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Preface

The inviscid equations usually suffice for the description of the
flow nearly everywhere in a fluid of low viscosity., Viscous boundary
layers arise because the inviscid equations do not satisfy certain con-
straints which are known to govern the behaviour of real fluids, such
as the requirement that the fluid must not slip at a rigid surface or
that the stress must be continuous at a free surface, Some boundary
layers are '"passive" in the sense that they are required merely to
"patch up" the solution to the inviscid equations describing the
"interior" flow in the main body of the fluid without affecting the
"interior" solution; "active' boundary layers, as exemplified in the case
of rapidly rotating fluids by the familiar Ekman layer, exert a strong
and even dominant influence on the interior solution.

A fluid differs in an essential way from a solid in its inability in
the absence of rotation (or of buoyancy forces due to the action of
gravity on stable density stratification or, in the case of electrically-
conducting fluids, magnetohydrodynamic effects) to resist shearing
stresses and thereby support shear waves. When a fluid rotates
relative to an inertial frame the constraints imposed on the system by
angular momentum requirements are such as to endow the fluid with pseudo-
elastic properties which are highly anisotropic, and many novel phenomena
then arise. The systematic study of rotating fluids is a developing
branch of fluid mechanics with applications not only in meteorology and
oceanography but also in other areas of geophysics, planetary sciences,
solar physics, astrophysics and engineering. These supplementary notes
to two lectures on boundary layers in rotating fluids - which will be
presented as a contribution to "Seminars on the treatment of the boundary
layer in numerical weather prediction" to be held on 6-10 September 1976
at Shinfield Park, near Reading, organised and sponsored by the European
Centre for Medium Range Weather Forecasts - consist of a brief review
of the basic properties of geostrophic motion (para.l) , an outline of
the properties of Ekman-type boundary layers in a fluid of uniform
viscosity and of the more complex (but usually '"passive'")'"side-wall"
boundary layers found where the bounding surface is parallel to the basic
rotation vector (para.2), and a discussion of the behaviour of certain
very simple systems in which these various properties are clearly
exemplified (para.3). Time will not permit the treatment of more than
a very limited selection of topics, but useful references are listed in
the extensive (but unedited and incomplete) bibliography given in
Appendix A.
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1. INTRODUCTICH

1.1 Equations of motion of an incompressible Boussinesq fluid. When dealing with
most geophysical and laboratory systems it is sufficient to consider the behaviour of
a fluid in which (a) the velocities are so small in comparison with the speed of sound
that the assumption of incompressibility is valid, and (b) the accelerations are so
small in comparison with gravity that the Boussinesq approximation (which takes
density variations into account in the buoyancy term in the equations of motion but
not in the other terms) can be used. When referred to & system that rotates with
steady angular velocity £L relative to an inertial frame, the equations of
continuity and momentum of such a fluid of uniform kinematic viscosity  and
variable density '5?'(’%-@_ 8) . where ES" is the mean density and © <<\ , are:

Veu=0 (1.1)

and

— 1
oL (@;%u@’g}ﬁu - w\j/(? %éﬁa%\} -%3@ +p§f& . (1.2)
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Here & is the Eulerian flow velocity relative to the rotating frame and 3% t&ﬁﬁﬂ
is the corresponding vorticity vector, U denctes time, ®  the acceleration due to
gravity plu@ centrifugal effecte, and g VP e equal o the pressure gradient
minug 3 g

Variations in density may be due %o changes in temperature, salinity, etc., and
in general © satisfies an equation of the form

%% «%(gﬁ!)@ = Vo + 0 (1.3)

g
where 1& is & diffusion coefficient andﬁ»CQ repregents effects due to internal sources
in the case of thermally-driven flows (J is proportional to the rate of internal
heating per unit mass. When the right-hand side of equation {(1.3) vanishes we have

Eij? = D {(1.4)
DL

(where D /Dt = 33k +u ¥V ), implying that the value of @ of an individusl fluid
element then remains constant throughout the motion.

1.2 Energy equation. An energy equation follows from egquation (1.2) when that
equation is wultiplied scalarly ty ‘& {noting that the second term on the left-hand
side venishes because 1%t r@pre@@n%@ s force acting at right-angles to » and
therefore does no work): whence

3“(3%“5)3 - %% N Eﬁ'{g@“W[jj&(gﬁ»g)-mp%p@@ﬂ [1:5)

ak |
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Vhen integrated over a given volume, the left-hand side represents the rate of

change of total kinetic energy and the first term on the right-hand side (which is
essentially negative) represents viscous dissipation of kinetic energy. The second
term on the right-hand side represents the rate at which buoyancy forcea convert

into kinetic energy the potential energy of gravity acting on the density field.

