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1. INTRODUCTION - THE GOVERNING EQUATIONS

In these 1ectures we shall review some fundamental theory
and controlled numerlcal experlmentatlon relating to the
dynamics of baroclinic wave development and frontogenesis
in middle latitudes of the earth's atmosphere. The
understanding that resulted from the early development of
this theory was a valuable aid to the improvement of manual
forecasting techniques, while with the widespread use of
objective numerical forecasting methods, theoretical
understanding has become a prerequisite for the diagnosis
and correction of many types of deficiency in numerical
forecasting systems. The theory of frontogenesis may also
be useful for evaluating numerical products, particnlarly

as regards weather on the frontal scale.

Dynamical meteorology has progressed largely by thorongh‘
mathematical and numerical analyses of specific phenomena
in simplified situations. A significant part of this
simplification has been achieved by a systematic reduction
in the complexity of the governing equations of fluid
dynamics in which attention is restricted to motion of a
certain scale, and much current theory has resulted from
reduction to a set, known as the quasi-geostrophic
eQuations, particularly amenable to analytic or simple
numerical study. We thus begin with a derivation of these
equations. We also derive a Boussinesq form of the

primitive equations which will be used in later lectures.

The Quasi-Geostrophic Equations

There have been a number of derlvatlons of the quasi-
geostrophlc equatlons glven in the llterature . Here we
‘take as our startlng p01nt the adlabatlc frictionless
prlmltlve equatlons of motion wrltten in general vector

form Wlth geometrlc helght as the vertical coordinate..
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5t UnVplUp tWgpUy v fk o x w4 o'pP =0 (1.1)
Hydrostatic equation

a_p. = »

~z T8 =0 . - (1.2)
Continuity equation

- D wy = :

(3T * Uy Vple * oVp.uy * 5-(pw) =0 (1.3),
Thermodynamic_equation

(=2 + 4, .v,)lne + w2 (1ne) = 0 O (1.4)

3t = Zh''n 3z , .
Equation of state

1 a(ap_~ (175)
1n0 = ?lnp -~ 1lnp - 1n(RpS YY) (1.5)

Here y, is the two-dimensional horizontal velocity vector,
4y = (u,v,0), w is the vertical velocity, p the pressure,

p the density and © the potential temperature. t is time,

Z is geometric height and Vh the two-dimensional
horizontal gradient operator. f is the Coriolis parameter,
twice the vertical component of the earth's angular rotation,
k is the unit vertical vector, g the acceleration due to
gravity, Y the ratio of the specific heat of air at constant
pressure to that at constant volume, R the gas constant and

Py the mean reference surface pressure used in the definition
of ©:
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where T is temperature.

)

We now introduce the horizontal and time-mean pressure

po(z), and density po(Z), and write
P =p,(z) +p"  and o = p (z) + p".

»eo(z) is defined by

=1 - _ -(1- =)
}qQQ Y1np0 1ppO ltln(RpS _Y )

with

0 = eo(z) + oV

Defining TO to be the mean temperature corresponding to

potential temperature 90,‘we also write

T % To(zi + ™
The mean static stability, N2(z), is defined‘by
N = gé%in@o = 8- 05 - — =

= £ 5 e

N is known as the bﬁoYancy,;of Bruntévﬂisala,.fréqﬁenéy}
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Given the above equations and basic definitions, we now
assign the following characteristic scales for a particular

atmospheric motion under study:

Time scale - T
Horizontal length scale - - L
Height scale for the motion - H
Density height scale - HS
Horizontal velocity scale - U
2
Static stability scale - N0

It should be noted that we have already tacitly‘assumed
H/Lv«:l by our use of the primitive equations. If the
radius of the earth is denoted by a, the second scaling

assumption is

W |

<« 1 : (1.7)

We may then map that portion of the earth's surface over
which the motion of interest takes place onto a plane with
X eastward and y northward:

= (9 9.
w = Gk 5509
Furthermore, we may assign a characteristié value fo to the
Coriolis parameter, although it should be noted that
variations in f over the length scale L cannot be neglected

in all terms in the governing equations. This will become
evident in Equation (1.23).

The following scale assumptions are then additionally made: .
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U/ 1«1 TR € 110
1 ‘ | . :
1<U . (1.9
TE T

£ UL/ 22 1 | (1.10)
NH/ « 1 (1.11)

Assumption (1.11) may, in fact, be relaxed without introducing
much additional complication, but we include it here for
simplicity and for direct comparison with most classical

studles For further discussion of this point see White . .

(1977) Taklng U = 20 ms 1, £, = 1074 f1, L = 106m

i = o5 o

T = 105 s, H= 104 m, H = 104 m and Nz = 10 4 s |, the

largest numbers that are assumed to be small compared with
2

unity are U/f L and f UL/N both of which have-‘a value of
0.2, The comblnatlon of U/fOL is known as the Rossby number Ro.

The balance of terms in the thermodynamic Equation (1.4)
implies that : DI

< T o S (1asy

wherej[w[s denotes a scale value for the vertical veiocity
w. Scale assumptions (1.8) and (1.9) may then be used to
show that_thg approximate balance in (1{1) is geostrophic:. . .

