two target horizontal resolutions of 0.4 and 0.8 degree, as indicated in the legend.

Same layout as in Fig.2.

5 Discussion

5.1 Parametrisation of single rain gauge representativity error

Results presented in section4 using all precipitation datasets helped to identify and quantify the mono-
tonic increase ofσ and the monotonic decrease ofσ/ f (RR) with f (RR). Therefore, an ideal formulation
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of RE for precipitation point-measurements ought to be obtained through a function describing theσ -
f (RR) relationship, with some additional dependence on season orprecipitation type (convective versus
stratiform), and maybe on geographical location and orography (rugged versus flat terrain) as well.

However, the development of such formulation for NWP applications suffers from several practical lim-
itations. First, the actual value ofRR, which would typically be observed precipitation averagedover
a model grid box in this case, is usually unknown. The only information available originates from in-
dividual RG observations, which are usually sparsely distributed in space. This makes it impossible to
compute RG RE using aσ - f (RR) relationship.

Secondly, the inclusion of a direct dependence of RE on precipitation type could only be based on addi-
tional information coming either from other instrumental platforms (e.g., satellites) or from the forecast
model. However, other types of observations that are colocated with RGs and capable of providing
reliable information about precipitation type are seldom available on the global scale and in real-time
(operational context). The alternative of using model fields (e.g., convective available potential energy)
to identify precipitation type would be problematic as well, if only because of potential misplacements
or mis-timing of convective/stratiform events in the model, even at short forecast ranges. Furthermore,
since conventional RG measurements are provided in the formof rainfall accumulations over at least
6 hours, a change in precipitation type is likely to occur over such a period of time as a result of the
displacement of cloud systems.

Therefore the only possible solution for applications in NWP and in data assimilation is to specify a value
of RE which is (unfortunately) independent of precipitation amount, but which can still be modulated ac-
cording to season. This seasonal dependence would crudely account for typical changes in precipitation
regimes/types throughout the year. It should be emphasisedthat the lack of dependence of RE on rain
amount should be less of an issue forLRRthan forRR, since the range ofσ variations is much smaller
for the former variable than for the latter. This can be seen by comparing panels (a) and (b) in all plots
of section4. One should also note thatLRRis the variable used to assimilate precipitation observations
at ECMWF (Lopez 2011).

To ease the definition of ”universal” seasonal-dependent values of LRR RE, Figure8 offers a visual
representation of the range ofσ values derived from all datasets for different seasons and for target
resolutions of 15, 40 and 80 km. For any individual curve of the type shown in section4, the range
is defined by the lowest and highestLRRRE values for which the uncertainty is not too large (namely
ytop ≤ 2 ybottom for the error bar). From Fig.8 and with the help of the plots presented in section4 and
by taking into account Eq.(2), the following (rather crude and subjective) formulationfor RE has been
established:

σ(D) = σ0 + ∆σ sin

{
π
2

(D−112
91

)
+ δhemisπ

}
(3)

whereD is the day of the year andδhemisis equal to 0 for the northern hemisphere and 1 for the southern
hemisphere. Parametersσ0 and∆σ depend on target resolution and geographical location according to
Table2. In this table, tropics are assumed to extend between 25◦S and 25◦N and mid-latitudes between
25◦ and 60◦ in both hemispheres. Figure9 illustrates the variations ofσ given by Eq.(3) for the three
selected target resolutions and for both northern mid-latitudes and tropics (constant value). The main
assumption is that RE is constant throughout the year in the tropics to account for the omnipresence
of convective precipitation, while in the mid-latitudes REfluctuates with season, with lower values in
winter (stratiform rain) and higher values in summer (convective rain).

