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Abstract 

Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK 
governmental report asked: How good are seasonal forecasts on a scale of 1-5 (where 5 is very good), and how 
good can we expect them to be in 30 years time?  Seasonal forecasts are made from ensembles of integrations of 
numerical models of climate. We argue that “goodness” should be assessed first and foremost in terms of the 
probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based 
decision making. We propose that a “5” should be reserved for systems which are not only reliable overall, but 
where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the 
reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system 
of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world leading 
operational institutes producing seasonal climate forecasts. A wide range of “goodness” rankings, depending on 
region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is 
found. Finally, we discuss the prospects of reaching “5” across all regions and variables in 30 years time.  

1 Introduction 
Over the last 30 years, the science of predicting seasonal timescale fluctuations in weather has grown 
from a research activity undertaken in a few academic and research institutes (eg Cane et al, 1986), to 
a routine operational activity in a number of meteorological forecast services (Arribas et al., 2011; 
Stockdale et al., 2011; Saha et al., 2013). Unlike conventional weather forecasts, seasonal predictions 
do not attempt to forecast the detailed day-to-day evolution of weather. Such detailed prediction is 
ruled out by the chaotic nature of the climate system, otherwise known as the “Butterfly Effect” 
(Lorenz, 1963). Rather, seasonal predictions provide estimates of seasonal-mean statistics of weather, 
typically up to three months ahead of the season in question. Hence, for example, a seasonal forecast 
can provide information on how likely it is that the coming season will be wetter, drier, warmer, or 
colder than normal. The physical basis for such estimates arises from the effect of predictable 
seasonal-timescale signals arising from the ocean, and to a lesser extent the land surface, on the 
atmosphere (Palmer and Anderson, 1994). The key paradigm for seasonal forecasting is El Niño, a 
coupled ocean-atmosphere phenomenon occurring primarily in the tropical Pacific and predictable six 
months and more ahead (Jin et al., 2008; Weisheimer et al., 2009).  

Such information is relevant to a variety of users in weather-sensitive sectors, and therefore can 
influence decisions made in these sectors. As a result, seasonal climate forecasts are increasingly being 
used across a range of application areas; see Dessai and Soares (2013) for a recent review. For 
example, information about seasonal average rainfall and temperature for the growing season can 
potentially influence a farmer’s decision about which crops to plant ahead of time, or a humanitarian 
organisation’s strategy for anticipating food shortages in drought-prone regions of the developing 
world. However, this information is only useful if it is skilful.  

In the literature there exists a plethora of methods to estimate the skill of forecasts (Jolliffe and 
Stephenson, 2012). In general, each of these methods quantifies a different detailed aspect of the 
forecast quality. In this paper, however, we try to simplify the question. Rather than coming up with 
complex estimates of different characteristics of forecast skill whose relevance strongly depends on 
the specific application, we simply ask: On a scale of 1-5, where 5 is very good, how skilful are 
seasonal forecasts today? On a similar scale, how skilful can we expect seasonal forecasts to be 30 
years from now? These types of question are sufficiently open-ended that they may appear impossibly 
difficult to answer in any such succinct way. And yet precisely these types of question are being asked 
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by policy makers e.g. by the UK Government as it considers options for future investment in science 
(Foresight, 2012).  

What level of skill should a seasonal forecast system reach, to merit being rated a “5”? Would every 
forecast of seasonal-mean temperature and rainfall for a particular region have to be both precise and 
accurate? This is likely to be an impossible goal. Whilst the impact of the Butterfly Effect is mitigated 
substantially by focussing on prediction of seasonal-mean rather than instantaneous variables, it is not 
eliminated entirely. In addition, the coupled ocean-atmosphere models used to make seasonal forecasts 
are finite truncations of the underlying (partial differential) equations of the climate system, and hence 
are only approximate representations of reality. These two facts of the matter imply that seasonal 
predictions must necessarily be considered probabilistic in character – forecasts from any deterministic 
seasonal prediction will necessarily be unreliable and therefore untrustworthy.  