SEC

g x YT
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Usihg‘Equations (1.2), (1.5) and (1.14), and scale
assumptions (1.1) and (1.11), we find

o o on fUL_ NH fUL
9 ~ By L2 . - <1 (1.15
IeolS ]'PO‘S ocls~—m (¢ )(N§H2> (1.15)

To lowest order, the horizontal geostrophic velocity, U

~g’
is defined by
frxu = Ly pn o (1 165
o~ ~g Py h : ' _ S R

This allows the introduction of a streamfunction, w, for

this geostrophic motion

- p" ) o ;- .
Y T | (1.17?
with U, = kx Vo -

Thermodynamic equation

Since g— s« 1, Equation (1.4) becomes
o)
9 + 1 gq"' Nzw =0 . 1.18) .
(5% *+ Ugvp) 2 (1.18)

0

showing potential temperature to change at a'point as‘a
result of the horizontal advection of perturbation
potential temperature by the geostrophic velocity and the

vertical advection of the basic potential temperature, eo.
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Continuity equation

By virtue of (1.18),

f UL
UH 0
lw| . ~ = ——5 (1.19)
s L N2H2
o)
f UL N2H
S0 1 (JL + v.) o - U o aw
S o 9t Yh Vn'P g - gH L™ g 9z | s
Equation (1.3) thus reduces to
Voo, + = A (5 w) =0 (1.20)
h"<h SIS 5z Po

It should be noted that if a strict mapping is made from

the equations of motion in spherical geometry, with V, as

defined previously for the Cartesion geometry, an add?tional
term Vtaneo/a should be added to Vh.gh in (1.20), Where

80 is the reference latitude at which f = fo. However,

an identical term should also be added to the divergence

in (1.23) in this case, and the vorticity equation (1.24)

is thus unchanged.

Equation of state

Using (1.15), Equation (1.35) reduces to

using (1.2) and (1.6).
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We then use scale assumption (1.8) to obtain

go" _ p 2V (1.21)
P 97

Vorticity equation

Equations (1.17), (1.18), (1.20) and (1.21) still do not
yield a prognostic set of equations. To obtain such a set
we must consider the next approximation to (1.1) above that
of purely geostrophic balance, namely

_3__ u u u - [ — ‘ '
+ 0T+ Tk x Y VD 0 (1.22)

(Bt ~g

where we have used (1.19) to neglect the vertical advection
term. Taking the vertical component of the curl of
Equation (1.22), we then obtain the quasi-geostrophic

vorticity equation

d 2 N |
(57 * ug VOV 0 + £V . + gY, =0 (1.23)

or, using (1.20)

9 2
('a—.t' + gg'vh)v Y + Bv -

g (pw) =0 (1.24)

9
97z e

ok’

where B = %% evaluated at the reference latitude 60 and
vg is the northward component of the geostrophic wind:

u_ = y V., . Here

ug = (Ugs Vg, 0)

oV ou

2 - g _ g . .
Vh v, P 3y is the vertical component of

the relative vorticity associated with the geostrophic

motion, and in the quasi-geostrophic approximation it
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changes by the geostrophic advection of relative and
planetary vorticity, the second and third.terms in (1.24),
and by the "stretching" or '"shrinking" of the strong vertical
vortex tubes associated with the planetary rotation by the

ageostrophic vertical motion, the final term in (1.24).

We may now readily obtain a single prognostic equation.
The vertical velocity is eliminated between the thermo-
dynamic and vorticity Equations (1.18) and (1.24), using
(1.21) to give

2
f
] 2 o 93 Py oY
— u —_ e (X =
(Bt + ~g.Vh){ fo By + Viu o+ oo 37 (N2 azn 0 (1.25)
or
(Z +u_.v)q =0 (1.26)
ot ~g2°'h '
where
2
= f + B +V2 +_:E9_§_(poﬂ)_) (127)
q o y nY P, 9% '§§ 0z ’

g is known formally as the quasi-geostrophic quasi-potential
vorticity. It is conserved under advection by the |
horizontal geostrophic velocity field alone, the effect of
vertical motion now appearing only implicitly. Having
solved (1.24) for ¢ using appropriate boundary conditions,
horizontal velocities and potential temperature are
determined from Equations (1.16), (1.17), and (1.21), while
the vertical velocity is given by rewriting (1.18) in the
form

= _ 9 9
v 2 (Bt + Eg'vh)

=

(1.28)

[S¥]
N
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The quantity q is related, but not equal to, the quasi-
geostrophic apprinmation to Ertel's potential vorticity,
Q, a quantity conserved by three-dimensional adiabatic,
frictionless motion (Ertel 1942). 1In the hydrostatic
approximation

=1 v _ 3uy 9 . v 3 du 3
Q = 5 {(f + ) 5 1nb6 % % 1n6 + o ay1n6}(1.29)

for a plane geometry, and its quasi-geostrophic approximation
is

NZ o To »
Q =g (o ™ 8y * Vo 5 24 (1.30)
with
(-g% + Eg Vh - Wé%)Qg =0
However,
2
w%%% :-_%{%({—g)}{(%+ggvh—‘ﬂ

from which (1.24) may be directly obtained.