It can in general take either sign, depending on the sign of the average correlation
between density varistions, proportional to © , and the vertical component of
velocity, proportional to w. , but, in the case of thermally-driven motions,

such ag the circulation of the atmosphere, this buoyancy term is essentially positive
when integrated over the whole system.

The last term on the right-hand side represents mechanical forcing. When
integrated, thim term can be converted into a surface integral comprising three
contributions representing, respectively, the advection of kinetic energy over
the surface, the rate of werking of normal pressure forces, and the rate of working
of tangential viscous forces. Each contribution can take either sign but their sum
when integrated over the whole system muet be positive in cases of mechanically-
driven flows.

1.3 Vorticity equation: Jeffreys's theorem and Ertel's theorem. Equation (1.2)
expresses the balance of forces acting on individual fluid elements. The
corresponding torque balance is expressed by the vorticity equation obtained by
taking the curl of equation (1.2): thue

33 ( g \_(M*-E)V‘{ W= -9:VB+ vVlE- (1.6)
> "

A~

This equation leads directly to a general result which goes under several names
but is conveniently referred to as '"Jeffreys's theorem' and concerns the conditions
under which hydrostatic equilibrium obtains,defined as % = O everywhere. By
equation (1.€), w =0 when 3‘#‘79 =D, lmplying that ldrostatic equilibrium is
impossible if denaity variations occur on level surfaces. Jeffreys's theorem is a
direct corollorary of Bjerknes's well-known circulatiuvn theosrem; it provides the most
direct demonstretion that the atmosphere must circulate under tne influence of solar
heating, which maintains a generally ncrth-south density gradient oz level surfaces.

We now introduce a quantity knuwn as ‘''potenti
/

"2% A g‘ V/\ (1.7}

L vorsizity" azd defined as

where /\ ie any quantity sztiafving

DA L oo

= ot -

¢ )
Dt {1.8)

(of equation (1.4;:., By equation (1.6)

i . 1.
° [(2%%\%\3 T = ,f;? =50 9N + 9 YA vé



and therefore

\,LQ‘O "‘J“%\\//;\ =0 (1.10)

Dt

when the fluid is homogeneous (§2@3D) and inviscid. This is Ertel's particularly
useful theorem for an incompreasible Boussinesq fluid.

1.4 Geostrophic flow: thermal wind equation and Proudman's theorem. Geostrophic flow,
occurs in regions where the relative acceleration term Du/Dt (= éu/éb'*(ﬁna'*V(l‘* “
in equation (1.2) and the viscous %term w>vz&ﬂ can be neglected in comparison with
the Coriolis term ig}w&g - The Coriolis force then balances the non-hydrostatic
component of the pressure force exactly, so that

A/

&

N Ly -
J@@a%ZM‘%’iﬁ”j“é‘%@ (1.1

v
A

This equation is mathemelically degenerate, being of lower order than the complete
equation of motion and consequenily imcapable of solution under all the necessary
boundary conditions snd initisl conditions, and it followzs that regions of highly
ageostrophic flow (ocourring not only on the boundaries of the system but also

in the localized regions of the main hody of the fluid) are necessary concomitants

of geostrophic motion. The geoatrophic eguation nevertheless expresses with good
accuracy various imporiant properties that slow, steady hydrodynamical motions in

a rapidly-rotating fluid mus? possess nearly everywhere, and when judiciously applied
the egquation usually indicates the nature a;i location of esmentislly ageostrophic
featvres,

A rapidly rotating fluid can te defined sg one for which the Rossby number

e = <Du/de> /\Q;ﬂa?‘u> (1.12)

and the IZkman pumber

E‘ = <W\}zﬁ ‘<(Q SL)& u\

are both very much less than unity, the symbol<d > meaning the roct,@@an Bguare
value, L&K@H over the whole volume Gfrupm@é by the fluid, so that €= Ufi.iﬁg and
E- ‘V!L {0if \J iz & typical relative flow speed and L oa characteristic length
scale. From a mathematical point of view, geostrophic flow occurs in the limit
when €70 and £ 0 . The vorticity equation (1.6) then simplifies to

%
g (1.14)

b omes
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expreasing a balance between the gyroscopic torque and the gravitational torque.

When Y9=0 equation (1.14) reduces to

lilig,_ -0 (1.15)

Az
(M Yo 2 aws b Pudﬂnﬂhs_}))
a result first proved by Proudman and later by others and which goes under various
names (eg Proudmsn's theorem, Proudman-Taylor theorem, Taylor-Proudman theorem).
In words, Proudman's "two-dimensional" theorem states that geostrophic motion of a
planes perpendicular to the axis of rotationm.
This fundamental result underlies the interpretation of a very wide range of pheno-
mena in mechanically-driven flov systems.

