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NH-IFS deep-atmosphere

Abstract

A nonhydrostatic dynamical core, formerly coded in the limited area model ALADIN, has been ex-
tended to the global model IFS/ARPEGE, for both the uniform and the rotated/stretched meshes,
respectively. Options have been developed to run the global model under the spherical geopotential
approximation using either the hydrostatic primitive equations, the quasi-hydrostatic equations, the
nonhydrostatic shallow-atmosphere equations or the nonhydrostatic deep-atmosphere equations. The
latter includes the additional accelerations in the zonal and vertical components of the momentum
equation due to the Coriolis force and (optionally) the vertical variations of the gravitational accel-
eration. The nonhydrostatic deep model is equally stable compared with the hydrostatic shallow-
atmosphere model when the aspect ratio of the vertical extent of the atmosphere compared to the
radius of the sphere is� 1. The four different formulations are compared in idealised simulations as
well as against results from the (optionally) shallow or deep nonhydrostatic EULAG model. Both the
deep- and shallow-atmosphere IFS model versions give practically equivalent results in four-member
ensembles of 13 months simulations, and practically equivalent statistics in medium-range weather
forecasts, suggesting a negligible effect when the resolved flow regime is hydrostatic.

1 Introduction

The operational dynamical core of ECMWF’s Integrated Forecasting System (IFS) and ARPEGE, its
global equivalent at Meteo-France, is based on the hydrostatic primitive equations and is likely to be of
limited use at horizontal scales finer than about 10 km, where nonhydrostatic effects will become impor-
tant (ECMWF, 2000). Rather than developing such a dynamical core from scratch or investigate other
existing formulations it was decided to evaluate the nonhydrostatic formulation (Bubnová et al., 1995)
developed by the ALADIN group (ALADIN, 1997) and made available by Météo-France in the global
IFS/ARPEGE model (Bénard et al., 2010; Yessad, 2011). The advantages of this nonhydrostatic dynam-
ical core are the algorithmic proximity to the existing hydrostatic model framework and the underlying
hydrostatic balance due to its formulation in terms of a deviation from this balance. A comprehensive
summary of various tests performed during this assessment are discussed in Wedi et al. (2009), showing
equivalent results and stability in the asymptotic limit of hydrostatic scales between the hydrostatic and
the nonhydrostatic model formulation.

The prognostic equations of the IFS/ARPEGE dynamical core were derived under the philosophy of
gradually extending the hydrostatic primitive equations to the fully compressible Euler equations (Ritchie
et al., 1995; Laprise, 1992; Bubnová et al., 1995; Temperton et al., 2001; Bénard et al., 2005, 2010; Wedi
et al., 2009) on the sphere. The assumption of sphericity of the Earth’s surface and its influence on
weather and climate simulations is not known, but theoretical developments suggest that “geophysical
fluid dynamics can safely use a spherical coordinate system that can in first approximation be consid-
ered to be anchored on spherical iso-surfaces of the geopotential;...” (v. d. Toorn and Zimmerman,
2008). However, so far the IFS/ARPEGE model also neglects part of the zonal and vertical accelera-
tions due to the Coriolis force and some metric terms related to the advection in the curvilinear spherical
system, i.e. the so called shallow-atmosphere or “traditional” approximation is made. The hydrostatic
system of equations — albeit its approximations — preserves the conservation principles for angular
momentum, energy and potential vorticity (White and Bromley, 1995; White et al., 2005). Based on
scale analysis White and Bromley (1995) suggested a potential influence of up to 10 percent variation
in the average vertical or zonal acceleration in the tropics if the shallow-atmosphere approximation was
relaxed. Gerkema et al. (2008) reviewed the influence of the additional Coriolis acclerations for different
flow simulations. The authors show implications for interactions of waves and boundary layers and for
regime transitions and wave interactions that may be relevant to large-scale atmospheric flow. Moreover,
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Gerkema et al. (2008) stress that the biggest impact may be expected in weakly stratified flow in low
latitudes. However, due to the limited vertical resolution of tropical boundary layers and the columnar
physical parametrizations typically used in global models it is unclear if such effects could be seen in
global atmospheric simulations, particularly when only resolving hydrostatic scales.

White et al. (2005) reviewed the four possible (energetically consistent) alternative equation sets on
the sphere (i.e. the spherical geopotential approximation is made), cf. table 1 in White et al. (2005):
the hydrostatic primitive equations (HPE), the nonhydrostatic shallow-atmosphere equations (NHS), the
quasi-hydrostatic equations (QHE), and the nonhydrostatic deep equations (NHD). This paper extends
their work by illustrating the differences obtained in the context of idealised flows (mainly to check the
correctness of implementation), and by quantifying the differences in the context of numerical weather
prediction (NWP) and climate simulations. The purpose of our paper is two-fold, to document the
implementation of these four different equation sets in the IFS/ARPEGE system and to quantify their
respective impact on NWP.

The HPE set represents the current operational setup of ECMWF’s forecast model (Temperton et al.,
2001). The NHS model has been described in the limited-area context in Bénard et al. (2010). Here the
system of equations has been adapted to the sphere and represents the system of equations that has been
used in various intercomparison studies, cf. Wedi and Smolarkiewicz (2009) and Wedi et al. (2009).
The QHE set has been implemented following closely White and Bromley (1995). The NHD model
has been implemented following the modelling framework proposed in Wood and Staniforth (2003).
The QHE and NHD model represent two alternative approaches for including deep-layer effects, since
a quasi-hydrostatic system may also be obtained by simplifying the NHD system. However, the QHE
system had been implemented into the IFS structure several years before the emergence of a stable non-
hydrostatic IFS/Arpege model and a quasi-hydrostatic variant starting from the NHD model does not
currently exist in IFS.

Section 2 summarises the four equation sets and the modifications necessary in IFS/ARPEGE to convert
the HPE system into either the QHE, NHS, or NHD model, respectively. Section 3 presents results for the
different model formulations. Finally, section 4 discusses some practical advantages and disadvantages
of the NHS and NHD formulations and concludes the paper.

2 Model formulation

This section briefly summarises the HPE formulation of the IFS/ARPEGE model while focusing on the
relevant differences to the HPE model for each of the extended model formulations, namely QHE, NHS,
and the NHD model. For convenience all symbols and definitions are explained in table 2.