Technical Memorandum No. 647 13



Specification of rain gauge representativity error for dataassimilation

Representativity error range, accum. length=06h, ln[RR+1]
Resolution=15km
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Representativity error range, accum. length=06h, ln[RR+1]
Resolution=40km
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Representativity error range, accum. length=06h, ln[RR+1]
Resolution=80km
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Figure 8: Range of representativity error in terms of LRR from all datasets and for target resolutions of
(a) 15 km, (b) 40 km and (c) 80 km, as determined from the curvesobtained in section4. Results are for
6-hourly precipitation accumulations. Each vertical bar is labelled with the dataset name and its colour
indicates the period of the year: winter (blue), spring (green), summer (red), autumn (orange) and whole
year (black). For South Korean RGs, the green bar corresponds to the ”transition” season (April, May,
October and November). The three high-density RG networks are shown separately on the extreme right

of each panel (independent of target resolution).
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Mid-latitudes Tropics
Target resolution σ0 ∆σ σ0 ∆σ

15 km 0.220 0.070 0.290 0
40 km 0.285 0.085 0.370 0
80 km 0.350 0.100 0.450 0

Table 2: Values of the two parametersσ0 and∆σ used in the parametrisation of RE for 6-hourly precip-
itation accumulations in terms of LRR (see Eq.(3)), for various target resolutions and for mid-latitudes

and tropics.
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Figure 9: Annual evolution of parametrised representativity error of 6-hourly precipitation accumula-
tions (in LRR space) for target resolutions of 15 km (solid line), 40 km (dotted line) and 80 km (dashed
line), according to Eq.(3) and using Table2. Blue (resp. red) lines are for northern mid-latitudes (resp.

tropics).
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5.2 Impact of spatial correlations and number of rain gauges on representativity error

As explained earlier, our aim here is to specify RE for the mean value of a set of rain gauges available
over a certain target grid box. Even when only one RG is available inside the target grid box, horizontal
correlations of the precipitation field are expected to reduce RE compared to the estimate given by Eq.(3).
Besides, when several rain gauges are available inside the same target grid box, the increased information
content should also lead to a drop in the RE of the RG grid box averaged rainfall.

Morrisseyet al. (1995) showed that the RE,̃σ , for the average ofn RGs over the target box can be
assessed from the RE of individual point observations,σ , through

σ̃2 = σ2

[
1
n2

N

∑
i=1

N

∑
j=1

ρ(di, j)δ (i)δ ( j)

︸ ︷︷ ︸
T1

−
2

Nn

N

∑
i=1

N

∑
j=1

ρ(di, j)δ (i)

︸ ︷︷ ︸
T2

+
1
N︸︷︷︸
T3

+
2

N2

N−1

∑
i=1

N

∑
j=i+1

ρ(di, j)

︸ ︷︷ ︸
T4

]
(4)

whereρ(di, j) is the spatial correlation between two rain gauges indexedi and j and separated by the
distancedi, j . N is the number of rectangular sub-boxes artificially defined to divide the target area in
such way that either 0 or 1 rain gauge is present inside each sub-box, as illustrated in Fig.10. The

Figure 10: Illustration of the subdividing of a given targetbox into N sub-boxes for the estimation of
the reduction in precipitation representativity error when n rain gauges are available instead of a single

one.

main underlying assumption in Eq.(4) is that precipitation over each sub-box is well approximated by
the rain gauge measurement it contains, which requires the size of sub-boxes not to exceed a couple of
kilometres. It is also assumed thatσ is the same for each RG present in the target box. The quantityin
large brackets in Eq.(4) is the so-called variance reduction factor. Each term in the brackets correspond
to the influence of:

(T1) the correlations between RGs,

(T2) the spatial average of correlations around each RG,

(T3) the definition of sub-boxes (small ifN large enough),

(T4) the spatial average of correlations between sub-boxes.
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5.3 Spatial correlations

Spatial correlations between RGs (i.e.ρ(di, j) in Eq.(4)) should ideally be estimated from high-density
RG datasets with good spatial and temporal coverage. However, due to the unavailability of RG datasets
that fulfill these requirements, NEXRAD 4-km data have been used instead, since these offer good spatial
and temporal coverage. This ensures that the correlation curves are not too noisy. The fact of using 4-km
radar data instead of point measurements for this estimation might lead to small differences in spatial
correlations (Gebremichael and Krajewski 2004), but thesedifferences are not expected to be significant
in data assimilation or model verification applications.