However, this does not imply that any probabilistic forecast system is necessarily reliable. In this 
paper we define a forecast as being reliable if it demonstrates statistical reliability in the following 
sense. Consider a set of predictions derived from ensemble forecasts. For some of these cases it is 
predicted that the chance of above average seasonal-mean rainfall for the coming growing season will 
be 80%. If the probabilistic forecast system is reliable, then one can expect that in 80% of these 
predictions the actual seasonal-mean rainfall will be above average. In this way, the concept of 
“reliability” can be extended to probabilistic forecast systems (Murphy, 1973). If a forecast system is 
unreliable in this sense, then poor decisions can be made. As discussed in Section 2, a farmer might 
decide that it makes economic sense to grow a particular type of crop when the forecast for above-
average rain exceeds 80%. However, if in reality above-average rain only occurs 50% of the time 
when the forecast probability exceeds 80%, the potential economic benefit of planting the particular 
crop may be completely lost by the unreliable probabilistic forecast.  

This raises an important conceptual point. Consider a hypothetical forecast system which most of the 
time forecasts climatological probabilities, but occasionally forecasts probabilities which are 
substantially different from climatology. If the probability forecasts have reliability and if the system 
can successfully discriminate between predictable and unpredictable situations, we would rate such a 
system as “5” even though the formal skill scores such as the Brier Skill Score (see below) for such a 
system may be small. We can compare this with an ensemble forecast system where the forecast 
probabilities are comparable with climatology for all initial conditions. Here we would rate such a 
system as “2” – such a forecast system would never lead decision makers to make poor decisions, 
though it might not be particularly useful.  

In this paper we develop objective criteria for classifying forecast skill into five categories, discuss 
how close we are to achieving a “5” today, and consider what is needed to achieve a “5” in 30 years 
time. All results presented here are based on the (state of the art) operational seasonal forecast System 
4 from the European Centre for Medium-Range Weather Forecasts (ECMWF). Depending on the 
region and variable being studied, we find examples of all five of our categories.  

2 Probabilistic Skill and Decision Making 
Forecasts are used to make decisions. For example, a farmer wants to decide what type of crop to plant 
in the coming season. Suppose there is a choice between two types of crop: A and B. The crop yield 
(tons/hectare) CA and CB of A and B depends on a number of meteorological variables such as 
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temperature and precipitation, collectively labelled by X. Hence ( )A AC C X=  and ( )B BC C X= . 
Suppose we have a forecast system which predicts over a given season a probability distribution 

( )Xρ  for X. Then the expected crop yield for A and B is  

 
( ) ( )

( ) ( )

A A
X

B B
X

C C X X dX

C C X X dX

ρ

ρ

=

=

∫

∫
 

If A BC C>  the farmer might choose A over B, and vice versa. In practice of course there will be 

many factors other than climate which determine the farmer’s decision, e.g. details of the distributions 
CA and CB, but let us suppose here that climate is the only relevant one. 

In general, one can expect CA to be a nonlinear function of X. Hence AC  will depend on more than 

just the mode of the distribution ρ. The uncertainty, given by the spread of the forecast distribution, 
might have just as large an impact on the estimate AC  as does the mode of the forecast distribution.  

Let us assume that  

 ( ) ( ) ( ) ( )A A C B B CC C
X X

C C X X dX C C X X dXρ ρ≡ > ≡∫ ∫  

Where ( )C Xρ  is the climatological distribution of X. Let us also suppose that in the majority of 
forecast occasions, the forecast distribution ( )Xρ  is not significantly different from the climatological 

distribution ( )C Xρ . Then, on these occasions, whilst the farmer is not going to gain any specially 
useful information from the forecast system, (s)he is not going to be mislead by unreliable 
information. Conversely, consider the relatively infrequent occasions where ( ) ( )CX Xρ ρ≠  such that 

A BC C< . If as a result the farmer decides to grow B over A, it is essential that the forecast 

probability function ( )Xρ  must be reliable.  