Suppose that (U,V,W) are the (XQ/,Z_) componente of w , where Z is
the downward vertical co-ordinate, so that in these co-ordinates = (0, 0, 3) . W is
the corresponding vertical component of motion, and ( U,V ) are the horizontal
components. When V620 we have, by equation (1.14),

@*%"V)(U)V)WB =2 (—690/3‘?') é9'@)% O> > (1.16)

In casea when the horizontal component of Q}, is negligible, the first two components
of eyuation (1.16) comprise the familiar thermal wind equation, which expresses the
relationship between the vertical rate of change of horizontal geostrophic motion and
the horizontal density gradient. It may be shown by combining equation (1.16) with

equation (1.4) and setting 96/3t=0 that under steady isentropic conditions
wSAZ )/ (U+V?)
D.S);..,v (V/U = = % U + ) (1.47)

implying that when, &3 a result of strong density inhomogeneities, the speed of
horisontal flow varies rapidly with respect to the axial co-ordinate & , the
corresponding rate of change of the direction of horizontal flow may be quite zlow
and even vanish altogether whaw WAB/A2Z. = 0.

1.5 Quasi-geostrophic flow of an inviecid fluid. Quasi-geostrophic flow occurs
when E <<\ and € <=f , and if E<R € the dominant ageostrophic contributicns in
the equations of quasi-geostrophic motion are provided by advective effects, not
viscosity. Thuas

o% +(§;Q;V§N2§%w=—é“v?*ﬁ g (1.18)
dk ~

- \
vhere &l"\lﬂ = U-é/“)" ‘*Vé/}g ., and the corresponding equation for g (U‘LR E = (g)‘))g)/

'S
| ?LE +(§.\°Va>£ = ‘252‘-%31'- ""{3 ‘&VQZ ' (1.19)
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(see eguations (1.2), (1.6), (1.12) and (4.13)). Equation (1.19) shows that

in guasi-geostrophic motion of a homogeneous (ie (93¥9)a=0 Y incompressible
fluid, changes in the relative vorticity of a moving fluid element are brought
about largely by axial stretching, as represented by the term A5 éwg oz on
the right-hand zide.

Supposs Tor the moment that the buoyancy term can be neglected and that the
fluid is bounded by rigid end-walls in 2= 2,4 (>,4) and ==2, (>, 4) where
2g¢®, . UWhen effects due to viscous boundary layers are negligible the term
Lndw s eguals lﬁ(ﬁ;e@@a)&“(%’% 3 (to sufficient accuracy) and the
equation (1.19) reduces to an expresslon for the conservation of potentiel vorticity
(2n+¥ )(=,-2, ), namely

{1.20)

2 au b§?gj}<i 1+l = 0.
e

"%h{: ey |
‘. ﬁ%b

(Equation (1.20) follows directly frem Ertel’s potentiaml vorticity theorem given
by equation (1D} whenu U is approximated by its tramsverse part 4.V, , and
o= £ S 2 P .
N=(z-=ze)f(z.~2.)  or N=(a-2)ferzy))
If © satisfies equation (1.4) we cen set /\=8 (of equation (1.8)) im

equation (1.9), and if we further sssume that » = O the right-hand side vanishes,
giving

@i

{1.21)

- N e
» R =" 3 =
2 Ts €).ve|= 0.

g

=

Iz the geostrophic limit, this potentisl verticity equation for a non-homogeneous
fiuid has no general form esmalogous to egquation (1.20), but for a shallow system,
such as the Esrth's atwosphere, in which € <<! (but > E ), € =26, (2} +&0 with
56 <<B,, P=Pb(z)+EP with SP<< P, and % is the vertical component of
280, 2o that by egquation (1.11)

%)%:@J(%m +2° \5P md §0 =4 38P  (1a

i
M/Z

A% oY oL
equation {1.21) reduces to
L\

; N C oy A 1.1 1
{i@iﬁ%ﬁi\é(ﬁ £+l ﬁiﬁiﬁ? 3/3Z |1SP{=0, (123)
o X YNz FAK T one.fozf

Bouation (1.23) is of central imporisnce in a wide r&ngé of theoretical inveastigations
in dynamical meteorology and cceanography, including the study of "geostrophic turbu-
lence™ where the constraints on potential vorticity represented by eguation (1.23)

or (1.20) place mevere restrictions on the types of non-linear interactions that are
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possible. This results in behaviour which is analogous in some respects to that of
two-dimensional turbulence in a homogeneous fluid.