2.1 General

The total derivative operator d/dt ≡ ∂/∂ t + V ·∇ + η̇∂/∂η , is discretised in a two-time-level semi-
Lagrangian fashion, for details of the discretisation and the model formulation see Ritchie et al. (1995);
Temperton et al. (2001). The semi-implicit time discretisation — initially proposed by Robert et al.
(1972) for the hydrostatic equations — is derived by subtracting from the governing model equations a
system of equations linearised around an isothermal, quiescent, hydrostatically balanced and horizontally
homogeneous reference state. The linear part is treated implicitly, whereas the discretisation of the
nonlinear residual is explicit (Bénard, 2003, 2004; Bénard et al., 2004, 2005). The resulting linear system

2 Technical Memorandum No. 657



NH-IFS deep-atmosphere

of equations can be reduced by suitable elimination of variables to a single Helmholtz equation which is
solved in spectral space. The linear Coriolis terms in both the hydrostatic as well as the nonhydrostatic
IFS may be treated either as part of the advected prognostic variables or implicitly together with the
linear terms arising from the semi-implicit model (Temperton, 1997) (although such a formulation can
be implemented only in the unstretched unrotated version of IFS/ARPEGE). For the QHE, NHS and
NHD model the implicit treatment of the Coriolis force had to be suitably modified to fit the revised
semi-implicit elimination process of the nonhydrostatic model (Yessad, 2011). All tests shown in this
paper have used the implicit treatment of the Coriolis terms.

The evolution equations of the IFS/ARPEGE are cast in a terrain following mass-based coordinate (Sim-
mons and Burridge, 1981; Laprise, 1992)

Π = A+BΠs (1)

where (A(η), B(η)) represent a pre-defined set of constants and η denotes the hybrid vertical coordinate.
The vertical discretisation is optionally finite-difference (Ritchie et al., 1995) or finite-element (Untch
and Hortal, 2004), the latter being used in the operational IFS model at ECMWF. To facilitate comparison
of the four different model formulations and to minimise differences, the finite-difference discretisation
in the vertical has been used for all results presented in this paper unless stated otherwise. Moreover,
the iterative-centered-implicit (ICI) algorithm has been applied in all simulations with one iteration, see
Bénard et al. (2010) and also Wedi et al. (2009) for a discussion.

Notably, a two-dimensional horizontal rotation operator (Temperton et al., 2001; Staniforth et al., 2010;
Wood et al., 2010) is used to “transport” vectors along the semi-Lagrangian trajectory. Trajectories are
great circles on the geographical sphere. The computation of the location of the medium point of the
trajectory is performed by an iterative procedure (Robert, 1981) and adapted to the sphere by M. Rochas
(internal note, Meteo-France). This has the consequence that some curvature terms are hidden in the
Lagrangian form of the equations, in particular the terms UV tanθ/r and −U2 tanθ/r. This operator is
unchanged in the deep-layer formulations but there are additional terms to be considered in the QHE and
NHD models, namely the previously neglected contributions due to the Coriolis force in the right-hand-
sides of the zonal momentum equation, 2ΩW cosθ , the additional vertical acceleration 2ΩU cosθ , and
the additional metric terms−WV/r and (U2 +V 2)/r. A recent discussion on this approach may be found
in Thuburn and White (2012), who suggest that a splitting of horizontal and vertical motions before
discretisation facilitates the application of the same “shallow-atmosphere” rotation matrix (Staniforth
et al., 2010). This is particularly useful when the prognostic variable describing the vertical motion is
not the vertical velocity w. The additional terms are treated numerically like the pressure gradient term
and this appears to be stable. In addition, the velocity used to find the medium/departure point of the
semi-Lagrangian trajectory in the NHD model is then (a/r)V, instead of V in the HPE case.

2.2 HPE, without deep-layer effects

The governing equations and auxiliary relations of the hydrostatic system may be summarised as follows:

∗Momentum equation
dV
dt

=−2(Ω×V)−∇Φ−RT ∇(logΠ)+PV (2)
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∗ Thermodynamic equation
dT
dt

=
RT
cp

ω

Π
+PT (3)

∗ Vertically integrated Lagrangian formulation of the continuity equation∫ 1

0

∂B
∂η

d logΠs

dt
dη = (4)∫ 1

0

∂B
∂η

[
− 1

Πs

∫ 1

0
∇ · (mV)dη +V ·∇(logΠs)

]
dη ,

where the boundary conditions [mη̇ ]
η=1 = 0 and [mη̇ ]

η=0 = 0 have been used.

∗ Vertical velocities ω and mη̇

[mη̇ ]
ηl

= Bηl

∫ 1

0
∇ · (mV)dη−

∫
ηl

0
∇ · (mV)dη (5)

and

[
ω

Π

]
ηl

=
[

1
Π

dΠ

dt

]
ηl

=
[

V · ∇Π

Π

]
ηl

− 1
Πηl

∫
ηl

0
∇ · (mV)dη (6)

∗ Tracer equations (e.g. specific humidity, cloud liquid water, cloud ice, rain, snow, etc.)

dqi

dt
= Pqi (7)

∗ Relationship between geopotential height and pressure depth

∂Φ

∂Π
=−RT

Π
, (8)

where Φ = g0z.

2.3 QHE, with deep-layer effects

Following White and Bromley (1995) some modifications are required to consistently include deep-
layer effects into the hydrostatic model. In this case the structure of the equations closely follows the
HPE equations, but the approximations introduced to the equations are more than would be required,
especially when comparing to Wood and Staniforth (2003). The distance to the Earth’s centre is now the
vertically-varying pseudo-radius rπ instead of the previously constant a. The essence of the approxima-
tion in the QHE model is the assumption that the radius depends only on the hydrostatic pressure. Thus
two neighbouring vertical lines are no longer parallel, and the sectional volume slice of a vertical column
varies with altitude.
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The expression for radius rπ writes

rπ(Π) = a+
∫

ΠS,r

Π

RdTr(Π
′
)

g0Π
′ dΠ

′
, (9)

where a pre-defined reference temperature profile Tr(Π) that depends on the hydrostatic pressure has
been used.

The diagnosed vertical velocity

W ≡ drπ

dt
=−RdTrω

g0Π
(10)

is now taken into account in the additional Coriolis accelerations and additional curvature terms. The
gravitational acceleration is vertically constant.