One way to assess whether such forecast distributions ρ are reliable when Cρ ρ≠  is to study so-called 
Attributes (or “Reliability”) Diagrams. Reliability diagrams are discussed and shown in Sections 4 and 
5. The focus if this paper is the reliability of user-relevant forecast variables in ECMWF’s System 4 
seasonal forecasts in the situations where Cρ ρ≠ . 

3 The ECMWF Seasonal Forecast System 4  
The European Centre for Medium-Range Weather Forecasts (ECMWF) has been at the forefront of 
seasonal predictions for many years. Research on predictability on seasonal time scale in the early 
1990s (eg. Palmer and Anderson, 1994) led to the implementation of the first ECMWF seasonal 
forecast system based on a global ocean-atmosphere coupled model in 1997, and a successful forecast 
of the major 1997-98 El Niño (Stockdale et al., 1998). This first coupled System 1 was replaced by 
System 2 in 2001 and System 3 in March 2007. In November 2011 the latest seasonal forecasting 
System 4 started producing operational forecasts. The results presented in this paper are based on 
System 4’s retrospective seasonal forecasts of 2m temperature and precipitation over land.  
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The forecasting model of System 4 (Molteni et al., 2011) consists of an atmospheric and an oceanic 
component to simulate the evolution of the global circulation in the atmosphere and in the oceans, 
based on the physical laws of fluid dynamics. The equations of motions and the thermodynamic laws 
are solved numerically by discretising the atmosphere and the oceans into several vertical layers and 
horizontal grid boxes. The atmospheric model component of System 4 is version CY36R4 of 
ECMWF’s weather forecasting model IFS (Integrated Forecasting System). Whereas the model for 
ensemble weather forecasting is run with a horizontal resolution of approx. 30 km-sized grid boxes, 
the resolution used in seasonal forecasting of approx. 80 km (spectral resolution of T255) is somewhat 
coarser. The atmospheric model has 91 vertical levels reaching up to 0.01 hPa. The ocean model used 
in System 4 is NEMO (Nucleus for European Modelling of the Ocean) version 3.0., a state-of-the-art 
modelling framework for oceanic research. The ocean model has 42 levels in the vertical and the grid 
boxes have an approx. length of 110 km (1°). 

As discussed in the Introduction, seasonal forecasts must be probabilistic by nature. In practice, 
probabilistic forecasts are derived by running an ensemble of integrations of the forecast model. Each 
member of the ensemble uses slightly different initial conditions and different realisations of 
stochastic representations of sub-grid physical processes in the atmosphere. Operational global 
forecasts with System 4 are produced at the beginning of each month for forecast lead times of 7 
months into the future using 51 ensemble members.  

How can we estimate the reliability of these seasonal forecasts? A single probabilistic forecast cannot, 
in general, be verified or falsified. But for a set of probabilistic forecasts we can evaluate the 
performance of the forecasting system by systematically comparing the forecasts with observations 
and by deriving statistical skill measures. These skill estimates, based on the performance of the 
system in the past, may guide users about the expected performance of the forecasts of the future. 
With this paper, however, we do not aim to analyse the probabilistic forecast skill of System 4 as this 
has been done elsewhere (e.g. Molteni et al., 2011; Kim et al., 2012; Dutra et al., 2013). Rather,  we 
focus on the reliability of the forecasts, as discussed in the Introduction and Section 4. A caveat with 
estimating skill from the past is the non-stationary quality of the observations available due to changes 
in the observational system. 

