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ABSTRACT
In contrast kto‘the empirical orthogonalr functions (eof's) in which

the physics of the atmosphere is reflected statistically, normal mode
functions (NMFs) are thé eigensolutions ta free qscillations of a
linearized atmospheric model. Both EOFs and NMFs are useful in the
analysis of atmospheric data and are applicable to formulate a pre-
diction model. This note discusses the formulation of the simplest

NMFs for a global primitive equations model and their application to

N

analysis and prediction of the three-dimehsional global atmosphere.

1. Introduction

The expansion of meteorological data in terms of empirically
defined orthogonal functions is efficient, because empirical orthog-
onal fuﬁctions (EOFs) ﬁinimize the root-mean-square difference between
the data and the functional representation (e.qg., Loreni, 1956; Obukhov,
1960; Holmstrom, 1963). The physics of the atmosphere is reflected
statistically in the characteristics of EOFs. With respect to the
vertical structure of transient motions, there have been several
attempts to "interpret" the characteristics of EOFs based on atmo-
spheric equations (Holmstrom, 1964; Gavrilin, 1965; Simons, 1968;
Wiin-Nielsen, 1971; McFarlane, 1971; Bodin, 1974; Baer, 1974 and
Kasahara, 1976).

In the representation of meteorological data, we are interested
in another approach--application of normal mode functions--which

is closely related to the EOF approach. Expansion functions are
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the eigensolutions to free oscillations of a linearized primitive
equations model, referred to as normal mode functions (NMFs). For
details, see Flattery (1970), Dickinson and Williamson (1972) and
Kasahara (1976).

So far, the expansion of data in terﬁs of NMFs is principally
applied to two-dimensional hemispheric or glcobal data. The expan-
sién of three-dimensional data in terms of three-dimensional NMFs
was performed by Penenko (1974) and Williamson and Dickinson (1976).
Penenko.constructed NMFs by the finite-difference method based on a
three-dimensional linearized primitive equations model in which basic
zonal flow, temperature and pressure Were functions of height, lati-
tude and longitude. Williamson and Dickinson (1976) also constructed
NMFs by the finite~difference method based on a three-dimensional linear-
ized primitive equations model with a basic state at rest and the basic
temperature and pressufe distributions depending on height only.

In this note, we present the formulation of three-dimensional NMFs
based on the continuous form of linearized atmospheric equations rather
than on the discrete form. 1In explaining the basic idea of the NMF
approach, this presentation is considerably simplexr than the finite-
difference representation.

The construction of three-dimensional NMFs is described in Sections
2 through 5. The vertical structures of geopotential, density, vertical
motion and temperature in an isothermal basic atmosphere are discussed
in detail in Section 5. The expansion of three-dimensional data in
terms of NMFs is presented in Section 6. The application of the NMF

expansion to formulate a completely spectral baroclinic model is briefly
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commented on in Section 7. A future Plan related to this area of

research is presented in Section 8.

2. Basic equations

We consider motions of small amplitude superimposed on the basic
state at rest, with temperature T as a function of height z only.
Linearized equations of horizontal motion, hydrostatic equilibrium,
mass continuity and thermodynamics in spherical coordinates with
longitude A, latitude ¢ and height z above mean sea level and time t

are given as

ou' . v 1 23p'
Frmi 2Qsingv' = 632655-5——-, (2.1)
ov' . vy _ _ 1 op’
'BT— + 2981n¢u = -.p—a "T) y (2.2)
op' _ _ _

3z b'g, _ (2.3)
_a_p.'_ ' Q‘_B_ RVYAVAl —31'__

5c F W g T VIV 4 5z~ 0 (2.4)
', v dp =3, dp

ot T W gz = YoH (Bt TV ag )' (2.5)

where

' o= L _[du 3

Vy' = acoss [BA + 3% (v cos¢)} (2.6)

denotes the horizontal divergence and
H = Rayg

denotes the scale height of the basic atmosphere.



In Egs. (2.1)-(2.5), u, v, p, p and w are, respectively, the east-
. ward and northward velocity components, pressure, density and vertical
velocity. The prime denotes a perturbation variable and the overbar
refers to a basic-state quantity. Also, Q, a and g denote the earth's
angular velocity, radius and gravity, respectively. Quantity y repre-
sents CP/CV, the ratio of two specific heat coefficieﬁts at constant
pressure and constant volume, and R(= CP - Cv) is the specific gas

constant.