For brevity, any future references to '"potential vorticity"
in discussing quasi-geostrophic motion will assume the
definition (1.27).

The quasi-geostrophic omega equation

The quasi-geostrophic vorticity and thermodynamic equations,
(1.24) and (1.18) may be written

f
9 o 9 _ :
(3 * Ug-Vp)T - o 37 (poW) =0 (1.31)
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and

g9 % =0 (1.32)

a 1"
0
O

(5t * Y- Vn)

while (1.16), (1.17) and (1.21) may be combined to give the

thermal wind equation:

3L - y2,80"
ENY: Vh(eo) (1.33)

where 7 is the absolute vorticity fo + By + ng.
Equation (1.33) may be used to eliminate time derivatives
between (1.31) and (1.32):

2,2 2 8.1 3 _ g D _ B2
N th * fo az{pO Bz(pow)} foaz(gg'th) eovh(lfg'vhe )

(1.34)

Equation (1.34) is one version of what is known as the

omega equation after the corresponding form of the equation

in pressure coordinates for the '"vertical velocity" w = g%.
It is a diagnostic equation relating the vertical velocity
to the horizontal geostrophic velocity and temperature
fields, and may be used in conjunction with (1.33) and
either (1.31) or (1.32) as a prognostic system. 1In this
form of the equation, vertical motion is seen to be forced
by the vertical derivative of the vorticity advection, the
first term on the righthand side of (1.34) and by the
horizontal Laplacian of the thermal advection, the second

term on the righthand side.
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Evaluation of the right hand side of (1.34) can, in fact, be
cumbersome, and may involve significant cancellation.
Alternative forms of this forcing term have been detailed by
Hoskins et al (1978). The "Sutcliffe'" form '

oV au

g g . 2 ’
fOB——aZ + 2f ('—'az VIV (1.35)

involves the neglect of some deformation terms but is
comparatively simple to visualise. An exact form with no
cancellation problems is

oV .
fOB—BTZ—g + 27, . Q S (1.36)
where
u a
- _ B (o-~g nw o~g "
9 50 (ox -"n®" By V00

Interpretation of this form, and a number of examples, have
been given by Hoskins et al and further applications will

be given in later lectures.

The omega equation may be used for qualitative synoptic
reasoning as follows. Since it is of Poisson type, if the
righthand side is predominantly positive in a particular
region, we may expect negative w, i.e. descent, and vice
versa. Thus from a given synoptic situation, we may estimate
the righthand side, and thus the sign of the vertical motion.
Since the wvertical velocity is zero at a flat lower surface,
"and small in the stratosphere, we may then deduce the sign

of the stretching term, éL g% (pow), in the vorticity

o
equation, and thus the development of the synoptic pattern.

This may be particularly useful for surface development for
which the vorticity advection, gg.vh;, in (1.31) may be
relatively weak.
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The ratio of horizontal and vertical scales

In large-scale motion there is commonly a close relationship
between the horizontal and vertical length scales L and H.
The horizontal advection of vorticity is characteristically
of the same order of magnitude as the stretching term in the
vorticity equation, and reference to equation (1.25) shows

that this implies
£f L -~ NH.
o o)

The effective horizontal length scale NOH/fO is known as the
Rossby radius of deformation", LR' Although this scaling can
break down locally for long zonal length scales for which

the B-effect becomes important, it will apply to many of the

examples considered in subsequent lectures.

The Boussinesq equations

For many of the phenomena to be discussed, the compressibility
of the atmosphere is of little importance. Baroclinic waves
and frontogenesis occur in the ocean and in laboratory
experiments using incompressible liquids. Therefore, it will
sometimes be convenient to use a "Boussinesq'" set of

equations for the atmosphere which are formally equivalent to

the full equations for a hydrostatic, incompressible liquid.

One approach to the Boussinesq equations has been given in
Hoskins and Bretherton (1972) where a modified pressure
coordinate was introduced. From our starting point, it is
perhaps simpler to follow Oguraand Phillips (1962) and
Williams (1967) and introduce

¢ = 282 + c B (p/p)" (1.37)

where eoo is a constant reference potential temperature.
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It is easily shown that

3] ‘
= o0 1
Vh¢ 5 - pVhp, (1.38)
and i
] eoo
o - _ 1.
e 2g - 85 (1.39)

A

Given the validity of (1.11) then 0 differs little from 00
in the region of interest (typically 10% in the troposphére):“
Therefore the factor eoO/e may be approximated by unitjfin

(1.38) and using 6 = 65, + 6', (1.39) gives

it

30 _ oo Y
3% =2g - g(1 =8 /Byq * ---)

~ 6£+e : (1.40)
00

In the continuity equation (1.3), the horizontal advection
of density is quite generally less than the vertical

advection and

3 ow H
W =2/0 ~ /R

~ (1.41)

S

Thus if the height scale of the vertical motion is small
compared with the density scale height, even the vertical

advection of density may be neglected.