2. BOUNDARY LAYERS

2.1 Elman-type boundary laeyers. Boundary layers arise because the inviscid equations
do not satisfy certain constraints which are known to govern the behaviour of real
fluidse. These are, for instamce, that the fluid must not slip at a rigid surface,

or that the stress must be continuous at a free surface. W¥hen the inviscid equations
are those satisfied by geostrophic motion (see equation (4.11)) and the bounding
surface is not parallel to é%; the boundary layer is of the so-called Ekman type of

thickness & , where
v \* *
1+ O(e
G&gb ( © (2.9)

(see equation (1.12)) 41f ® is a unit vector normal to the bounding surface. In
the case of a rigid surface, the components ( w,, u, ) of w parallel to the wall
are glven by

g =

w, = U (E e w-ac“'}@ ng(’vu >Uze?o;lcr (%*OCG)) (2.2)

and

w, = % U, (i ~efiew> + sgm (. )U efc’;\;«c'% (H 0(9)) (2.3)

where {kk)uk> are the corresponding components at the edge of the boundary layer,
vhere it meets the geostrophic "interior® region, O™ is a stretched co~-ordinate
equal to the distance *y from the bounding surface divided by & . It is

clear from equatiom (1.5) that viscous dimsipation of energy occurs largely within
the boundary layer, at a rate oL gv» U%/§%~fle U™ per unit volume.{ A net cross-
isobar flow takes place in the boundary layer and if the 2y = componeat of the
vorticity in the imterior region, JVa/dx, -3V, /32y is non-gzero, boundary layer
fguction™ occurs, giving rise to a value of Wy ( the component of W  normal

to the boundary) which vanishes on the rigid boundary only and has the generally
non-gzero value

U, = sgu(Q.n) $ /30, _dvu
> — *
ES - E I (2.4)

at the edge of the boundary layer (see e.g. Batchelor 1967, Greenspan 1968, Prandtl
1952 in list of _references given in Appendix A).

- — e —— — — | mmm— e— -~ —— s —

* Footnote: When~8 is a function of position another term,provortional,
T Y )C/S.;. K XCI\;: wirzaet14+= o 2 e Y 99T ol o em o le o et a2 Y s A
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When Ekmen boundary layer suction occurs the factor Qwi oz of the first
term on the right-hand side of equatlan (1.19) does not vanish even in the absence
of topographic stretching, im g that t kb lary lay an exert a diz
influence on the axisl vorticxty of the 1ntergor ;law, In the case of a homogeneous
fluid bounded by rigid surfaces in 2 =2, 00,4) and z=32e(x,y) s BuP2¢ .
by equations (1.15), (1.19) and (2. 45 , the axial component of relative vorticity of
the interior flow matisfies

(2.5)

t +5,9)1 2 22 [CRALER

where D=2.-2¢ and W V D = wed /3”““'3&’/33 When topographic and advective effects
are negligible (i.e0 w W D ie typically much smaller in magnitude than S and(‘;:l V,}g
smaller than 3L/ ') we have D g/ =-208C !b implying that I
decreases exponentially with a decay time

@ ijLg? (2.6)

the go-called "spin-up® time scale. The bibliography im Appendix A contains many
refersnces to work on the spin-up process in both homogeneous and stably-stratified
fluids, including reviews by Greenspan (1968) and Benton and Clarx (1874).

In the case of a non-homogenecus fluid ip which, owing to the presence of
horigontal demsity gradients, the geocstrophic interior flow varies with =
sccording to the thermal wind equation (see equations (1.14) and (1.16)), it is still
possible over a wide range of conditions to apply as boundary conditions the Ekman
suction formula given by equation (2.4) as, for example, in the case of Barcilon's
(196k4) investigation of the influence of Ekman boundary layers at rigid end-walls
on the process of baroclimic instability. At a free surface in a barcoclinic fluid,
continuity of stress requires the presence of a boundary layer in which Eukalax;
and é\,;.& / gxg undergo an Ekman spiral (Hide 1964), the concomitant suction formula
beding

U = = g%m(&eaw}g Q éuamé\}g

& Gms 53% 63£‘3’ (2@7)

{cg,equation (2.4)). In certain meteorological probleme (see e.g. Charney 1969) it

ie appropriate to regard the tropopause as a free surface and apply to the interior
geostrophic flow a boundary condition based on equation (2.7). (For further references
end applicationes ses Busse 1968, Charney 1973, Hide 1962, Hide and Mason 1975).

2.2 BSide-wall boundary layers and detached shear layers. The Ekman-thickness é
becomes infinite when o = D (see equation (2.1 559 8o that Ekmen theory breaks
down when dealing with bounding surfaces parallel to 51- « The mathematical
analysis of these so-called ‘'side-wall™ boundary layera iz highly complex, even in
the case when non-linear advective effecte are negligible and the layers are
consequently of the Stewartson type (see e.g. Greenspan 1968, Brown and Stewartson
1976), with overall thickness.