In order to achieve a robust estimate of the System 4 model performance, an extensive set of 
retrospective forecasts (re-forecasts) of the past has been generated. This forms the basis of the 
following analysis. The System 4 re-forecasts were started every calendar month over the 30-year 
period 1981 - 2010 by emulating real forecast conditions when no observed information about the 
future is available at the beginning of the forecast. Here we analyse (51 member) ensemble re-
forecasts initialised on the 1st of May and 1st of November 1981-2010. The forecast lead time is 2-4 
months corresponding to the boreal summer (June, July and August, JJA) and winter (December, 
January and February, DJF) seasons.  

In this study, we concentrate our analyses on 2m temperature and precipitation over 21 standard land 
regions (Giorgi and Francisco, 2000). The verification data used are ECMWF re-analysis data (ERA-
Interim) for 2m temperature (Dee et al., 2011) and GPCP for precipitation (Adler et al., 2003). As 
discussed in the Introduction, in seasonal forecasting one is mostly interested in seasonal deviations 



On the reliability of seasonal climate forecasts  
 
 

 
Technical Memorandum No.722 5 
 

from the long-term climatological mean. Observed anomalies for each year and season are defined as 
deviations from the mean over the 1981 to 2010 re-forecast period. In a similar way, model anomalies 
for each ensemble member were derived from the re-forecasts and the model mean over the re-forecast 
period. In order to emulate real-time forecast situations as closely as possible, both observed and 
model anomalies are computed in cross-validation mode by leaving out the actual forecast year in the 
estimate of the climatological mean values. Transforming absolute temperature and precipitation 
forecast values into anomalies implicitly also removes any systematic errors, or biases, which develop 
during the forecasts between the model and the verification. 

In the following we will consider dichotomous, or binary, events E based on terciles of the 
climatological distribution of seasonal anomalies of temperature and precipitation. If E is defined as 
falling into the lower third of the long-term distribution, the event is called “cold” for 2m temperature 
or “dry” for precipitation. Similarly, if E relates to the upper third of the distribution, the event is 
called “warm” or “wet”. The seasonal forecasts from System 4 then specify the probability of event E 
that the seasonal-mean forecast anomalies lie below the lower tercile or above the upper tercile, 
respectively. Our aim here is to quantify the reliability of such probabilistic tercile event by comparing 
the forecast probability for E with the corresponding observed frequency of E of the verifying 
observations.  

4 Reliability Diagrams and Categories of Reliability 
Reliability (or Attributes) Diagrams are tools to display and quantify the statistical reliability of a 
forecasting system, as defined in the Introduction. Such a diagram graphically summarises for a given 
binary event E the correspondence of the forecast probabilities with the observed frequency of 
occurrence of the event E given the forecast. Reliability is high if this correspondence is very good. 
Reliability is poor if there is little, no or even negative correspondence between the forecast 
probabilities and the observed frequencies.  

For example, suppose the seasonal forecast probability for event E is equal to 0.8. Then, in a reliable 
seasonal forecast system, E would actually occur, taking into account sampling uncertainty, on 
approximately 80% of the cases where E was predicted with a probability of 0.8. A reliability diagram 
displays a range of such forecast probabilities for E and their corresponding observed frequencies 
collected over the re-forecast period. If the correspondence between the forecast probabilities and the 
observational frequencies were perfect (and neglecting sampling uncertainty), all data points would 
lay on a straight diagonal line in the reliability diagram. It is important to note that a forecasting 
system which always issues the underlying long-term climatological probability of the event has 
perfect reliability even though it might not provide any additional information to the climatological 
one. Such a forecast would result in just one point in the reliability diagram exactly at the 
climatological forecast probability and observed frequency of the event. 