3. Separation of variables
As suggested by Taylor (1936), it is convenient to introduce the

separation constant Dn to satisfy

_BP_'_"' N = .
3t + pgDnV‘W o, (3.1)

where Dn has the dimension of height and is later identified as the
equivalent height. In regard to the historical development related to
the concept of eqguivalent height, the reader may refer to, for example,
Wilkes (1949), Siebert (1961) and Chapman and Lindzen (1970).

Using (3.1), we rewrite Egs. (2.4) and (2.5) as

3p' _ 1 dp' _ —ow' 1 dH\

ot gDn ot P 5z g <l * dz) Wi (3.2)
and

' _ L mopt L= v an .

At YgH T pgw Yg(l + P ) w' , (3.3)

in which the following relationship is used:
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Egs. (3.2) and (3.3) consist of two equations for 3p'/dt and
op' /9t which can be solved as functions of w'. However, p' and p'
must satisfy the hydrostatic constraint (2.3) all the time and this
leads to a diagnostic equation for w', known as Richardson's equation.
Once p' and p' are determined, the temperature perturbation can be cal-

culated from the equation of state:
T'/T ='p'/p - p'/D . (3.5)

We are now ready to specify the vertical dependence of the perturba-

tion variables:

Fal

u' = ud (z) , w' = (dh/2t) W (z) ,
n n

i

v (2) o' /o

4—
!

(h/Dn) Rh(?) ' (3.6)

Il
Il

p’ gohén(z) ’ T'/T (h/Dn) Tn(z) .

Here, @n, Wn' Rn and Tn are dimensionless functions of height only. On

the other hand, u, v and h dependbon latitude ¢, longitude A and time t

and satisfy

U | yosinge = - —9 30

ot~ 2Usingv = acos¢ dA '

v indn = - 3 9B

et 2(singu = a 3¢ > (3.7)
oh .

—a—t'+DnV-W—-O,

/

which are known as linearized "shallow-water" equations for the mean

fluid depth of Dn.
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4. Vertical structure of variables
Substitution of (3.6) into (3.2) and (3.3) and solution of Rn(z)

and @n(z) from the resulting two equations in terms of Wn(z) yvield i

B =
(1—'YB—>®n W - YH — , (4.1)
n .

1-7v B R 1 —( ——Eﬁ) 1+ aH W -D Eﬁﬂ (4.2)
Dn n H dz n n dz )

gimilarly, the hydrostatic egquation (2.3) is expressed by

dd e R

n 1 ( dH) n
— - = + — (D = e —— 4.3
dz H . dz n Dn ( )

Now, @n and Rn given by (4.1) and (4.2) must satisfy (4.3) and

this leads to a diagnostic equation for Wn. That is

2 —
T [___Y__._ili_i]d_wa
45 (O_ - YH) dz H]dz

K Y an| . _
* [D H D (D - YH) dz] L 0. (4.4)
n n n

where Kk = (Y - L)/Y.
With the boundary conditions that Wn vanish at z = 0, the mean sea

lavel, and z = Zr the top boundary, i.e.,

W (o) =W (z ) =0, : (4.5)
n n

Eg. (4.4) forms an eigenvalue problem to determine the eigenvalue Dn'
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The eigenfunction Wn gives the vertical structure of vertical motion.
Once Wn is obtained, the vertical structures of_@n and Rn are
determined from (4.1) and (4.2). The vertical structurs of In i3
determined from

Tn = (Dn/H) @n - Rn , _ ' (4.6)

which is readily obtained after substitution of (3.6) into (3.5).

5. Case of isothermal atmosphere
It is instructive to obtain the explicit solutions of Wn' ¢n' R.n
and Tn for an isothermal atmosphere T = constant. Since T = constant,

Eg. (4.4) is reduced to

-1 W =o0. ‘ (5.1)
H

5.1 External mode, n =0

As seen from (4.1) and (4.2), the case of Dn being equal to Yg
is singular and must be treated separately. We designate it by n = 0
so that

DO = YH (5.2?

is the value of equivalent depth for this case. Tt turns out that this

case leads to the following vertical structure:

WO(Z) =0,

® (z) = exp(kz/H) ,

© (5.3)
Ro(z) = <I>o(z) '

T (z) = (y - 1) @O(z) . )
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Because this mode is characterized by having no vertical motion and the
geopotential profile by having no node, we refer to it as an external
mode.