~ {@ $ f,f};} e (2.8)
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: 2
(and therefore propox;tional to vér" ) and substructure on the scale 'D/S S /3
(proportional to »/3 ).

In the Stewartson-type boundary layer, both terms on the left-bend side and the
topographic term on the right-hand side of the equation (2.5) are negligible. The
vorticity balance iz then betwe%n the Fkman suction term - Q$8/D and the
horizontal diffusion term »V é , which can no longer be ignored (Bee equation
(1.6)), as we shall see in various examples to be Considered later. Equation (2.5)
ghows that the error in linear theory iz O (L € /D% §"%) and therefore gréater
than O(€), implying that non-linear effects must be taken {into account in the treatment
of side-wall boundary layers even when linear (Ekman) theory suffices for the end-wall|
boundary layers (see Bennetts and Jackson 1974, Hide 1968) .

It is a common observation with an elementary theoretical interpretation (Boe
§ 1.4) that highly ageostrophic detached shear layers occur in rapidly rotating
fluids and that in many cases these layers are parallel to ;Q-, end similar in
structure to side-wall boundary layers. So far as the geostrophic interior flow
{s concerned, however, it is a fortunate circumstance that thisz flow can usually be
detésmined with the aid of end-wall boundary cornditions based on Ekman theory
without having firast to determine the detailed structure of side-wall boundary layers
or detached shear layers parallel to 9; , provided, of course, that these layers are
not subject to shear instebility (see e.g. Hide and Titaman 1967). Further, complications
arigse wvhen &  (though less than unity) is such that a Reynolds number US/» based
on the Ekman thickness exceeds ~ {0 (for a homogeneous fluid) and, in conseguence,
the Ekman boundary layers are subject to shear instability (see e.g. Faller 1963,
Greenspan 1968). :

3, SOME EXAMPLES

3.1 Axisymmetric source-sink flow. The simplest conceivable flow in a rotatiag

system is the axisyametric motion that arises in a ‘fluid bounded by two concentric

rigid porous cylinders in r=a and rsb (b > a) when fluid enters and leaves the

system via the cylinders at the conastant rate %/211 uo per second per unit length

in the ® direction per umit angular distance in the szimuthal direction and it

can be assumed (a) that the entering fluid hae zero vorticity relative to the

bounding surfaces, which rotate with the same steady axial velocity Qg about the

axis of symmetry and (b) that the flow is independent not only of the azimuthal
co-ordinate Q but also of the axial co-ordinate & . Thus we (\A,,.,\A¢,Ma) where

ur“’y’.ﬁh’)uz:— O | and

b + o +d .

iz Sz !QJY\J ( % being the coefficient of viscomity) and 9 is reckoned
positive or negative according as the inner cyclinder is the source of sink of fluid.
Figure A1 of Hide (1968) illustrates the radial dependence of the profile of Wh on
the Reynolds number | S| , for several values of S ranging from — Oy oD .
When | 5\ is very small, viscogity ensures that the relative asimuthal motiom W is
very slow, but when (S1>>\ | viscous effects are confined to a boundary layer oun the
gink of thickness

\; /l SE or C. / l 5 ‘ acdording as OV -‘Z O o (3.2)
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The aszimuthal flow elsewhere is such that individual fluid elements conserve
their sngular momentum, so that L = «w’gé{ww@iéw ; the axial and only
non-zero component of relative vorticity g s is equal to =2 5L, s this
can be seen from the general expression

(3.3)

The corresponding abamolute vorticity inm the main body of the fluid is sero,
implying = Bince the area integral of the abeolute vorticity can be shown to
equel AW(L -e2) S for all § —— that when | S >P ) the absolute
vorticity is concentrated in the thin boundary layer on the surface where the Fluid
leaves the system. (Tais ie a clear case of motions expelling absolute vorticity
from the main body of the fluid and concentrating it at the r'im  but by & procese
which can be fully specified, in contrast to some of the examples invoked during
the controveray == still spparently unsettled - gtarted is the 1%60's by certain
speculatione concerning the sarly stages in the development of hurricenes.)

Strictly two-dimensionsl flows are impomaible to reslime in practice, owing to
the presence of gnd-welle ian Z: =z, Bnd &= &, {where &, »%, Jo The
"end effects™ produced by such walle range in goas.al from minor local modifications
when the basic tuwo-dimenasional flow has no relative vorticity and ths end-walls are
everywhere perpendicular to =L (ie when Y2, a, = © ), to major
changeg in the flow pattern throughout the whole system when the basic two-dimensional
flow (such as the one we are now considering) possesses vorticity, or the end-walls
are not everywhere perpendicular to f%z « ©Consider the case when the end-walls
are perpendiculsar ito égg . Bo that §Z%®%&§Z%@”; W] and the separation
distance, in general given by

D= %wﬁ%}@é““ﬁﬁ %3@}§ (3.4)

is uniform (see Figure 4 of Hide 1968). Suppose that the coefficient of viecosity

is 80 small that boundary layers of thickness much less than D develop om each end-
wall. When SL iw cufficiently large the interior flow is quasi-geostrophic (ie

€ €2y and B <= » Bee¢ equations (1.12) sand (1.13)) and the end-wall boundary
laysre are of the Ekman type (mee equations (2.2), (2.3) and (2.4)).