The governing equations and auxiliary relations may then be summarised as follows:

∗Momentum equation

dV
dt

=−2Ω×V−2Ω×Wk−W
rπ

V (11)

−∇Φ− (RT + µsRdTr)∇(logΠ)+PV,

where µs is defined as

µs ≡−
2ΩrπU cosθ +U2 +V 2

rπg0
. (12)

The horizontal gradient operator ∇ is calculated in spectral space using a in the denominator. Thus
for deep-layer models, the gradients resulting from the inverse transform (spectral to grid-point) are
multiplied with rπ/a in the QHE and r/a in the NHD model, respectively.

∗ Vertically integrated Lagrangian formulation of the continuity equation∫ 1

0

∂B
∂η

d logΠs

dt
dη = (13)

∫ 1

0

∂B
∂η

[
−
(

a2

rπ
2

)
η=1

1
Πs

∫ 1

0

[rπ

a
∇

]
·
(rπ

a
mV
)

dη

]
dη

+
∫ 1

0

∂B
∂η

[
a
rπ

V ·
[rπ

a
∇

]
(logΠs)

]
dη

∗ Vertical velocities ω and mη̇

[mη̇ ]
ηl

=Bηl

(
a2

rπ
2

)
η=1

∫ 1

0

[rπ

a
∇

]
·
(rπ

a
mV
)

dη (14)

−
(

a2

rπ
2

)
ηl

∫
ηl

0

[rπ

a
∇

]
·
(rπ

a
mV
)

dη

and
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[
rπ

2

a2
ω

Π

]
ηl

=
[

1
Π

rπ
2

a2
dΠ

dt

]
ηl

= (15)[
rπ

a
V · (rπ/a)∇Π

Π

]
ηl

− 1
Πηl

∫
ηl

0

[rπ

a
∇

]
·
(rπ

a
mV
)

dη

∗ Relationship between geopotential height and pressure depth

∂Φ

∂Π
=−RT

Π

(
1+

RdTr

RT
µs

)
. (16)

The thermodynamic and tracer equations are unchanged, cf. equations (3) and (7), respectively.

2.4 NHS, without deep-layer effects

In the NHS system there is a distinction between the hydrostatic pressure defined by the relationship
∂Π/∂ z = −ρg and the total pressure p = ρRT . Compared to the HPE system, there are two additional
prognostic variables to express the nonhydrostatic effects, a prognostic variable based on the pressure
departure from hydrostatic pressure and a prognostic variable related to the vertical velocity or vertical
divergence, see Bénard et al. (2010) and references therein. The vertical acceleration assumes the value
g = g0 in this case.

The governing equations of the NHS system and its auxiliary relations are summarised as follows:

∗Momentum equation
dV
dt

=−2Ω×V− ∂ p
∂Π

∇Φ−RT
∇p
p

+PV (17)

∗ Thermodynamic equation
dT
dt

=−RT
cv

D3 +
cp

cv
PT, (18)

where D3 is computed as

D3 = D+X +
Rd

R
d (19)

and

X =
p

mRT
∇Φ ·

(
∂V
∂η

)
(20)

In the NHS system the continuity equation and vertical velocities ω and mη̇ are unchanged, cf. equations
(4), (5) and (6), respectively; the tracer equations are as determined in equation (7).

∗ Pressure departure variable equation

dQ̂
dt

=−
cp

cv
D3−

ω

Π
+

cp

cvT
PT, (21)

where Q̂≡ log(p/Π) is chosen to ensure that total pressure p always remains positive.
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∗ Vertical velocity w and vertical divergence d equations There are two options for the choice of
the advected vertical prognostic variable: either the vertical velocity w is advected (GWADV) or the
alternative variable d4 ≡ d +X , where d ≡−(g0 p/mRdT )∂w/∂η , cf. (Bénard et al., 2010). The former
case is closer to the natural choice of prognostic vertical variable and the treatment of the lower boundary
condition is simpler. However, d4 is naturally defined on full levels and w is not, see also appendix B.
Moreover, the GWADV option requires an explicit conversion from w to d4, because the variable d4
is used in the linear part of the semi-implicit scheme in the NHS/NHD model to ensure stability. The
vertical velocity equation is given as

dw
dt

= g0
∂ (p−Π)

∂Π
+Pw (22)

whereas the vertical divergence equation (see appendix A for the derivation) is

dd
dt

=−dD3 +d∇ ·V− g0 p
mRdT

∂ [dw/dt]ad
∂η

(23)

+
g0 p

mRdT
(∇w) ·

(
∂V
∂η

)
+Pd

with subscript ad denoting the adiabatic part only, while Pd ≡−(g0 p/mRdT )∂Pw/∂η . At the surface the
diagnostic relation

ws = Vs ·∇Φs (24)

is used.

∗ Relationship between geopotential height and pressure depth

∂Φ

∂Π
=−RT

p
, (25)

with Φ = g0z.

If the GWADV option is not used, d4 is the prognostic variable with a special semi-Lagrangian treatment
near the lower boundary, cf. Wedi et al. (2009), Bénard et al. (2010) and references therein for details.
All NHS and NHD simulations in this paper have used the GWADV option.

2.5 NHD, with deep-layer effects

Following Wood and Staniforth (2003) deep-layer effects are consistently included into the NHS system
by means of a coordinate transformation. A mass-based vertically integrated quantity Π̃ is introduced to
hide some explicit metric terms, especially in the continuity equation where Π̃ replaces Π. The latter may
be obtained diagnostically when needed. The distance to the Earth’s centre is now the vertically-varying
radius r instead of the previously constant a in the HPE/NHS case and instead of the pseudo-radius rπ in
the QHE case. Optionally the vertical variation of g may also be taken into account via g ≡ Ga2/r2. In
addition, the prognostic vertical velocity w≡ dr/dt is now used in the additional Coriolis and curvature
terms instead of the diagnosed quantity used in the QHE model.