Using the approximated form of (1.38) and (1.40) and the
latter approximation, the primitive equations reduce to

their "Boussinesq' form:
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BDE Up + £k x Uy + vh¢= (1.42)
D6 _ ‘ (1.44)

Dt

¥ . g ‘ (1.45)

9z 600 -

where u = u, + wk.

These equations still conserve an Ertel potential vorticity
but it has the modified form

a0

oV ou 00 oV 96
= 4+ 22X . LfZy 8V _ 9oV + L2
Q (f ) 5

Y 3Z 98X

%l

(1.46)

The streamfunction for the horizontal geostrophic motion is

b= ¢/T (1.47)

and the quasi-geostrophic potential vorticity is

_ 2 2 5 .1 3y
q = I+ By *F vy Forz (2w (1.48)

This is conserved in horizontal geostrophic motion as in

(1.26) and the vertical velocity w is given by (1.28) where now

Y _ _Egq
oz fo 00

or by (1.34) with the density terms dropped
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2. THE STABILITY OF QUASI-GEOSTROPHIC FLOW: SOME
GENERAL CONSIDERATIONS

The earth's atmosphere is characterized by marked horizontal
gradients in temperature between the equator and the poles,
with zonal-mean westerly winds increasing with height in the
troposphere and vertical shears of either sign in the
stratosphere and mesosphere. The atmosphericmean state thus

possesses significant kinetic and available potential energy.

In the following lectures, we examine under what circumstances
such a mean state might be unstable, that is, under what
circumstances initially-small perturbations will grow at the
expense of either the kinetic or the potential energy of the
mean state. We also discuss the structure of the resulting
disturbances. Attention is concentrated on baroclinic
instability, in which the predominant energy transfer is

from zonal-mean to eddy potential energy. This is the

process largely responsible for the growth of synoptic-

scale disturbances in middle latitudes of the troposphere.

The Hydrodynamic Instability Problem

In examining large-scale instability in the atmosphere, we
adopt the usual approach of hydrodynamic instability,
seeking linearized solutions for a perturbation of normal-
mode form. We let an overbar denote a zonal average (an
average around a latitude circle) and a prime denote a

deviation from this average. Then

U =1u-+u y=9Y+y ,q=q+q , etc.
Assuming primed quantities to be small, the quasi-geostrophic

potential vorticity equation (1.26) becomes

2 opu gt v 29
(g ¥ U3)a * V' gy =0 (2.1)
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and if the perturbation has normal mode form:

¥ = Re {¢(y,z)e K(X = ct)y (2.2)
then (2.1) becomes
£2 2
—_ 2 _
(@ -e) (22 (2980 30 12 L q4=-0 (2.3
P, 9Z N2 Bz 8y2
where
2 ,
o— f — —
— 3 u o 3 ,Po s _ 3q
ay = g - <5 - = = (% %) - 24 (2.4)
ay2 Po 9z "2 0z Yy

We assume rigid horizontal boundaries at z = 0 and z = H,
and rigid vertical boundaries at y =0 and y = Y. Boundary

conditions on the motion are thus

$ =0 at y =0, Y (2.5)
and

w=0 at =z =0, H (2.6)

The latter condition at z = H approximates the increase in
static stability at the tropopause, but may be replaced by
a condition of bounded energy as z - o« with no additional

complication to the discussion given here. Equation (2.6)

may be rewritten

(W - c) Q¢ _

v 3%¢ =0 at z =20, H (2.7)

Equations (2.3), (2.4), (2.5) and (2.7) comprise an
eigenvalue problem for c¢ as a function of zonal wavenumber
k and the mean state. Instability occurs if there exists
a complex eigenvalue ¢ with kIm(c) > 0, since (2.2) may

then be written
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- ekIm(c)t Re{(y,z)e

P ik(x - Re(c)t)}’

showing the initially small perturbation to grow in time.

The quantity kIm(c) is known as the growth rate of the

instability, while Re(c) is the phase speed. Attention is

usually concentrated on the solution at the value of k for
which the growth rate is a maximum, since given a sufficiently

small arbitrary initial perturbation, this most unstable mode

is that which would be dominant after a long time interval.
It must, however, be stressed that in reality it may not be
the most unstable mode which dominates, since there may be

a specific scale to the triggering of the instability and
more generally differences in non-linear behaviour for
different scales. Further discussion is given in later
lectures.

A final introductory point is that if (¢,c) is a solution
of the eigenvalue problem posed above, then so also is
(¢*,c*), where ( )* denotes a complex conjugate. Thus
corresponding to each growing mode with kIm(c) > O there
exists a conjugate decaying mode with kIm(c) < 0, and the

same phase speed.