The flow can now be divided into five regiona, nemely the in.iacid “nterier®
region where the f{low is quasi-geogtrophic, satisfying

7 ) : =y
we (u_ m.x;{!. S/ my=s 0 g‘gg ' (3.5)
F% §w§ ﬁ.} Z} %%&K}; ig VEQ g‘; 0} !5%, %m, cmg EEWS/
%
where i% s %;g} and the Rosesby number
L1
N Y ' A .
C= &1 /dm» Gt = (3.6)
EAN
{ E here being detined as Qf@gl,@ %'ﬁ
and feur hignly ageostrophic regions comprising two Ekman layers of thickneas —
< = é@?{;Q%}*k on the end-w=iig sepyrated by the uniform distance L)
ard boundary lryers of thicknese [} . etk £3k~ on the side-walls in rw=a and

r=b, supposing that [3 . = gE@«iilbm&m The transrer of fluid now takes place
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via these boundary layersput itis theoretically significant (see § 2.2)

above) that simple Ekman theoxy without recourse to consideration of the complex
structure of the side-wall boundary layers, can be used to determins in the inviscid inte:
jor floww¥ith an error no more than O (&) . VWithin that region all components

of relative vorticity '% now vanish (to O (&) ) in contrast to the

case when the end-walls are abaent (cf. equation (3.3)) since Proudman's theorem

(see equation (1.15)) requires that geostrophic flow of a homogeneous fluid should
satisfy Ow Iaa O , the first two components of which when combined with equation

(2.4) give

éu-t - - Sg

A (3.7

dz D
which is only compatible with the third component é“‘/ 32*Vuhen é =0

The mathematical analysis of the side-wall boundary layers is highly complex,
(see § 2.2 above). According to an approximate analysis and a supporting
laboratory investigation (Hide 1968), the thickness of the boundary layer on
the source ( A, uhen $ 20 ) incrsases and that of the sink boundary layer
( By when ¢, > ) decreases wiih increc=ing €& B (and vice-versa
when <0 ), but in such a way that the product D, ﬁb remains ~ D§|2
even when €E M  is quite large, with

. . _; ; ] ] ‘l‘l
A, = 2wy LD/Q e B = Dfgwetata 4

when E E « >> | , in contrast to the case wbas & E/q":“
] )
and A, =0, = D> ""*/1"9.‘* »

These results have been generally confirmed and extendsd by further work,
including a combined numerical and laboratory investigation by Bennetts and
Jackson (1974).

Because the flow iz axisymmetric, it is a relatively straightforward matter
to extend the foregoing analysis to cases when the end-walls are no longer
perpendicular to -& provided that in shape they remain figures of revolution
about the axis of symmetry, since differences from the case we have just considered
are mainly only quadtitative., Thus, en the pounding end-wall surfaces are
concentric spheres of radii o and ( 8<% ) and relative flow is produced
by & cylindrical source near one pole feeding a cylindrical sink nesr the other
pole, the transfer of fluid, again, takes place via Ekman layers, which now have
thickness

(v/ | S oo L\M)Vz O (3.9)

(see equation (2.1)) where ‘.}) i8 the "co-latitude", sp that increases with
increasing distance from the poles. O.ing to this \Qf -dependence of & y &t
a given distance & from the axis the boundary layer on the outer sphere is
thinner than the layer on the inner sphere and therefore transporte less fluid
towards the equator. In contrast to the cylindriecal csae,continuity demsnds
an axial flow Wy, in the inviscid interior, where w; is independent o the
axial coordinate (in keeping with the tiird sowmoneat of equation (1.15)) and
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aries with " according to the expression 2 \L N3
T\ % - “3/ o A b & ¥ ‘
Q :;,“'(s»r’ )‘*(\»» ) Y (I
= = = o
r (+) = St o b & (3.10)