∗ Relationship between Π̃ and Π

∂ Π̃

∂ r
=−ρG

r2

a2 (26)
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defines Π̃ and
∂Π

∂ r
=−ρg (27)

defines Π. Combining (26) and (27) yields

∂ Π̃

∂Π
=

r2

a2
G
g

. (28)

In IFS the simulated vertical depth of the atmosphere (taken as the top model level) is typically 80 km
versus 6370 km Earth radius, resulting in the ratio r2/a2 ≈ 1.025. If vertical variations of g are taken
into account relation (28) becomes r4/a4 ≈ 1.05. The model top is chosen as a reference level where
Π̃ = Π, which ensures that Π̃ always remains > 0. Note that Π must be retrieved from relationship (28)
knowing Π̃ and r instead of relation (1), because now

Π̃ = A+BΠ̃s. (29)

For a real atmosphere or an idealised scenario where the depth of the atmosphere remains small compared
to the radius of the planet, Π̃ remains close to Π. For example, Π̃s−Πs is approximately 200 Pa for actual
simulations of weather and climate. One consequence of this is, when a set of (A,B)s has been defined
for the HPE or NHS model, the same set of (A,B)s can be kept in the NHD model without significantly
altering the relative vertical staggering. However, for idealised cases, e.g. a small planet, this is no longer
true. Π̃s−Πs can reach the same order of magnitude as Πs, and in this case one cannot directly re-use
the pre-defined set of (A,B)s in the NHD simulations. In order to accommodate idealised simulations on
small planets, a second set of (A,B)s is defined. Appendix C describes the conversion formulae, typical
values and the required iterative procedure to retrieve Π̃ and r when only Π is known from the initial
conditions.

The radius r is obtained from the definition of Π̃ (Wood and Staniforth, 2003):

G
3a2 r3 =

G
3a2 r3

s −
∫

Π̃
′
=Π̃

Π̃
′=Π̃s

RT
p

dΠ̃
′

(30)

and rs = a+ zs, where zs is the height of the orography. Note that Φs ≡ Grs.

The governing equations of the NHD system and its auxiliary relations may now be summarised as
follows:

∗Momentum equation

dV
dt

=−2Ω×V−2Ω×wk− w
r

V (31)

− r2

a2
∂ p
∂ Π̃

∇(Gr)−RT
∇p
p

+PV,

The thermodynamic equation is identical to equation (18) of the NHS model but the expression for D3
(cf. equation (4.14) in Wood and Staniforth (2003)) writes

D3 =∇ ·V+
r2

a2
p

m̃RT
∇[Gr] ·

(
∂V
∂η

)
(32)

− Gp
m̃RT

(
∂ (r2/a2)w

∂η

)
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∗ Vertically integrated Lagrangian formulation of the continuity equation∫ 1

0

∂B
∂η

d logΠ̃s

dt
dη = (33)∫ 1

0

∂B
∂η

[
− 1

Π̃s

∫ 1

0
∇ ·
(a

r
m̃V
)

dη +V ·∇
(
logΠ̃s

)]
dη ,

where, compared to the continuity equation (4), Π has been changed into Π̃ and ∇ ·(mV) into ∇ ·
(a

r m̃V
)
.

Similarly, using ω̃ ≡ dΠ̃/dt and the previous replacements, equations (5) and (6) change correspond-
ingly. The tracer equations are as determined in equation (7).

∗ Pressure departure variable equation

The prognostic variable of the NHS model Q̂ ≡ log(p/Π) is not suitable as the prognostic variable in
the NHD model because only ω̃ and not ω is available, cf. equation (21). The simplest alternative is to
use log(p/Π̃) but log(p/Π̃) = log(p/Π)+ log(Π/Π̃). However, for nearly hydrostatic flows log(Π/Π̃)
is significantly larger than log(p/Π). In addition, log(Π/Π̃) remains close to a mean value but with a
vertical gradient, which is likely to be less accurate in connection with the semi-Lagrangian advection
scheme. For this reason the revised prognostic variable Q̂ is chosen as

Q̂≡ log
( p

Π̃

)
+δP log

(
Π̃r

Πr

)
, (34)

where Π̃r and Πr are reference values based on the standard atmosphere. Note that log(Π̃r/Πr) is time
independent and constant along η-surfaces. It is desirable to take a value of δP close to 1; optimal values
have been found as between 1 and 1.1. With this definition the pressure departure variable equation (cf.
equation (21) and equation (4.8) in Wood and Staniforth (2003)) writes

dQ̂
dt

=−
cp

cv
D3−

ω̃

Π̃
(35)

+δPη̇
∂ log(Π̃r/Πr)

∂η
+

cp

cvT
PT

∗ Vertical velocity w and vertical divergence d equations

dw
dt

=−Gµs− (g−G)−G
(

1− r2

a2

)
∂ p
∂ Π̃

(36)

+G
∂ (p− Π̃)

∂ Π̃
+Pw

Compared to the NHS model an additional metric term appears related to the vertical variation,
G
(
1− r2/a2

)
∂ p/∂ Π̃, and an additional term containing µs, cf. equation (12), whose two parts are

due to the Coriolis force and due to the advection in the curvilinear spherical system.

The vertical divergence d is defined in the NHD model as

d ≡− Gp
m̃RdT

(
∂ (r2/a2)w

∂η

)
, (37)
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where the factor r2/a2 reflects the fact that the size of horizontal sections is no longer vertically inde-
pendent. The definition (and the IFS code) uses the gas constant for dry air Rd here rather than R but
there appears to be no reason in principle why d could not be defined in terms of R instead. With this
definition the vertical divergence equation (see appendix A for the derivation) is

dd
dt

=−dD3 +d∇ ·V− Gp
m̃RdT

∂ [d[(r2/a2)w]/dt]ad

∂η
(38)

+
Gp

m̃RdT

(
∇

[
r2

a2 w
])
· ∂V

∂η
+Pd

where subscript ad again denotes the adiabatic part only and Pd ≡−(Gp/m̃RdT )∂Pw/∂η . Equations (38)
and (36) may be combined together using the relation

d
[
(r2/a2)w

]
dt

=
r2

a2
dw
dt

+2
r
a2 w2. (39)

Notably, for the GWADV option only equation (36) and definition (37) are required to retrieve d from w
or vice versa. We have developed switches in the NHD model to isolate the effects due to the Coriolis
and advection terms in the spherical system from the effects due to the vertical variations of r−a and g,
respectively.

The linear system is unchanged compared to the NHS model. Experimentation shows that the same value
of the reference pressure (Bénard, 2003) may be used, as long as Π̃ does not deviate substantially from
Π.

For post-processing and the coupling to the physical parametrizations Π̃ is converted into Π, with the
physical parametrizations unchanged compared to the NHS model.

It is necessary to specify initial conditions for vertical divergence d, X and the nonhydrostatic pressure
departure Q̂. Initial conditions derived from the ECMWF analysis are hydrostatic and the additional
variables are computed specifying the nonhydrostatic pressure departure (≡ 0) and diagnose vertical
velocity. A preliminary conversion is necessary to retrieve r and Π̃ from Π,using the iterative algorithm
described above, to derive p− Π̃ from p−Π, and finally to compute an initial Q̂. The variable X is
diagnosed from the initial values of V, Π̃, RT , and Φ. The initial vertical divergence d is then computed,
postulating that initially dT/dt is the same in the NHD and the HPE model, i.e. equating the right-hand-
sides of (3) and (18).