The Energetics of the Instability

Some general results concerning the stability of quasi-
geostrophic flow may be introduced by considering the
equation which describes the growth of the energy associated
with the eddy motion. The perturbation momentum and
thermodynamic equationsfor linearized quasi-geostrophic

motion are

A A 9" - (2.8)




av' L - av' v . L 3p' _ - 9.6

5t T upx T fu b 3V 0 (‘ -9)
T No w' =0 | 2.10

§ *iE Vg togel )

and the corresponding expressions for the kinetic (KE) and
available potential (AE) energies associated with the
perturbation are

| Y (H -3 . 73 |
KE = 30 (u + vy “)dzdy (2.11)
(8] ) C
o] (0] ! .
and
Y H R gt o : '
AE = f J 10 B (2-)° dzdy (2.12)
0 0 * ON2 60

Multiplication of (2.8) by u', (2.9) by v' and (2.10) by B,
followed by integration by parts and use of the continuity ”
and‘hydrostatic‘equations, yields:

: J f u %
e = | . g Ty 1
Bt(KE + AE) 1o 1o Pol 7 (u'v')dyd=

H (Y 2 .5
+ {- [ J £ 2% 7757 aydz} (2.13)
o Yo "N y

Equation (2.13) describes the rate of change of the energy
associated with the eddy motion. The first term on the
right-hand side represents the conversion from zonal to

eddy kinetic energy that occurs, for example, when there is
an eddy transfer of zonal momentum (ETVT) such as to reduce

a jet maximum. The second (bracketed) term is the conversion
from zonal to eddy potential energy that occurs when there

is a net horizontal eddy heat transfer (v'6') that tends to

reduce the zonal-mean meridional temperature gradient.
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Barotropic and Baroclinic Instability

The eigenvalue problem for pure barotropic instability, as
studied by Kuo (1949), is obtained from (2.3), (2.4) and
(2.5) by setting vertical derivatives equal to zero. The

energy equation corresponding to (2.13) is then

JiKE = JY 3 = (u'v") d
3t o Pol By y

and if the zonal flow u is unstable, eddy kinetic energy

grows at the expense of the zonal-mean flow:

i

— (u'v')dy > 0O
ouay( )dy
For the classical case of an easterly jet (u< 0) this energy
conversion is accomplished by an eddy transfer of westerly
momentum towards the jet maximum, in which case g%(u'v’)‘<0
in the region of strongest zonal-mean flow, as is discussed
in Lecture 4.
Writing quite generally

o(y, z) = Aelm (2.14)

with A and n real,

u' = - Re { (%% + iA%%) ei(n +ok(x - Ct))}
and |
v' = Re {ikhe (N * k(x _'Ct))},v
giving
=TT = - %kAZB e2kIm(c)t (2;15)

Era
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Thus %% < 0 when there is a northward eddy transfer of.
westerly momentum, and this corresponds to a south-west to
north-east tilt of the lines of constant phase of the stream:
function. In particular, for the case of barotropic
instability discussed above, the eddy momentum transfer is
associated with a horizontal tilt of troughs and ridges of
opposite sign to the horizontal shear of the =zonal flow, that
‘is with phase tilts in directions opposite to those which
would be produced purely by differential advection of the

wave pattern by the horizontal shear flow (Fig. 2.1).

Pure baroclinic instability is obtained by setting %% = O.
Eddy kinetic and potential energy grow at the expense of
mean-flow energy through the conversion from zonal to eddy

potehtial energy

H Y o _
O 239 o7

, 52 By v'8'dydz < O

0
If the zonal-mean temperature decreases towards the pole,
with westerly winds correspondingly increasing With‘height,
this energy conversion implies a largely poleward heat flux.
Since from (2.14)

2 3n e2kIm(c)t
0z

this corresponds to a westward tilt of the lines of constant

Ve = 3(kf 0 _/g)A (2.16)

phase with increasing height. This tilt is again in a direc-
tion opposite to that which would result from differential
advection by the (now vertical) shear flow. Such a westward
tilt is a common characteristic of developing disturbances ‘

in middle latitudes.

It should also be noted that in the above case of pure
baroclinic instability the growth of eddy kinetic energy
must occur as a result of a conversion from eddy available

potential energy:

0

H Y
f J Po £ gy dydz > 0
o}

0 o
There is thus a net upward flux of heat.
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Generally, when u is a function of both latitude and height
we may not be able to talk of an exclusively baroclinic or
barotropicinstability. Clearly if a wave which is growing
exhibits a conversion from eddy to zonal kinetic energy it
is appropriate to speak of baroclinic instability. In a
case in which both conversions are from zonal to eddy forms
the general term mixed baroclinic-barotropic instability is
appropriate, although if one or other conversion is of

dominant magnitude it may be used to label the instability.

Necessary Conditions for Instability

The easterly zonal shear flow in the mid—latitude summer
stratosphere is remarkably undisturbed Compared with typical
tropospheric flows, and the question thus arises as to what
configuration of the zonal-mean state is required for
instability. By way of introduction, we have noted above
that a characteristic of unstable waves is a tendency for
their stream function to tilt in a direction opposite to

that which would be produced by differential advection by

the vertical or horizontal shear flow that gives rise to

the instability. Examination of the linearized potential
vorticity equation (2.1) shows that either meridional
gradients (ay) of the potential vorticity associated with

the zonal-mean state or constraints due to boundary conditions
on the motion, must play an important role in the instability.
This is confirmed by the derivation of precise necessary

conditions for instability.