Figure 1 shows a schematic of a reliability diagram for tercile events E but without any data points. 
Here, the climatological forecast probability and long-term frequency of E in the verification data (by 
definition 1/3) are denoted by the vertical and horizontal lines. The grey areas in the diagram are 
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linked to forecast situations where the Brier Skill Score1 (BSS), based on a no-skill climatological 
reference, is positive. What does this mean? Often it is of interest to compare seasonal forecasts 
generated by physical models of the climate system with a reference forecast that serves as a 
benchmark for the climate model forecasts. Such a comparison allows the definition of skill scores of 
the forecasts: A skill score is positive (negative) if the forecast is better (worse) than the reference 
forecast. A widely used reference forecast is the simple climatological long-term mean forecast. For 
tercile events, the reference forecast would always be 1/3. It can be shown (Mason, 2004) that forecast 
probabilities which fall into the grey indicated areas in Fig. 1 contribute positively to the BSS if 
climatology is used as a reference. The line that separates the skilful from the unskilful forecast 
probabilities is defined by BSS=0 indicating that the forecasts below this line are not better than the 
reference forecast.  

 
Figure 1: What is a reliability diagram? A reliability diagram shows the observed frequencies of 
an event as a function of its forecast probability. The thick diagonal line indicates perfect 
reliability. The thin horizontal and vertical lines show the climatological probabilities of the event 
in the forecasts and observations (here 1/3 for tercile events). The grey area defines a region in 
the diagram where data contribute positively to the Brier Skill Score. 

For any real forecasting system, the data points in a reliability diagram are not likely to lie on a 
straight line. In order to quantify the overall reliability of an event E, and to try to minimise the effects 
of relatively small statistical samples in estimating reliability, we apply a weighted linear regression as 
a best-fit estimate on all data points in the reliability diagram using the number of forecasts in each 
probability bin as weights. The slope of the so derived reliability line can be used as a quantitative 
measure of the reliability of the system: A slope of ~1 indicates very good reliability; a slope of  ~0 a 
very poor or no reliability. A slope which is negative could be characterised as “worse than useless” as 
it might encourage decision makers to make decisions which could turn out to be exceptionally poor 

                                                      
1 The BSS is based on the Brier Score (Brier, 1950) which can be considered the probabilistic generalisation of 
the mean squared error for dichotomous events. 
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because of the inverse relationship between the forecast and observed probabilities. It is this slope of 
the reliability line on which our proposed categories of reliability will be based. 

In this study we use a definition of the binary events E that is based on thresholds of the lower and 
upper terciles of the climatological distribution. By construction, such a percentile-based event 
definition corrects biases so that the climatological frequencies from both forecasts and observations 
are the same. An implication of this event definition is that the weighted linear regression reliability 
line will always go through the climatological intersection (1/3 in our case). Different situations can 
arise for other event definitions. For example, fixed absolute thresholds of precipitation are often used 
for in the verification of weather forecasts. Here, it is in principle possible that the reliability line has a 
perfect slope of ~1 but is off-set from the diagonal. Such a situation reflects (unconditional) bias in the 
forecasts (see Wilks, 2011). 

In addition to the best-guess reliability slope we estimate the uncertainty around that slope. Using a 
bootstrap algorithm with replacement we draw randomly from the set of System 4 re-forecast data and 
compute the slope of the reliability regression line. By repeating this procedure 1000 times we 
construct a re-sampled data set of regression line slopes and use the 75 per cent confidence interval of 
the re-sampling distribution to define an uncertainty range around our best-guess reliability slope. 

In order to answer the question posed in the Introduction - how “good” on a scale of 1 to 5 are our 
current seasonal forecasts - we propose a categorisation of reliability based on the slope of the 
reliability line and the uncertainty associated with it. In Figure 2 we show schematics for each of the 
five categories to demonstrate their definitions; Figure 3 has examples for each category from the 
System 4 re-forecasts data. Here the size of the data points is proportional to the number of forecasts 
in that forecast probability bin. 

The highest Category 5 classifies perfect reliability conditions (see Fig. 2a). It is defined such that the 
uncertainty range of the reliability slope includes the perfect reliability slope of 1 and falls completely 
into the skilful BSS area. Thus, given the sampling uncertainty, such forecasts are perfectly reliable. 
Forecasts in category 5 can potentially be very useful for decision making. In Fig 3a we show as an 
example for category 5 forecasts the reliability diagram for the tercile event of warm DJF over the 
Sahel region of System 4. Here, the best-guess reliability line is only slightly steeper than the diagonal. 
The uncertainty range clearly includes the perfect reliability slope of 1 (diagonal).  