5.2 Internal modes, n > 1

The solution Wn(z) of (5.1), satisfying the boundary conditions

(4.5), is given by

Wn(z) = exp (%’—z/ﬁ) sin(mz) , (5.4)
where
m=[—DK—_ﬁ_— _%-rf (5.5
n 4H2

which is real. The eigenvalue Dn of Eg. (5.1) corresponding to solution

(5.4) becomes
=2
4I<HzT
D = — . (5.6)
n zé + 4n?7%g@?

The vertical structures of Rn' @n and Tn are calculated from

it
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Rn(z)
. n
dwn / D,
(I)n(z) = (Wn - DO -a—z—-) (B— - l) p (5.7)
n
Dl’l
T (2) =5 ‘I>n(z) - Rn(z) .

As the mean temperature T, we assume that T = 243,90°K which gives
the equivalent height corresponding to the external mode as DO = 10 km,

which is now representative (e.g., Lindzen and Blake, 1972).
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Téble 1 shows the values of parameters pertinentjto this calcula-
tion. Column 1 gives the verfical mode indexL _Columnb2 shows the !
vertical scale in kilometers measured by the height distance between
two consecutive nodes in Wn(z). Column 3 gives the equivalent height
in meters for the present isothermal atmosphere. Columns 4 and 5 show
the equivalent heights corresponding to a realistic temperature distri-
bution with the tops at 18 and 36 km, respectively, obtained by the finite-
difference method (Kasahara, 1976). The values of Dn for internal modes
fall between D: and D:*. Colu?n 6 gives the gravity wave speed for Dn'
Column 7 shows the corresponding values of Lamb's parameter €.

Figs. 1 and 2 illustrate the vertical structures of Rh(z), @n(z),
Tn(z) and Wn(z) for the present isothermal atmosphere. The top of the

atmosphere is assumed to be 18 km.

5.3 Normal mode functions (NMFs)

The elementary solutions of (2.1)-(2.5) are now expressed by

%

[ud
i

(gDn) u_ ($) e (z) ,

&

v' = —i(gDn) Vh(¢) ®n(z) '

P' = goD 7 ($) @ (2)

w' = -iv D Z (¢) W (=) ,
nnn n

T' =TD 2 (§) T (z) .
nn n

where s is the longitudinal wavenumber, Vn is the frequency and subscript

n refers to a vertical mode.
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Functions U_(¢), v_($) and Z (¢) depend on latitude only and are
obtained as the meridional structure functions of the system of shallow-

water equations (3.7). See Kasahara (1976) for more details.

6. Expansion of three~dimensional data
We discuss here the expansion of three-dimensional data in terms of

the elementary solutions (5.8). Input data are

ui(X,¢,z) U

v, Lgez) = v (6.1)

obs '

Pi()tl¢lz) = PObS - p(z) .

The right-hand sides of (6.1) are observed fields of velocity components
and the deviation of pressure from the basic state Ekz).

By defining the input vector . and the scaling matrix Sn'

5
u, (gDn) 0 0
. = v. , s = 0 ' (gD )!5 0 ' (6.2)
1 i n n
P, 0 0 ngn

we can express the vertical expansion of %, as:

N .
%, (A, $,2) =3, s X (L¢) & (z) , (6.3)

n=0
where Yn(X,¢) denotes the coefficients of vertical expansion.
Multiplying (6.3) by @m(z) and integrating the resulting equation

with respect to z from O to zT, we find that
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zZ, N Zm _
f %, 0 (z) dz =3 Sn“n()"q’)f 9,(2) & (2) @z ,

o n=0 o

form=0,1,. . ., N. (6.4)

This is the system of N independent equations for N unknowns Yn. Hence,
Xn(k,¢) are determined from‘xi for different vertical mode n.
Once‘wn(k,¢) are obtained, we can expandﬂxn(k,¢) in terms of Hough

harmonics. Hough harmonics are defined by

Y

Hy (A ¢in) = @5 (grm) eSA (6.5
where
S
U2(¢;n)
@ptoin) = -iv](¢in) | (6.6)
Zy ($:0) |

is the Hough vector function for different vertical mode n. A Hough
harmonic is two-dimensional, and superscript s and subscript £ refer

to two-dimensional modal indices, s being zonal wavenumber and £ merid-

ional index. Theve are two kinds of wave motions--the first for gravity-

inertia waves and the second for, Rossby/Haurwitz-type waves. Hough

vector functions for different kinds are identified by different
meridional lndlces--QEG, QWG and QR for eastward-propagating gravity
waves (EG), westward propagating gravity waves (WG) and Rossby/Haurwitz-
type waves (R).