A% A%

amho )y g\ L= b\
( "'-1."'7,) + ( s
A e b
hen ~ €< & | the azimuthal motion being related to Wg by the Ekman suction

ormula given by equation (2.4). A striking feature of the flow is the absence

n this peoastrophic limit of any motion in the fluid occupying the region between

he imaginary cylindrical surface ~+~=& and the "low-latitude" part of the outer
ounding sphere which extends from -~ a to_the "egquator" at r=b. The geostrophic
zimuthal flow in the region 4<a drops to zero at =@ but its rate of change
ith respect to -~ does not, implyling that a weak ageostrophic detached shear
ayer will be present near A~ =& . This layer and the boundary layers on the
ylindrical surfaces of the source and sink as well as the boumdary layer at the
gquator of the inmer sphere, where Ekman theory breaks down (ae evinced by the behaviour
f the right-hand side of equation (3.9) when \¥'=1I12‘ ) are complex in structure
nd their theoretical investigation poses some very difficult mathematical problems.
gain, however, ‘the fTow elsewhére €l be deterwined By elementary theorstical
onsiderations and unpublished experiments carried out im my laboratory demonstrate
onclusively that this flow occurs in practice. (The study of source-sink flows is
ot, of course, directly relevant to dynamical meteorology, but it is nevertheless
nteresting to note that the tendency for the main constituent of the Martiam
tmosphere, carbon dioxide, to freeze out nesr the winter pole gives rise to a

et poleward atmospheric flow and a concomitent increese in aZzimuthel wind speed).

.2 HNon-axigymmetric source-sink flow. The simplest conceivable non-axisymmetric
yatem iz the two dimenmional system discussed first in 3.1 above with one

ery slample modification, mamely the insertion st azismuth Qﬁ = (P@ (Bay) of a

hin rigid impermeasble radisl barrier. The velocity field is then determined
irtually everywhere by considerations of continuity (see equation (1.1)) when viacous
ffecte are confined to thin boundary layers on the radial barrier. Thue

w = (‘Ah %@)‘A‘&\) = (fngnﬁg-’) 0, @\) (3.11)

nd therefore independent of L  (&f eguation (34,‘?)) and e w = E =D
gf.equation (3.3)). The pressure satisfies -~

oP o SLg (3.12)

S T
mplying that a pressure difference ‘iiigfay develops across the radisl barrier
n?;(pﬁ@ ® v .

Owing to the absence of relative vorticity in the basic two-dimensional flow
iven by equation (3.11) (in contrast to the case discussed in § 3.1), the flow
ill be largely unaffected by boundary layers on end-walls which are everywhere
srpendicular to the rotation axis or are axisymmetric and such that Y {%ﬂﬁaﬁg}:>C>
verywhere. The end-walls are then passive in the mense that they &@réﬁy reduce
ne relative flow from its non-gero value in the interior region to zero on the
211, where the no-slip boundary condition must be satisfied.

When the axial distance D (see equation (3.4)) is pon-uniform end the system
s nopn-akisymmetric it is necessary to comsider topographic endeffect. We have
sen in §ﬁ95 that in quasi-geostrophic flow of a homogeneous incompreseible fluid
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changes in relative vorticity are brought about mainly by axial stretching
and when, in addition to Ekman suction, end-wall topography contributes to
axial stretching, the axial component of the quasi-geostrophic relative
vorticity, % , satisfies equation (2.5).

The relative importance of tk\xe topographic contribution to vorticity changes,
as represented by the term JSLD” (gpvg)b in equation (2.5), is measured by

the ratio & /fhy where is the emplitude of variations in D  and

‘e\&wéb‘\‘ S. (3.13)
To pographic end effects will not be important when {4 < e’\u. , but when (A 7&.» _—
and this is slways the case for strictly geostrophic motion since " “then
vanishes =~ such effscts are so strong that within the main body of the fluid the
flow is steered (to O( & ) ) along geostrophic contours, defined as curves on
which

(3.14)

D E 2 T2 = constant.

Another solution of the "steering equation"

ﬁ.'vl)b =0 | | |  (3.15)

satisfied by W, W w, =0 and there are circumstances in which the effect

of topography is to produce stagnation, as in the case of the equatorial region of

the spherical system discussed in § 3.1 above. Quasi-geostropbic motion is

clearly impossible in regions where, owing to the geometry of the end-walls, continuous
geostrophic contours cannot be found, and within such regions the flow, if it does

pot vanish,eitheroscillates rapidly or is characterized by strong transverse shear.