The second highest Category 4 is characterised by reliability diagrams where the uncertainty range of 
the reliability line has at minimum a slope of 0.5 and does not include the perfect reliability line, see 
schematic in Fig. 2b. It describes forecast reliability that is still very useful for decision making. An 
example from System 4 is given in Fig. 3b for wet conditions in JJA over East Africa.  

If the slope of the reliability line is significantly positive but does not fall into either category 5 or 4, 
the forecasts are classified as Category 3 reliable, see Fig. 2c. Such forecasts can be considered 
marginally useful for decision making as they carry a partial positive relationship between the model 
forecast probability and the observed frequency of occurrence of that event. The signal of this 
relationship, or correlation, may be small but could still potentially be useful for some applications. As 
an example for System 4, dry DJF forecasts over West Africa as shown in Fig. 3c fall into Category 3 
reliability.  
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Figure 2: Five categories of reliability: a) 5 - perfect, b) 4 - still very useful for decision making, 
c) 3 - marginally useful, d) 2 - not useful, and e) 1 - dangerously useless. 

If the slope of the reliability line cannot be distinguished, within its uncertainties, from zero, the 
forecasts are defined as Category 2, see Fig. 2d. Because of the approximately flat reliability line, 
there is no relationship between the forecast probabilities and the frequencies of the observed event; 
the forecast system is not useful for decision making. An example from System 4 for Category 2 
forecasts are the predictions of dry summers (JJA) over Southern Europe (Fig. 3d).  

The poorest category of forecast reliability, Category 1, summarises forecasts where the reliability line 
has a negative slope implying an inverse relation between the forecast probabilities and the 
frequencies of the observed event (Fig. 2e). These forecasts are dangerously useless for decision 
making because they not only provide no useful information but also can mislead the users of the 



On the reliability of seasonal climate forecasts  
 
 

 
Technical Memorandum No.722 9 
 

forecasts with unreliable information. Dry summer (JJA) forecasts for Northern Europe from System 4 
fall into this very unreliable category, see Fig. 3e.  

 

 
Figure 3: System 4 examples of the five categories of reliability: a) 5 - warm DJF over the Sahel, 
b) 4 - wet JJA over East Africa, c) 3 - dry DJF over West Africa, d) 2 - dry JJA over Southern 
Europe, and e) 1 - dry JJA over Northern Europe. 

In principle, the raw probabilistic output from such seasonal forecast systems can be calibrated 
empirically using a training sample of data (Wilks, 2011). However, with limited training data (30 
years is not a large sample), such empirical calibration cannot be assumed to produce reliable out-of-
sample probability forecasts. As such, a key aspiration of any operational forecast centre must be to 
produce reliable forecasts without recourse to empirical calibration.  
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5 Reliability of System 4 
This Section gives a summary of how reliable the System 4 seasonal forecasts for near-surface 
temperature and precipitation in JJA and DJF are in terms of our 5 categories of reliability as defined 
in Section 4.  

In Figure 4 we show the reliability categories for 2m temperature in DJF and JJA over 21 land regions 
around the world. Almost all of the areas fall into the first three categories from perfect to marginally 
useful reliability. Only the Northern Asia region for cold DJF events has been classified as not useful 
(Category 2).  

 
Figure 4: Reliability of System 4 seasonal forecasts for 2m temperature. a) cold DJF,   
b) warm DJF, c) cold JJA, and d) warm JJA. 

Remarkably, there are a number of extra-tropical regions where reliability is found to be perfect 
(Category 5): the east and west coasts of North America and parts of China and East Asia in DJF, and 
South America, Southern Africa and Australia in austral winter in JJA.  