Two-dimensional vector‘xn(l,¢) can be expressed in terms of Hough

harmonics as
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L M
X 09 =2 X x, (@) H (A, ém) . (6.7)

2=0 g=-M
This expansion was discussed in Kasahara (1977a) where, however,
the two-dimensional field is split into the zonally averaged part and
the deviation from it. The deviation field was expanded in terms of
Hough harmonics, but the zonally averaged part had to be expanded in
Legendre functions. The reasons for this separate treatment are that
the nature of the eigenfunctions corresponding to the zonally averaged
shallow-water equations was not fully understood, and the previously

known set of eigenfunctions was incomplete for the expansion of

arbitrary zonal field for s 0. This deficiency was recently cor-
rected by Kasahara (1977b), where the derivation of completely orthog-
onal eigenfunctions of the zonally averaged shallow-water eguations is
discussed. Thus, we now have a complete set of orthogonal Hough har-~

monics including the zonal component s = 0. Combining the normalization

ofIHz, we state the orthogonality as

1 2T 1 .
s s!
Er f IHQ,.[IHJZ,'] dudx = 629.'655' ’ (6.8)
o) -1

where U = sin¢, the asterisk denotes the complex conjugate, and 622, = 1
if £ = £ and zero otherwise, and similarly for Sss"

The orthogonality of Hough vector functions is

il

1
S_S S_.S S_S
] (o5, v+ o) @

[ox[o:]
-1

JP (6.9)
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By multiplying (6.7) by the complex conjugate of Hough harmonics,
integrating the resulting equation over the entire globe and utilizing
the orthogonality (6.8), we obtain the expansion coefficients Xz(n)

as
Ly .
Xy (n) = 5T f Yn()\,q’)'lez] duda
o “-1

The integral on the right-~hand side can be split into two transforms:

. ,
Xy (n) =f st(tb;n)-[@i]* au - (6.10)

-1
and

2T

_ 1 -isA
\xs(¢;n) = 55 'xn(>\,¢) e an . (6.11)

o]
Eg. (6.10) is the Hough transform and (6.11) is the Fourier transform.
The method of calculating these transforms is discussed in Kasahara

(1977a).

7. Application of normal mode expansion to forecasting

Rinne and Karhila (1975) solved a limited-area barotropic vorticity
equation model using a representation in terms of empirical orthogonal
functions. Kasahara (1977a,b) applied the Hough harmonic expansion
approach to integrate the barotropic primitive equations over a sphere.
In this section, we discuss briefly the application of three-dimensional
normal mode functions (NMFs) to integrate the baroclinic primitive

equations.
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The prognostic equations in a baroclinic primitive equations

model in (A,¢,2) coordinates may be given in the form

Bu oo 1 3p
T 2Qsingv + 5acosd
=-—W-Vu-w3“l+—“lztan¢+ P’ —B—E-+F , (7.1)
oz a ) )\
p“acos¢
v . 1 %
e t 20sin¢u + = 36
2 v
= WVv - w gg‘— E—--taan) + —E—-QE +F, , (7.2)
" 7%a 09 ¢
ap — - Ow
- g B + 3
| MY (" i
= -y-Vp i (V\J+az)+p(y 1) 0. (7.3)

The diagnostic variablés w, p and T are determined from u, v and p
through the equations of vertical motion (Richardson's équation), hydro-
static equilibrium and state, respectively.

The left-hand sides of (7.1)-(7.3) are the linear parts of the prog-
nostic equations which coincide with the corresponding prognostic egua-
tions (2.1)-(2.5). The right-hand sides of (7.1)-(7.3) are the non-

3 and F¢ and the heatiﬁg/

linear parts including frictional terms F
cooling term Q.