Such conditions have been obtained for baroclinic motion by
Green (1960), Charney and Stern (1962) and Pedlosky (1964a),
and generalized for perturbations of non normal-mode form
by Blumen (1968).
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Egquation (2.3) is multiplied by p0¢ /(u - c) to give

2
d 2 :
5%)"‘00‘1)*2_;% ook 10| %+ poqﬁ’é‘l_ccf‘j" = 0

p

o
wl

~
ZalS

Integrating from y = 0 toy =Y, and 2z = 0 to z = H, and

using integration by parts:

2 -
B JY 2, 12 . 36,2 . Yo 39,2 |
- {k + |22 + = |2= dydz
J, ), P |0 50l 2 52171 ay
(0 [Yoog0(i-c )|¢| oF o 3¢ 78
+ [ f ooty dydz+ f Po—3 b —_] dy = 0
Jo o [u - c! - N Z 1o

and using (2.7)

) ) _ . |
- * - H _ -

o 99 _ Lo 81 (3 - ¢ )|¢! H
oz ?® 32| T |Po 23z |
- ON “o - N lu - c[ o

Consider first the case of zero vertical shear at the
boundaries. ‘The last term in Equation (2.18) then vanishesQ
Since the first term is real, taking the imaginary part
‘yields V o

Im(c) (B [Y =412 = ‘
] podylo|” dydz = 0 L (2.19)
(Ol o]

G - cf

2
As E%l9l§ is everywhere non-negative, a necessary condition
Ji-c| |
for an unstable wave, for which Im(c)# 0, is that ay change

sign somewhere within the fluid. Setting fo = g = 0, this

reduces to Rayleigh's classical criterion that dzﬁ/dy2

change sign for instability of a shear flow. (Indeed, many
of the results reviewed in this lecture are generalizations
of results of hydrodynamic stability theory reviewed by
Drazin and Howard (1966)).
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More generally, (2.19) becomes

)

000 85 _lo]% |

2 3z |- 27 z=H
|u-c|

. ) = 12
cmmce) Yo [Fdylel®
o o |g-c|? N
f2 - 2
“oPo du _|¢]” ). _n}dy = 0 (2.20)
2 9z = 27z=0-" R
N .,Iu_c{ : U S
Instability can thus arise for ay of one particular sign if

either

a. the vertical shear of the zonal flow at the lower

boundary is of the same sign,

or. .b. the vertical shear of the zonal flow at the upper

boundary is of the opposite sign.

It ay = 0, the necessary condition for instability is that

the vertical shear be of the same sign at the two boundaries.

As discussed by Bretherton (1966), these conditions may be

simplified by defining a generalized potential vorticity

gradient
o - fz _ fz _
§v = G _o du _H) - (-9 3u
Gy = 8y * (3 305 85D - (350, () (2.2D)

where 6(z) is the Dirac delta function. The necessary

condition for instability is then that ﬁy be two-signed.

To picture dy, consider the zonal flow shown in Fig. 2.2a.
The corresponding distribution of ﬁyfmay be viewed as that
of ay for the flow shown in Fig. 2.2b in the limit as the

height scale h of the region of curvature decreases to zero.
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A further condition is obtained from the real part of (2.18).

This gives

[F [P eolya - reenlol® 4pgy » o

R i

or, by virtue of (2.20)

Y [H o §oz _ U -2 | <
{ J oly(u - Yo) [¢] dzdy > 0 for any Ug.
o ‘o lu - c|2 , 8 B

It is thus required for instability that

dy (u - U,) > 0 somewhere, for any Uo.

If qy and u are monotonic functions of z, independent of

y, choosing UO to be the value of u at the height where

qy = 0 shows the condition to become that the sign}of the
vertical shear of the zonal flow be the same as that of the
vertical gradient of dy . In other words, if westerly winds
increase with height at the level at which qy = 0, then for
instability qy must be negative at lower levels and positivev

at higher levels.

These criteria can be given a more physical basis for:
simplified systems. In the linearized, quasi-geostrophic
system perturbation potential vorticity changes at a point
due to advection of perturbation potential vorticity by the
mean zonal flow and due to advection of mean-state
potential vorticity by the perturbation motion (eaq . 2.1).
Examination of how these two advections may balance to give
a coherent wave structure with similar grdwth and movement
at all heights and latitudes suggests the necessary
conditions for instability. For an example of such an

approach, see Bretherton (1966).
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-We now consider specific examples from the atmosphere where

the instability criterion is satisfied.

a. The mid-latitude troposphere

Here the interior potehtial vorticity gradient ay is
largely positive, due to the B-effect reinforced by
both the horizontal and vertical curvature of the mean
flow at the jet maximum, and the increase in static
stability at the tropopause. The conjunction of this
interior distribution and westérly shear of the mean
low-level wind provides the classical occurrence of
baroclinic instability. It is this case that will be

studied in the following lectures.

b. Easterly jets

Flow in the tropics is generally associated with
positive ay, but commonly comprises an easterly jet,
for which the curvature terms - aza/ayZ and Szﬁ/azz

negative at the jet maximum. For a sufficiently strong

jet this too may give rise to a region of negative

ay. Although the geostrophic approximation may be less accur-
ate in this case, primitive equation calculations such as

described by Simmons (1977a) indicate results much as expected
from quasi-geostrophic theory.