3 Results

Results are presented for the four different model formulations introduced in the previous section, high-
lighting specific differences arising from the model formulations and their respective approximations.
However, the vertical variation of g is neglected in all simulations in this section, i.e. g ≡ g0. The
small-planet simulations presented here have been included to test the correctness of the implementation
and the stability of the numerical procedure. Additional idealised simulations have been done with the
EULAG model (Prusa et al., 2008) as an independent reference. Finally, equivalent simulations with IFS
HPE, QHE and NHD formulation, respectively, attempt to quantify the effect of relaxing the shallow-
atmosphere approximation in the context of NWP and climate.

The Held-Suarez (Held and Suarez, 1994) simulations, introduced as a test-bed on reduced-size plan-
ets in Smolarkiewicz et al. (1999) and more recently in Wedi and Smolarkiewicz (2009), evaluate the
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influence of the dynamical core formulation on an idealised ’climate’ state on the sphere. The Held-
Suarez setup consists of dynamical core simulations, where the effect of the physics is emulated by
adding the frictional term −kvv on the rhs of the momentum equation and adding −kT (T −Teq) in the
thermodynamic equation, where kv,kT denote frictional/heating coefficients and Teq defines a zonally
symmetric temperature distribution in terms of a meridional and a vertical temperature gradient. No-
tably, if the Rossby number Ro ≡ U/2ΩL — with U denoting a characteristic zonal velocity, L ∼ a
denoting a characteristic length scale (here taken as the planetary radius a), and Ω is the angular velocity
of the planetary rotation — is kept constant, a reduction of the planetary radius a implies an increase
in the rotation rate and, thus, a corresponding increase in the frictional/heating time factors that define
the coefficients kv,kT . Comparing the mean state of idealised climate simulations with planet radius
a = aE and the NHD, NHS or HPE model formulation, respectively, we obtain indistinguishable results
(not shown, cf. Wedi and Smolarkiewicz (2009)). Therefore, simulations are performed here for radius
a = aE/20 where aE = 6.371 · 106 m. The IFS is run with the currently operational set of 91 vertical
levels and the top model level located at 0.01 hPa (model top at p = 0). In EULAG 40 vertical layers are
used with a top-height fixed at 32 km. Both the IFS and EULAG start with identical initial conditions and
use the same timestep ∆t = 15 s. The equivalent gridlength of the simulations is 6.25 km. More details
can be found in Wedi and Smolarkiewicz (2009). Figure 1 compares the zonal mean zonal flow of the
NHD EULAG model simulation (panel a), the NHD IFS simulation (panel b), the QHE IFS simulation
(panel c), the NHS IFS simulation (panel d), and the HPE IFS simulation1 (panel e) averaged over the
integration period of 275 simulation days (skipping the first 10 simulation days). A simulation day is
defined as the time period of one planetary rotation. The NHD models and the QHE model develop a
zonally-averaged easterly flow in the tropics between 200−600 hPa which is absent in the NHS and in
the HPE simulations and also absent in any of the model simulations (i.e. NHD,NHS,QHE or HPE) with
a = aE , cf. Wedi and Smolarkiewicz (2009). The occurrence of the easterly flow is in agreement with
the easterly acceleration ∆U .−2ΩH cosφ predicted from scale analysis in White and Bromley (1995),
when the w-Coriolis term is considered in the zonal momentum equation. The effect is exaggerated with
the increase in the rotation rate. Comparing the maximum easterly flow velocities at the equator in the
NHD and QHE simulations on the reduced sphere, it is interesting to note that the QHE model simula-
tion – like the scale analysis, cf. Wedi and Smolarkiewicz (2009) – shows a faster easterly jet core in the
tropics compared to the NHD models for both EULAG and IFS as shown in Figs.1 (a)-(b), respectively.
For NHS and HPE model there is simply no such easterly acceleration.

Investigating further if any influence on medium-range weather forecasts can be seen, the full ECMWF
IFS model including the physical parametrizations (see Beljaars et al. (2004) for an overview) is used.
Simulations are done for the period 2nd April 2007 00Z to 5th May 2007 00Z, every 24 hours with
initial conditions from ERA-Interim (Dee and co authors, 2011). The horizontal resolution is TL255
with 91 hybrid vertical levels. The forecast length of the 31 individual forecasts is 15 days. Anomaly
correlation and root-mean-square (rms) error are calculated against the ECMWF operational analysis
(suitably truncated) for the first 10 days of the forecast for geopotential height, winds and temperature
using the HPE, QHE and NHD simulations, respectively. Again, we find indistinguishable results in
the first 10 days (not shown). In order to assess if the differences are simply to small to be detected
by standard scores, a finer measure has been applied. This has been shown to be useful in Jung and
Vitart (2005), where the spatial standard deviation of the forecast difference for two sets of forecasts has
been applied instead, to assess the importance of coupling an ocean model to the atmospheric model
on the monthly time-scale. Later Wedi (2010) used this technique to illustrate the (non-)importance
of the gravitational pull of the Moon on medium-range weather prediction. Figure 2 shows the spatial
standard deviation of the forecast difference of the 500hPa geopotential height surface for several sets

1In this particular HPE IFS simulation the finite-element vertical discretisation was used.
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Figure 1: Held-Suarez dry climate simulations on the reduced-size sphere with depth ratio r/a≈ 1/10 (a = aE/20)
using (a) the EULAG NHD model, (b) the IFS NHD model, (c) the IFS QHE model, (d) the IFS NHS model, and
(e) the IFS HPE model. The zonal mean zonal flow is averaged over 275 simulation days.
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of 31 forecasts, NHD vs. HPE (deep NHD - shallow HPE) and QHE vs. HPE (deep QHE - shallow
HPE). For reference, curves have been added for the spatial standard deviation of the forecast difference
between two different model releases (35r2 - 32r3) and the difference between forecasts when every
forecast of one ensemble was perturbed by a randomly-chosen single point perturbation of relative size
10−3 (random - control). The curves in figure 2 indicate that the difference is smaller than would be
resulting from random single point perturbations and is significantly smaller than the difference between
two model releases (in which the dynamical core was kept unchanged).
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35r2 - 32r3
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Figure 2: Spatial standard deviation (std) of the forecast difference of the 500hPa geopotential height surface
between two sets of 31 forecasts,NHD vs. HPE (deep NHD - shallow HPE) and QHE vs. HPE (deep QHE -
shallow HPE), respectively. As a reference the std of the forecast difference with a set of forecasts using random
single point perturbations vs. HPE forecasts (random - control), and the std of the forecast difference between two
meteorologically distinct model releases (35r2-32r3) have been added.