The computation ofρ(di, j) is based on the method applied in Gebremichael and Krajewski(2004), which
uses the bivariate mixed lognormal precipitation distribution of Shimizu (1993).

Resulting 3-year averaged spatial correlations,ρ , as computed from 4-km resolution NEXRAD 6-hourly
precipitation accumulations, are plotted for each month inFig. 11 as a function of separation distance,
di, j , for bothRR(panel (a)) andLRR(panel (b)).
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Figure 11: Precipitation spatial correlation as a functionof separation distance, as computed from 3
years of NEXRAD 6-hourly precipitation accumulations in terms of (a) RR and b) LRR. Each curve

corresponds to a given month, as indicated in the legend.

Figure11 clearly shows that the drop of spatial correlations with separation distance gradually becomes
more pronounced when going from winter to summer. The longest span is obtained in January and
December, the narrowest in July and August. This is the consequence of the predominance of con-
vective activity during the warmer months, which is characterised by enhanced small-scale variability
of precipitation (convective cells embedded in mesoscale systems). In contrast, stratiform precipitation
which prevails during winter is usually associated with widespread, rather uniform frontal cloud systems,
which explains the broader shape of the spatial correlationcurves. April, May, October and November
are clearly transition months affected by both types of precipitation. The same seasonal trend of spatial
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correlations was found with South Korean RGs, but the curveswere somewhat noisier due to the smaller
sample size and spatially discrete nature of the data (not shown).

A classical exponential fit to the correlation curves shown in Fig.11 is proposed as

ρ(d) = exp
[
b(M) dc(M)

]
(5)

whered is the separation distance (in km) andb(M) andc(M) are coefficients which depend on the month
of the year,M. Figure12 shows the monthly variations of coefficientsb andc for both variablesRRand
LRR in northern hemisphere mid-latitudes. Figure12 indicate thatb and c oscillate rather regularly
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Figure 12: Monthly variations of coefficients b (triangles and squares) and c (diamonds and stars) used
in the exponential fit of the spatial correlations of NEXRAD 6-hourly precipitation accumulations, for
both RR (red) and LRR (black). The sine curves used to fit monthly values are also shown. This plot is

valid for northern mid-latitudes.

between a maximum in January and a minimum in July. Therefore, monthly values ofb andc have been
fitted with the following sine functions (plotted in Fig.12)

b(M) = b0 + ∆b sin

{
π
2

(M−mb

∆mb

)
+ δhemisπ

}
(6)

c(M) = c0 + ∆c sin

{
π
2

(M−mc

∆mc

)
+ δhemisπ

}
(7)

whereb0, ∆b, mb, ∆mb andc0, ∆c, mc, ∆mc are given in Table3. This parametrisation is assumed to be
applicable in mid-latitude regions.

For the tropics, rough estimates of coefficientsb andc have been obtained by restricting the NEXRAD
correlation computations to the Peninsula of Florida (south of 29◦N). Results (not shown) indicate only
weak variations of the two coefficients throughout the year and a drop of correlation with separation
distance which is even sharper than for mid-latitude summermonths (Fig.11). This is consistent with
the omnipresence of convection all year round and has led to the specification of fixed values ofb andc
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given in Table3. The resulting tropical correlation functions are in agreement with those found by Habib
and Krajewski (2002) for hourly rain accumulations in the summer over central Florida during the Texas
and Florida Underflight Experiment (TEFLUN-B). Here it is assumed that Floridian correlations are
representative of the entire tropical band. This may seem rather crude but this is the best we can do, until
alternative tropical precipitation datasets with better temporal and spatial coverage become available.