C. Stratosopheric and mesospheric flows

Marked changes in static stability at the stratopause and
mesopause, and strong mean-flow curvature, may give rise to
further isolated regions of negative ay in the stratosphere
and mesosphere. In this case radiative dissipation and the
lack of a rigid boundary to confine the perturbation give

rise to lower growth rates than found in the troposphere, and
any perturbations which may arise through instability probably
play an insignificant role compared with their tropospheric

counterparts. References to stratospheric and mesospher cal-
culations may be found in Simmons (1977Db).
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Bounds on phase speed and growth rate

Bounds on the pﬁése speed and growth rate of eigensolutions
of the problem represented by equations (2.3) - (2.7) have
been determined by Pedlosky (1964a). These are summarized
here. Umin denotes the minimum value of u, and Umax the

maximum value.

The phase speed, Re(c), is bounded in the following way:

B
2K+ /Y2

ﬁminv— < Re(e) < Umax. (2.22)

| Thus an unstable normal mode can move no faster than the
maximum zonal-mean velocity. Its phase speed may be less
than the minimum zonal-mean velocity by an amount which depends
on the planetary vorticity gradient, B, and the scale of
the motion. Such a phase speed has indeed been found in
some examples (e.g. Garcia & Norscini 1970), although growth
rates in such cases are found to be small.

An inequality linking the real and imaginary pafts of cis
1,5 = . 2 SR = . 2 2,2
(2(Umax - Umin))”~ + 3B(Umax - Umin) / (K° +7 /YY)

L = . 2 2
> (Re(c) - 3(Umax + Umin))“ + (Im(c))
(2.23)
and this yields the following inequality for growth rate:

ke, <k {(3(Omax - Umin))?+38(Omax-Omin)/(k2+n?/y2)) *

(2.24)

where ¢j = Im(c). This shows the growth rate generally to

decrease as the zonal wavelength becomes large (i.e. as
k -~ 0).
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Pedlosky obtained two further bounds on the growth rate.

The first is
f2

1
2

o  odu Ju 1
(Max{ﬁ‘z (3202 4 (5302}

) )

ke, 5
1 1 + 17 /k7Y

N

(2.25)

and the second, which holds only if surface zonal winds are
zero or uniform in y (and equal at z = 0 and z = H if the

upper boundary condition is w = 0 at z = H), is

ke, - (MaX{ugy}Z 5 (2.26)
1+ 77 /k"y

In the special case of infinite meridional scale (n/Y = 0)

and pure baroclinic instability (%% = 0), (2.25) gives

£

0 du
kci < .9 TTMaXCEE)’

a result obtained from energy considerations by Eady (1949).

For comparison, the explicit solution for the Eady model

discussed in the following lecture gives

f
2
N

qES

Max(kci) = .31

Inequality (2.24) shows that the large growth rates which
can occur for large fo or small N must occur for short

zonal wavelengths (i.e. for large k).
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Fig. 2.1 Sketch showing (a) a barotroplcally unstable easterly Jet and (b) the
- structure of a developing disturbance:
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Fig. 2.2 a) A flow with uniform shear in 0 <z <H

b) A flow with uniform shear in h <z <H-h, and no
shear at z = 0 and z = H
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3. THE EADY MODEL

The analysis performed in the previous section shows that
baroclinic instability may exist. The first two models that
showed that the instability actually occurred were due to
Charney (1947) and Eady (1949). The Eady model is simpler
and is amenable to analytic solution and so we shall concen-
trate on it in this section. Many of'the features of the

solutions carry over to much more complicated situations.

We use the Boussinesqg form of the quasi-geostrophic
equations with B = 0 and consider a fluid bounded above and
below by 2 rigid horizontal planes distance H apart, and
having N? = const. and a uniform shear ﬁz = U/H. This corres-
ponds to a uniform poleward potential temperature gradient
Ey = - 0 _fU/(gH). To simplify the analysis we shall choose a
coordinate system moving with the fluid at the mid-level and
shift the origin of z also to this level. The basic zonal flow

is now u = Uz/H. The situation is summarised in Fig. 3.1.

u/2

N~ = const.