Finally, the four models — NHD, NHS, QHE and HPE — have been run as 13-months long integrations
with four ensemble members, starting respectively on the 1st August 2000 00Z, the 2nd August 2000
06Z, the 3rd August 2000 12Z and the 4th August 2000 18Z. The simulations used a T159 resolution
with 91 hybrid vertical levels (top full level at 0.01hPa). Initial conditions as well as prescribed daily
SST and sea-ice fields at the lower boundary were provided from ERA-Interim. All four models used
the same time-step ∆t = 3600 s. Figure 3 illustrates the mean differences of the 500 hPa geopotential
height over the northern hemisphere, with all simulations producing similar error patterns. The QHE
model is perhaps slightly more different than the HPE, NHS and the NHD model. A further simulation
(not shown) with the NHD model and using g rather than g0 gives an almost identical pattern as shown
in Fig. 3 (a), suggesting a negligible impact due to the vertical variation of g in this case. Comparisons
of sfc parameters also show very small differences, as illustrated by total precipitation compared with
observations for both the NHD IFS (Fig. 4) and the HPE IFS (Fig. 5). Figure 6 and 7 show the difference
between HPE and NHD IFS model for zonally-averaged values of zonal and meridional wind, respec-
tively, which equally show only small differences. In our experience these differences are smaller than
what is typically obtained by changing details of the discretisation.

Although we do not find a significant influence of the NHD model in the hydrostatic regime, a signif-
icant influence can be shown on a reduced-size planet, even if the rotation rate is not accelerated. The
canonical case of a trapped, horizontally propagating gravity wave (Wurtele et al., 1987; Keller, 1994)
has been simulated with shallow- and deep-atmosphere, respectively. The setup is as described in Wedi
and Smolarkiewicz (2009) but with an increased mountain amplitude of 500m. The EULAG domain
size is 512× 228× 121 with a horizontal and vertical grid spacing of 250 m, which corresponds to a
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Figure 3: Average 500hPa geopotential height error compared to ERA-Interim for (a) the NHD IFS model, (b) the
NHS IFS model, (c) the QHE IFS model, and (d) the HPE IFS model. The spatial error distribution is similar for
all the simulations.

radius of the sphere a = 20.3718 km. The IFS is run with a TL255 resolution with an equivalent linear
reduced Gaussian grid (512 points along the equator) with 115 vertical levels. The lowest 15 km have
the same vertical spacing of 250 m as in EULAG. Figures 8 (a)-(b) show the NHS simulations of IFS and
EULAG, respectively. Figure 8 c) shows the NHD EULAG simulation. In the NHD simulation on the
small planet the stratospheric gravity waves have a smaller amplitude, a shorter horizontal wavelength
and the horizontal propagation of the waves is markedly slower, limiting the impact of the mountain in
the lee in comparison to the NHS simulations. The QHE and HPE simulations both exhibit a lack of
trapping in the vertical shear flow with an entirely vertical propagation of the gravity waves (not shown,
see Wedi and Smolarkiewicz (2009)). The NHD IFS simulation is unstable for this case due to the large
amplification factor arising from the ratio r/a on the small planet (see Table 1 in the appendix C).

4 Discussion and conclusions

The NHD formulation of Wood and Staniforth (2003) reduces the number of explicit metric terms —
mainly in the continuity equation — by defining a new coordinate Π̃. When the depth of the atmosphere
remains small compared to the radius of the planet, Π̃ remains close to Π. But the use of Π̃ in the
dynamical core may still conflict with other parts of the model setup, such as during the initialisation
of the model, the coupling to the physics (which remains unchanged, assuming a shallow atmosphere,
in our tests), and the post-processing that is typically done on Π levels. Thus complex transformations
between Π based quantities and Π̃ based quantities are required. This is not always easy to do exactly.
Moreover, in the w equation the discretisation of the Π̃ form of the equation is more complicated than
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Figure 4: Ensemble average total precipitation compared to the Global Precipitation Climatology Project (GPCP)
for the NHD IFS model.
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Figure 5: Ensemble average total precipitation compared to the Global Precipitation Climatology Project (GPCP)
for the HPE IFS model.
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Figure 6: Ensemble average difference between the HPE minus NHD IFS model for zonally averaged zonal wind.
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Figure 8: Vertical cross-section at the equator of vertical velocity after 75 minutes of simulation, comparing the
NHS IFS model (panel a), the NHS EULAG model (panel b), and the NHD EULAG simulation (panel c) for a
linearly-sheared flow past a quasi-two-dimensional “witch of Agnesi” obstacle on the sphere. The wind velocity is
constant above 10.5 km (or≈ 687 hPa). Contour interval is 0.1 ms−1. Solid/Dashed lines denote positive/negative
contours. The vertical axis is pressure in hPa.
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for the equation formulated with Π. Instead of (36) the w equation may be solved directly as

dw
dt

=−Gµs +g
∂ (p−Π)

∂Π
+Pw, (40)

but requiring additional transformations of Π based quantities and Π̃ based quantities to obtain the right-
hand-side term. This would substantially complicate the existing code but may be explored in future. In
the NHD formulation, terms such as p− Π̃ or p/Π̃ appear in the equations. For idealised reduced-size
planet simulations, such quantities do not behave like p−Π or p/Π and a change of the prognostic
variable Q̂ is required in combination with a second set of As and Bs (cf. appendix C) to obtain stable
and accurate simulations in this case. However, if the aspect ratio of the vertical extent of the atmosphere
compared to the radius of the sphere is not � 1 (cf. table 1), and despite the recalculation procedure
of internal As and Bs, the usefulness of the present NHD formulation is limited. This has been found
for linearly-sheared flow past a quasi-two-dimensional obstacle on the reduced-size sphere with radius
a = 20.3718 km, when the present NHD formulation is unstable. Nevertheless, if considering potential
future IFS applications with simulated atmospheric depths up to ≈ 600km, i.e. r4/a4 ≈ 1.4, this is not
overly severe and the revised procedure appears to be stable for such aspect ratios.