By defining the vector wvariable

\W E° v ’ (7.4)




42~

we express Egs. (7.1)-(7.3) by

oW . . '
et 1\)n\w = 1IF(A,$,z,t) , (7.5)

where i [F denote the vector whose components are the right-hand sides
of (7.1)-(7.3). The linear parts of (7.1)-(7.3) are expressible in
terms of elementary solutions (5.8), and vn is the normal mode frequency.

We assume that the solution of nonlinear equation (7.5) can be
expressed by a series of NMFs in the form

N

N L M
= S » s -
WA d,z,t) = D 3 D s_Cp(tin) Hy (A, ¢in) @ (z) . (7.6)
n=0 £=0 s=-M

The diagnostic variables p', w' and T' are expressed by

p! P Dan(Z)
N L M. i)
vl =X Z X Gun |- Vo v @ | e e,
il n=0 %=0 s=- T D T (z)
n n
(7.7)

where vn and Zn(¢) in (5.8) are not only functions of mode n, but also

s
2

LN .
By substituting (7.6) into (7.5), multiplying by LHE ] Qm '

integrating the resulting equation over the entire globe and through

of s and &, so that we write v, (n) and ZZ(¢;n) instead.

the depth 0 to zT and utilizing the orthogonality condition (6.8), we

obtain the spectral equation:
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N dCQ(t n) < <
S Om gt i Z Vpm) s a  Cp(tin)
=0 n=0
2T
i
= '—-f f f IF(A,0,z,t)- [H (A, ¢; n)] CI) (z) dudidz ,
form=20,1,. . . , N, | (7.8)
where

nm

z
o, =f Td)n(z) <I>m(z) dz .

(o]

The N unknowns dCz(t;n)/d£ will be solved from the system of N
simultaneous equations (7.7), and Cz(t + At;n)--the expansion coefficients
after a time increment At--will be extrapolated from those at time t
using finite differencing. Once Cz(t + At;n) are obtained, the variable

fields at time t + At will be constructed by the series (7.6) and (7.7).

7. Conclusions

We presented the formulation of NMFs of a three-dimensiocnal atmo-
spheric model and the application of NMFs to analysis and prediction of
the three-dimensional global atmosphere. A unique aspect of NMF
expansion is that the analysis will demonstrate the partition of energy
into two distinct kinds of motions--the first for gravity-inertia waves
and the second for Rossby/Haurwitz-type waves. Both kinds of motions
are also classified into different vertical modes (external and internal).
Such spectral distributions of energy from the analysis will provide a

sound basis to determine a necessary resolution in the representation

of atmospheric data.
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The NMFs discussed in this note are based on an isothermal atmo-
sphere at rest. This is the simplest case to be coﬁsidered in the
hierarchy of three-dimensional atmospheric models and it offers an
easier understanding of the structure of NMFs. For example, the
external vertical mode characterized by no vertical motion is clearly
distinguished from the internal modes.

| The assumption of an isothermal atmosphere is, however, too
restrictive. In fact, the structure of NMFs in the horizontal and
vertical directions can be separated even in a non-isothermal atmosphere
as long as the basic state remains at rest. It is planned to formulate
analytical NMFs for the basic atmosphere at rest with the temperature

distribution as a function of height only.
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TABLE 1

1 2 3 4 5 6 /
* #e 2.2
n Z Dn Dn Dh \/—g_ﬁ-n—‘ €7 43D:]2
(kM) (M) (M) (M) (M/s)
0 =0 10000 9525 9717 313 8.75
1 18.0 1131 823 1162 105 /7.34
2 9.0 316 215 321 56 277.2
3 6.0 143 115 167 37 610.3
4 4.5 81 68 119 28 1076.7
5 3.6 52 31 68 22 1676.3
1. = (0 EXTERNAL MODE, n > 0 INTERNAL MobE
2. VERTICAL SCALE |
3, EQUIVALENT HEIGHT FOR AN ISOTHERMAL ATMOSPHERE
4. EQUIVALENT HEIGHT FOR REALISTIC TEMPERATURE DISTRIBUTION
~ WITH THE TOP AT 18 kM
5. EQUIVALENT HEIGHT FOR REALISTIC TEMPERATURE DISTRIBUTION

WITH THE TOP AT 3B KM
GRAVITY WAVE SPEED

LAMB'S PARAMETER
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