The effect of axisymmetric sloping end-walls on the source-sink flow here
under consideration (see equation (3.11)) is particularly striking = in contrast
to the case discussed in § 3.4 sbove, for which the flow given by equation (2.5)
is everywhere parallel to the geomtrophic contours and is therefore unaffected
by topographic stretching. Figure 8a of Hide (1977) illustrates the case when D

increases with increasing distance from the axis (ie AD/dit- > O ) and
Plo)~-D(e) >y (ses equations (3.13) and (3.15)), and figure 8b the case
when AD/dt <L O and D(a)-D(b)>>8,. In the main body of the fluid,

there can be no flow across geostrophic contours, which are circles concentric
with the axis of rotation, and , owing to this major constraint on the flow,
motion is largely confined to highly ageostrophic boundary layers on the cylindrical
surfaces on the source and aink and on one side or the other side of the radial
barrier, where the transfer of fluid from the inner cylinder to the outer cylinder
(when % 70 , the case illustrated) takes place in a "western boundary current"
when A D) >0 (see Figure 8a) or an "eastern boundary current® when dD/ar< 0
(sse Fibure 8b). The motion simply reverses direction, with na significant
change in the general flow pattern, when ¢y < 0 , corresponding to the case
when fluid enters the system via the outer cylinder rather than the inner cylinder.
Witnin the "weatern” or "eastern' boundary current, the "planetary vorticity" term
Q;Q..b"(m‘?vb) D is balanced by the sum of the non-linear advective term

W, V) and the viscous terms in the vowticity equation
(88e equations (1.6) and (2.5)). '
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It ies possible to show, incidentally, that in its main dynamical effects
the sloping end-walls with 1 increasing outwards is formally equivalent in.the
case of & homogeneous fluid to the latitudinal variation of the Coriolis parameter §
(the vertical component of L3k, see equation (1.23)) when dealing with flow
in a thin spherical shell (for references mee Greenspan 1968). This is often
called the 'beta-effect" in dynamical meteorology and oceanography, owing to the
uge of the so-called "bets-plane’ where local Cartesian coordinates are used
(with the }A -axis towards the east and the \f -axis towards the morth) amnd
i® taken as a linear function of ‘? :

- %ﬁﬁ? ° (3.16)

The best known example of a western boundary current in nature is the Gulf Stream

in the Atlantic Ocean (Stommel 1965, Veronis 1973), the ezi@feéé theorstical studies
of which were greatly aided by investigations of cylindrical source-sink systems
skin to those we have Just discussed (see Hide 1977). Inserting a full meridional
barrier connecting the mource to the sink in the spherical systes discussed in § 3.1
gives rise to a cross-equatorisl western boundary current reminiscent of the East-
African low-level cross-equatorial jet stream in the atmoaphere and of the Somali
current in the Indian Ocean.

3.3 QOther systema. Time and space do not permit the detailed treatment of further
examples of mystems which illustrate directly the importance of the role played by
boundary layers in various fundamental processes in rotating fluids. One of the
best known of these processes iz "spin-up" (see equaticn (2.6)), which has received
a great desl of attention in the literature snd hse been the subject of several
excellent roviews .see e.g. Benton and Clark 1974, Buzynee and Veronis 1971,
Greenspan 1968). Central to the understanding of these processes in the case of

a homogeneous fluid is the Proudman theorem expreasing, effsctively, the tendency
for slow disturbsnces %o propagate preferentislly in directions parallel to the
rotation axis.

The mource-mink system discussed in %»Bgﬁ i a convenlent one for studying

the disturbance produced by a locslized bump on one of the end-walls or by &
solid object suspended within the maln body of the fluid. The wske due to the
preaence of such an obaztacle to the flow takes the form of a '"Taylor ¢olumn®
trailing at an angle ~ € ny to the ® axis when & << . In the
[T t £ : - $

viseove” limit when € <€ E7Y( <« 7| the column im parsllel to
the = exis, the flow within it is virtually stegnsnt, snd the "walls" Y Y
of the column are highly ageoetrophic detsched shesr layers of thickness <~ $ -
Otherwime. ie when E'/M << & {<at) the Taylor column is of the so-called
"inertial’ type and much more complicated than that found in the viscous 1imit

“ [

Recent studies of @pinaﬁp'and Taylor columne include work on effects
due to density stratification. VYarious lines of theoretical and sexperimental
evidence indicste that stratification remtricts the penetration distance parallel
to the rotation axie to a value

(LL fWN

(3.497)

where Lmim is a typicel linear dimengion transverse to the rotation axis and N s
the Brunt-Vaisala "buoyancy" frequency. The ratio of this penetration dimtance to a
typicel axial dimension of the system is a fundamental parameter in the study of _
rotating non-homogeneous fluids and when this parameter is small (but € <<} sna E <<l )
the side-wall boundery layers discuseed in & 2.2 (see e.g. Benton and Clark 1974)
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and other features of the flow (see e.g. Lineykin 1974) =~ but not the Ekman
layers = are controlled by the combined effects of rotation and stratification.
Many of the papers listed in the bibliography (see Appendix A) deal with various
aspects of boundary layers in rotating non-homogeneous fluids, including effects
due to time variations in the basic flow, and the reader is referred to these
papers for further details.
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