For Europe, all winter predictions of temperature fall into the marginally useful Category 3, whereas 
in summer the temperature forecasts over Europe is improved. Cold anomalies over Northern Europe 
are classified to have perfect reliability. Category 4 reliability of still being potentially very useful 
after calibration has been found for Southern Europe and Category 3 performance is shown for warm 
summers over Northern Europe. 

Over the extended tropical areas temperature forecasts in both seasons are classified as either Category 
5 or Category 4, except for cold anomalies over western tropical Africa in JJA which have Category 3 
reliability. The Sahara region is an area that consistently falls into Category 5 for cold and warm 
temperature events in JJA and DJF.  
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Results for the reliability categorisation of precipitation forecasts are shown in Fig. 5 for wet and dry 
DJF and JJA seasons. Overall, the reliability performance for precipitation is poorer than for 
temperature with more regions being classified with lower categories. The marginally useful Category 
3 is the most frequent category for precipitation forecasts in both seasons and for both wet and dry 
events.  

 
Figure 5: Reliability of System 4 seasonal forecasts for precipitation. a) dry DJF, b) wet DJF, c) 
dry JJA, and d) wet JJA. 

Even though the overall performance is not very reliable, there are areas and events that are classified 
as perfectly or usefully reliable. Consistent regions among the events and seasons are Central America, 
Northern parts of South America and South-East Asia.  

Over Northern Europe, the reliability of precipitation forecasts for winters (DJF) is not useful 
(Category 2) for dry events and marginally useful for wet events. Southern Europe falls into the 
middle Category 3 in winter and for the wet summer events. The reliability for dry summers over 
Europe is notably poor with Southern Europe classified as not useful (Category 2) and Northern 
Europe as dangerously useless (Category 1). Parts of Northern America fall into that lowest category, 
too. 

To summarise these findings, Fig. 6 shows how many regions there are in each of the 5 reliability 
categories when accumulated over all seasons and tercile events. The most frequent category for the 
temperature forecasts is Category 4 describing forecasts with good reliability that can still be useful 
for decision making. The perfect reliability Category 5 has also been found for a lot of regions while 
only one of the regions fell into the not useful Category 2. None of the temperature forecasts was 
classified as dangerously useless in terms of its reliability. 
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Figure 6: Number of regions that fall into each reliability category summed over all four events 
for temperature (a) and precipitation (b). 

As mentioned above, the most frequent reliability category for precipitation is the marginally useful 
Category 3. Such forecasts are not very reliable but might potentially be marginally useful for some 
applications. The category with the second highest number of regions is the one of perfect reliability, 
which is an optimistic result for the usefulness of seasonal forecasts of precipitation. However, there 
are substantially more cases of areas that have poorer reliability than there are for temperature 
(Categories 1 and 2); users should not use these forecasts for decision making in these regions as they 
can be dangerously misleading.  
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6 How can seasonal forecast reliability be improved? 
The results above suggest that we still have some way to go before it can be said that the goal of 
providing users with reliable forecasts has been achieved, particularly for precipitation and away from 
the El Niño region. There can be little doubt that the ability to understand and represent physical 
processes accurately is key to improved reliability.  

In a recent study based on integrations within the project Athena (Jung et al., 2012), Dawson et al. 
(2012) were able to show in AMIP integrations that the ECMWF model could simulate the non-
Gaussian structure of observed Euro-Atlantic weather regimes more accurately in a model with 
spectral resolution T1279 (approx. 15 km) than with resolution T159 (approx. 125 km). It is plausible 
that the improved simulation of such weather regimes in a T1279 model is associated with better 
representation of topography on the one hand, and with a more realistic representation of Rossby wave 
breaking on the other.  

Improved simulation of stratospheric processes through finer vertical resolution is also expected to 
impact seasonal forecasts (Cagnazzo and Manzini, 2009; Marshall and Scaife, 2009). Other potential 
processes to improve the seasonal predictability include sea-ice or snow cover over the Eurasian land 
areas. 