When the resolved scales of the model simulations are hydrostatic, we have found that the nonhydro-
static deep-atmosphere (NHD), the nonhydrostatic shallow-atmosphere (NHS), the hydrostatic shallow-
atmosphere (HPE), and the quasi-hydrostatic (QHE) model formulations give essentially the same results
for both idealised climate (Held-Suarez) and for actual weather and climate simulations. However, we
cannot exclude the possibility that a systematic signal may be extracted in longer integrations than the
ones shown here. The results from the QHE model differed slightly more than one would have expected
a-priori, both for the Held-Suarez simulation with accelerated rotation on the reduced-size planet, as well
as in the 13 months integrations with physical parametrizations included. These differences cannot be
attributed to the vertical variation of g. If these differences are not due to a coding error, they may be
the result of introducing the pseudo-radius. However, in order to independently verify this, additional
modifications are required to convert the NHD model to a quasi-hydrostatic version, which is beyond
the scope of this paper. Moreover, the importance of the additional terms in the NHD model should be
re-assessed, for example when weakly stratified boundary layers and sufficiently large vertical velocities
are resolved rather than parametrized in global simulations on the sphere.

Acknowledgements: We would like to acknowledge the many colleagues and partners involved in the
implementation of the non-hydrostatic limited-area version of ALADIN. Karim Yessad would also like
to thank ECMWF and Meteo-France for the opportunity to stay at ECMWF in order to complete the
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earlier version of the manuscript. We are also grateful to Sylvie Lamy-Thepaut for improving the figures.
Finally, comments from Agathe Untch and Pierre Bénard helped to improve the presentation.

A Derivation of the equations (23) (NHS model) and (38) (NHD model)

Starting with relation (37), the total derivative of d may be written as

dd
dt

=
d
p

d p
dt
− d

T
dT
dt
− d

m̃
dm̃
dt
−G

p
m̃RdT

d
dt

[
∂ (r2/a2)w

∂η

]
. (41)

Using

d
dt

(
∂ (r2/a2)w

∂η

)
=

∂

∂ t

(
∂ (r2/a2)w

∂η

)
+V ·∇

(
∂ (r2/a2)w

∂η

)
+ η̇

∂

∂η

(
∂ (r2/a2)w

∂η

)
(42)

Technical Memorandum No. 657 19



NH-IFS deep-atmosphere

and formulating the rhs in terms of ∂/∂η(...) gives

d
dt

(
∂ (r2/a2)w

∂η

)
=

∂

∂η

((
∂ (r2/a2)w

∂ t

)
+V ·∇

[
r2

a2 w
]
+ η̇

∂ (r2/a2)w
∂η

)
(43)

−∇

[
r2

a2 w
]
· ∂V

∂η
− ∂ (r2/a2)w

∂η

∂ η̇

∂η
.

In above equation we have used

V ·∇
(

∂ (r2/a2)w
∂η

)
=

∂

∂η

([a
r

V
]
·
[ r

a
∇

]( r2

a2 w
))

(44)

− r
a

∇

[
r2

a2 w
]
· ∂

∂η

[a
r

V
]
−
[a

r
V
]
·∇
[

r2

a2 w
]

∂

∂η

( r
a

)
=

∂

∂η

([a
r

V
]
·
[ r

a
∇

]( r2

a2 w
))
−∇

[
r2

a2 w
]
· ∂V

∂η

+
[a

r
V
]
·∇
[

r2

a2 w
]

∂

∂η

( r
a

)
−
[a

r
V
]
·∇
[

r2

a2 w
]

∂

∂η

( r
a

)
Using the continuity equation (cf. equation 4.9 in Wood and Staniforth (2003)) in the form

dm̃
dt

+ m̃
r
a

∇ ·
(a

r
V
)

+ m̃
∂ η̇

∂η
= 0 (45)

noting the use of (a/r)V for the advection, re-grouping and multiplying by −d/m̃ gives

− d
m̃

dm̃
dt

= d∇ ·V+d
∂ η̇

∂η
−d
(a

r
V
)
·∇
( r

a

)
. (46)

However, since the last term represents only a higher order correction, for ease of coding this term is
dropped. Inserting (43), (46) and D3 = (1/T )dT/dt − (1/p)d p/dt into equation (41) and noting the
cancellation of the ∂ η̇/∂η terms, finally gives (cf. equation 38)

dd
dt

=−dD3 +d∇ ·V− Gp
m̃RdT

∂ [d[(r2/a2)w]/dt]ad

∂η
(47)

+
Gp

m̃RdT

(
∇

[
r2

a2 w
])
· ∂V

∂η
.

Equation (23) follows similarly but starting with d ≡−(g0 p/mRdT )∂w/∂η .

B Discretisation details of the NHD model

Most details of the (vertically) finite-difference discretisation are described in the literature (Ritchie et al.,
1995; Bubnová et al., 1995; Bénard et al., 2010). Here we only highlight specific details due to the deep-
layer formulation of the NHD model. Notably, IFS/Arpege is a spectral model and horizontal derivatives
are calculated in spectral space. In order to minimise additional transforms when horizontal derivatives
are required, typically these are expressed in terms of other more basic horizontal derivatives that are
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already required elsewhere. In the vertical finite-difference model values are either kept on full-levels l
or on in-between half-levels l .

Equation (30), to determine the radius r, is discretised on half levels as

rl =

[
r3

s +
3a2

G

k=l+1

∑
k=L

RkTkΠ̃kδ̃k

pk

]1/3

. (48)

and on full-levels as

rl =
[

r3
l +

3a2

G
RlTlΠ̃lα̃l

pl

]1/3

. (49)

This discretisation on full levels is equivalent to writing r3
l − r3

l
= (α̃l/δ̃l)(r3

l−1
− r3

l
). An alternative

discretisation for rl would be
rl− rl = (α̃l/δ̃l)(rl−1− rl)

but this has not been tested.