Mid-latitudes Tropics
RR LRR RR LRR

b0 −0.078 −0.056 −0.197 −0.164
∆b −0.055 −0.036 0 0
mb 4.770 4.803 / /

∆mb 2.444 2.481 / /

c0 0.655 0.672 0.609 0.623
∆c −0.090 −0.078 0 0
mc 4.563 4.711 / /

∆mc 2.619 2.548 / /

Table 3: Values of the eight parameters used to describe the monthly variations of the fitting coefficients
b and c for spatial correlations of 6-hourly precipitation accumulations (see Eq.(5), Eq.(6) and Eq.(7)).
Values are given for both variables RR and LRR and for both mid-latitudes and tropics. In the tropics, b

and c are assumed to be constant throughout the year.

5.4 Practical implementation

Practically, the specification of RE for the average of a set of RGs over a selected model grid box, for
instance in the context of data assimilation, would comprise the following steps:

(1) Determination of the numbern and positioning of RGs available inside the model grid box.

(2) Computation of individual RG RE from Eq.(3) and Table2.

(3) Definition of a regular lattice ofN sub-boxes containing either 0 or 1 RG each.

(4) Computation of spatial correlations between sub-boxesusing Eqs.(5)-(7) and Table3.

(5) Calculation of the final RE of the grid box averaged rain observation from Eq.(4).

Eventually, this RE value would then be added to the other components (see section1) of the total
observation error to be used during the assimilation process.

6 Summary and conclusions

In this work, representativity error has been defined as the error one makes when trying to assess the
averaged value of rainfall over a target area (e.g., a model grid box) from a set of point measurements
scattered over the same area. In particular, improving our knowledge of RE for RGs is a prerequisite to
their possible assimilation in 4D-Var.

A quantitative estimation of RE for individual point measurements has been obtained from various radar
and RG datasets over different regions of the globe. Statistics were computed for rain rate but also for
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its logarithmic transform (ln(RR+ 1)), as the latter variable is already employed in ECMWF’s 4D-Var
assimilation of ground-based radar precipitation data.

Results confirmed that for a given rain rate, RE increases with the size of the target grid box and oc-
currence of convective precipitation (i.e. during mid-latitude summer and in the tropics), and decreases
with the accumulation period. The contribution to RE from the small scales turns out to be usually lower
than that from the large-scales, but is not always negligible, especially in convection. The relative total
RE exceeds 100% for weak precipitation, but can drop down to 20% or less for heavier precipitation.
This drop in relative RE is even more pronounced forLRRthan forRR, while the range of RE values is
expectedly much reduced in terms ofLRR.

A simple formulation of RE in terms ofLRRhas been established, which includes a dependence on
season and target grid box resolution as well as the effect ofrainfall spatial correlations. It was not
possible to express RE as a function of grid box averaged observed precipitation itself since the latter
is usually unknown. It should be emphasised that the coefficients used in the proposed formulation
are only valid for 6-hour rain accumulations, which corresponds to the time sampling of most synoptic
station RGs, and therefore they should be recomputed if other accumulation lengths are considered.

The proposed formulation of RE involves two main steps. First, an estimate of RE for single point mea-
surements is obtained. Then, the total RE for the set of rainfall observations available over the selected
target grid box can be computed, taking into account the influence of precipitation spatial correlations,
which tend to reduce RE. In mid-latitudes, single RG RE is assumed to vary sinusoidally according to
season from a winter minimum to a summer maximum, as a result of the transition from predominantly
stratiform to predominantly convective precipitation regimes. In the tropics, one assumes that single RG
RE is constant throughout the year, with values similar to those obtained for mid-latitude summer con-
ditions. One should stress here that the lack of long enough,wide coverage and accurate tropical rainfall
datasets clearly hinders our capacity to obtain better statistics over these regions.

The proposed RE parametrisation is mainly intended for dataassimilation purposes but could also very
well be applied to model validation. In particular, the planis to employ it as part of the future assimilation
of 6-hourly RG observations in ECMWF’s 4D-Var system to specify reasonable observation errors at the
scale of the model grid box.
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