A fundamental question, but one that is probably unanswerable until the tools are available to answer 
it, is whether perfect forecast reliability can only be achieved when convective cloud systems (with 
scales of just a few kilometres) are resolved explicitly. Much of the skill of seasonal forecasts 
originates in the tropics, and moist convection is a dominant form of instability in the tropics. Seasonal 
forecasting with such cloud-resolved models will require exascale computing capability.  

A better representation of other Earth System components is also likely to improve reliability. For 
example, Weisheimer et al. (2011a) showed that a better representation of land surface processes led 
to remarkably good probabilistic forecast of the summer 2003 heat wave. 

On the other hand, since the climate system is chaotic, it is necessary to represent inevitable 
uncertainties in the representation of processes which have to be parameterised. A programme to 
represent parameterisation uncertainty has been on-going for some time at ECMWF (Buizza et al., 
1999; Palmer, 2001; Palmer, 2012) and was shown to reduce some of the biases related to tropical 
convection in System 4 (Weisheimer et al., 2014). On the monthly and seasonal timescales there is 
evidence that it is competitive with, and for temperature predictions can outperform, the more standard 
multi-model ensemble approaches to the representation of model uncertainty (Weisheimer et al., 
2011b). Furthermore, improved initial conditions based on higher quality and quantities of 
observations are also vital for the reduction of model error. 

There can be little doubt that the value to society of reliable non-climatological predictions of seasonal 
climate. However, to develop a high resolution system with accurate stochastic representations of 
model uncertainty in all relevant components of the Earth System, is not only a formidable technical 
challenge, it may be one that will require computing resources which are unavailable to individual 
institutes in the foreseeable future. A possible route to achieve the goal of a reliable seasonal climate 
prediction system, based on much stronger international collaboration, has been presented elsewhere 
(Shukla et al., 2010; Shapiro et al., 2010; Palmer, 2011; Palmer, 2012).  
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7 Conclusions 
Let us return to the question posed in the Introduction. What constitutes a “5”, to which a seasonal 
forecast system should aspire? Here we propose the following broad criterion for rating a seasonal 
forecast system a “5”: when the system predicts probabilities  that are substantially different 

from the climatological distribution  then these probabilities can be relied on, and acted on by 
decision makers. Note that we make no firm statement about how often such situations arise. It may be 
that in the majority of cases the forecast system does not predict probabilities that differ substantially 
from . If this is the case, then the probabilistic skill score may not differ substantially from 
zero. However, for such a forecast system, a user will not make a bad decision based on unreliable 
forecast information.  

At this stage it remains to be demonstrated how our proposed categories of reliability will be used in 
real life decision making. In light of the increasing need to develop a dedicated forecast-user interface, 
we refer the reader to a new inter-disciplinary project in which the authors are involved (funded under 
the Oxford Martin Programme On Resource Stewardship, OMPORS) explicitly addressing the utility 
of probabilistic seasonal forecasts2. 

Reliability of seasonal forecasts can also be considered relevant in the context of seamless prediction 
of weather and climate: the reliability of climate predictions on the seasonal time scale can provide 
constraints for the trustworthiness of climate change projections. Reliability diagrams provide a means 
to calibrate climate change probabilities and discount these climate change probabilities if the seasonal 
forecasts can be shown to not be reliable (Palmer et al., 2008). 

The ECMWF seasonal forecast System 4 cannot be rated a “5” for all regions of the world, and for all 
variables. We have shown that for surface temperature, and even more for precipitation, forecast 
probabilities are not reliable when different from climatology and away from the El Niño region. 
Based on current performance our current capability to forecast seasonal climate was rated between 1 
and 5 depending on variable and scale. However, given expected increases in resolution, and better 
stochastic representations of model uncertainty, we see no reason why this should not rise to 5 overall 
in the coming 30 years.  
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