The horizontal gradient of the radius is discretised on full levels as[ r
a

∇

]
rl =

r2
l

r2
l

[ r
a

∇

]
rl +

a2

Gr2
l

[ r
a

∇

][RlTlΠ̃l δ̃l

pl

]
(50)

and on half-levels as [ r
a

∇

]
rl =

r2
s

r2
l

[ r
a

∇

]
rs +

a2

Gr2
l

k=l+1

∑
k=L

[ r
a

∇

][RkTkΠ̃kδ̃k

pk

]
(51)

with [ r
a

∇

] RkTkΠ̃kδ̃k

pk
=

TkΠ̃kδ̃k

pk

[ r
a

∇

]
Rk (52)

+
RkΠ̃kδ̃k

pk

[ r
a

∇

]
Tk

+
RkTkδ̃k

pk

[ r
a

∇

]
Π̃k

+
RkTkΠ̃k

pk

[ r
a

∇

]
δ̃k

− RkTkΠ̃kδ̃k

p2
k

[ r
a

∇

]
pk

noting that
[ r

a ∇
]

rs =
[ r

a ∇
]

zs.

The auxiliary quantities δ and α are useful in conversions when coupling to the physical parametrizations
or for post-processing. In order to retrieve δ and α from δ̃ and α̃ when r is known, Π must be computed
from Π̃ and r. Then the following approximation may be used for δ ,

δ ' δ̃
Π̃

Π

a2

r2
g
G

, (53)

and α is approximated by

α ' α̃
Π̃

Π

a2

r2
g
G

. (54)
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C Computing the vertical coefficients A,B internal to the NHD model

To accommodate idealised simulations on small planets, two sets of (A,B)s are defined, a pre-defined
set denoted by (AF,BF), which is identical for NHS and NHD simulations, and a set internal to the
NHD model denoted by (AM,BM). This appendix describes the conversion formulae, typical values and
the iterative procedure applied to retrieve Π̃ and r when only Π is known from the initial conditions.
Conversion formulae between (AF,BF) and (AM,BM) require the following steps:

• Define a reference surface pressure Πsr (taken as 1013.25 hPa in NWP simulations).

• Compute Πr from
Πr = AF +BFΠsr

• Diagnose r and Π̃r at all model levels

• Compute (AM,BM) from

AM =
Π̃r

Πr
AF

BM =
Π̃r

Πr

Πsr

Π̃s r
BF

Note that Π̃ = AM +BMΠ̃s is always valid; Π = AF +BFΠs is valid only for one reference value of Πs (i.e.
Πsr). Table 1 compares the pre-defined values (AF,BF) with the computed internal values (AM,BM) for a
reduced-size planet with radius a = 100 km using a typical tropospheric stratification with Brunt-Väisälä
frequency N = 0.01 s−1. For information the ratio r/a is added to illustrate the large range of values
encountered leading to numerical instability in this case.

Table 1: A selection of ECMWF’s operational set of 91 vertical levels AF, BF, Π and the corresponding set AM,
BM, Π̃ for an idealised IFS simulation on a reduced-size planet with radius 100 km.

L AF BF Π AM BM Π̃ r/a
0 0 0.00000 0 0 0.00000 0 -
1 2 0.00000 2 33 0.00000 33 3.82
6 34 0.00000 34 380 0.00000 380 3.08
11 205 0.00000 205 1698 0.00000 1698 2.61
21 1714 0.00000 1714 9319 0.00000 9319 2.06
31 5663 0.00000 5663 23204 0.00000 23204 1.75
41 11983 0.00170 12153 40045 0.00342 40613 1.55
51 18717 0.04515 23232 51701 0.07503 64171 1.38
61 19785 0.22931 42717 44890 0.31301 96917 1.22
71 11543 0.58932 70475 21939 0.67384 133944 1.09
81 2356 0.89777 92133 4045 0.92726 158172 1.02
91 0 1.00000 100000 0 1.00000 166217 1.00

For the initial conditions one needs to retrieve Π̃ and r when only Π is known. An iterative algorithm is
applied with the following steps:

• Save the original value of Πs.

• Save the original value of p−Π.

• Do a “first guess” iteration, with the following structure:
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– compute a first guess for r (i.e. r(iter = 0)), using formula (30) with Π instead of Π̃.

– compute Π̃(iter = 0) and Π̃s(iter = 1) using formula (28).

• Do additional iterations:

– start from Π̃s(iter), use the definition of the hybrid vertical coordinate to compute upper air
Π̃(iter).

– use formula (30) with Π̃(iter) to compute r(iter).

– use formula (28) to compute Π̃s(iter +1).

D Table of Symbols

Table 2: Description of symbols in the text.

Symbol Description
Ω Earth rotation angular velocity
θ latitude
r distance from the Earth centre
rπ pseudo-radius
a average Earth radius near the surface
g gravity acceleration
G constant reference value of g at r = a
g0 constant gravity acceleration g0 = G
µs Coriolis and advection term in the vertical component of the momentum equation
∇ horizontal gradient on η-surfaces
A(η) and B(η) functions defining the vertical hybrid coordinate
k = r/r unit vertical vector
r vector directed radially outwards with length r
V horizontal wind
U and V zonal and meridian components of horizontal wind
Vs surface horizontal wind
D horizontal wind divergence
T temperature
Tr vertically varying reference temperature profile
qi tracer quantity
z height
Φ geopotential
Φs = gzs surface geopotential (i.e. the orography)
ω = dΠ/dt hydrostatic vertical velocity
ω̃ = dΠ̃/dt hydrostatic vertical velocity in the NHD model
w true vertical velocity
W = dr/dt pseudo-vertical velocity in the QHE model
d vertical divergence
X difference between d4 and d, cf. equation (20)
d4 ≡ d +X alternative vertical divergence

Continued on next page
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Table 2 – continued from previous page
Symbol Description

D3 three-dimensional divergence
p total pressure
ps total surface pressure
Π hydrostatic pressure
Πs,ΠS,r hydrostatic surface pressure, and reference standard atmosphere equivalent, respectively
Q̂ nonhydrostatic pressure departure variable
Π̃ mass-based vertically integrated quantity in the NHD model
Π̃s surface value of Π̃ in the NHD model
δ depths of logΠ (between two half levels)
δ̃ depths of logΠ̃ (between two half levels) in the NHD model
α depths of logΠ (between a half level and a full level)
α̃ depths of logΠ̃ (between a half level and a full level) in the NHD model
m ∂Π/∂η

m̃ ∂ Π̃/∂η in the NHD model
R, Rd gas constant for air and dry air, respectively
cp specific heat at constant pressure for air
cv specific heat at constant volume for air
PV diabatic contribution to the horizontal components of the momentum equation
PT diabatic contribution to the thermodynamic equation
Pqi diabatic contribution to the tracer equation for tracer qi

Pw diabatic contribution to the w-form of the vertical component of the momentum equation
Pd diabatic contribution to the d-form of the vertical component of the momentum equation
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