s = —y_ —U/2

Fig. 3.1 The basic flow for the Eady wave analysis
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For this model ay = 0 and the perturbation problem (2:.1)
reduces to
{3 Uz 9 ) . _ ) .
FErTE WL G
: .o 82T B%yT . £2 3%y~ BRI
Whgre - a = =%z ¥ Tia + N? 327 | _»(3.2)

and on z = + H/2, w =0 or

9 Uz 9| 3y~ ~ U 3y~ _ ' o
ﬂgf T H ax] Py H 3ax o - .(3.3)

We introduce non-dimensional variables
z =Hz , x = L , y-= L.y , t=+ Tt . (Lp=NH/f,) (3.4)

Suppressing the tildes, the perturbaticn problem (3.1)-(3.3)
becomes

[%+za—sx]q' -0 (3.5)
. 9%y” 3%y” | 3%y~
where Q" = STt 577t 3ar , (3.6)
. 3 3) YT _ By _ .1
with [at + z Bx] o T 0 ongz=2=3% . (3.7)

The simplest way of satisfying (3.5) is to make q
identically zero for all time. Suppose we look for a solution
independent of y of the form

¢” = (a cosh kz cos kx + b sinh kz sin kx)eOt (3.8)

Since this gives q” = 0, the interior equation (3.5) is
satisfied identically. Note that we are looking for
exponential growth or decay. We must now check that it is
possible to satisfy the boundary conditions (3.7) and see

what they imply about the growth rate.
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Substituting (3.8) into (3.7) gives
ck(a sh ¢ + b ch s) + zk?(-a sh s + b ch ¢)
- k(-ach s +bshc) =0o0nz== 3%,
where ch, sh, ¢, s stand for cosh kz, sinh kz, cos kx, sin kx
respectively. The coefficients of ¢ and s must separately be

zero on both z = * 3.

c| oash + b kzch - b sh

s| obch - akz sh + ach

i
=)
———
. 0
5
N
Il
i+
[ X1

(3.9)

Il
o

Note that the coefficient of ¢ is an odd function of z and
that of s is an even function of z. Therefore if (3.9) is

it is automatically satisfied at z = -

(S

satisfied at z = +

(S

Thus we require

oa sh k/2 + b k/2 ch k/2 - b sh k/2 = 0 (3.10)
ob ch k/2 - a k/2 sh k/2 + a ch k/2 = 0 (3.11)
Dividing (3.10) and (3.11) by b sh k/2 and a ch k/2
respectively gives
o & = coth g [tanh g - g] (3.12)
o g = tanh g [g - coth g] . (3.13)

These are the conditions that a solution of the form (3.8)
is possible. Multiplying them gives an equation for the square

of the growth rate:

3
g2 = [5 _ tanh l—‘Ncoth k_ 5J . (3.14)

Reference to Fig. 3.2 shows that the right hand side is
positive for 0 < k < 2.3994. Thus for wavelengths in this

range there are modes that grow exponentially (and also modes
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Uk

Fig. 3.2 Graphs of y = X, y = coth x and y = tanh x

that decay exponentially). The growth rate curve is sketched
in Fig. 3.3

g
A '
03097F — = — — — _—— - = = o

y
-~

1

16062 2:3994

Fig. 3.3 "The growth rate curve for two-dimensional Eady modes

There is a short wave cut off at k = 2.3994 and the growth
rate maximum is o = .3097 at k = 1.6062. Taking N ~ 1072 s~1,
fo.0 10-% s=', H~ 10 m, U~ 30 m s™'(Ly = 10° m) there is
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growth for wavelengths longer than about 2500 km, with a

maximum at about 4000 km wavelength where the e-folding time
’Te = %ﬁbl.l days. Note that the waves are stationary in the
coordinate system used. This implies that they move at the
speed of the fluid at the mid-level. Such a level is often

referred to as the steering level.

‘The speed is typically 15 m s=!'. All these numbers are
in>good agreement with the observed behaviour of mobile,

developing, mid-latitude lows and highs.

To see the structure of the modes, we divide (3.12) by

(3.13) and take the square root to give

1
T =t T %( coth g . (3.15)
coth —2- - *2-

From (3.12) oca/b is always negative so that the growing modes
correspond to the negative sign in (3.15). The structure of
the most unstable mode is typical of the fast growing Eady
modes and so for definiteness we concentrate on it. The
phases of pressure (streamfunction), temperature and vertical

velocity for the most unstable mode are sketched in Fig. 3.4.

z =Y - \ | LY ‘ 7
~ ASCEND DESCEND \
LOwW
HIGH
. LOW WARM COLD
z=—%L_ \\ / I /
0 Tro m 3m/2 2w

Fig. 3.4 The phases of pressure (y), temperature and vertical
velocity perturbations for the most unstable two-
dimensional Eady mode. One wavelength is shown.

For definiteness a has been taken as negative and
b positive
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The pressure wave tilts westwards with height. The vertical
Velocity ane‘tilts rather less westward, but the thermal wave
tilts éastwards with height. Ahead of the low, warm air moves
polewards and upwards. Behind the low the cold air moves
equatorwards and downwards. This is consistent with the
energetic description in section 2. In fact any solution of
the form (3.8) hag northward heat flux « UL % abeth

3X 9z
independent of height.

z=%

z=—%

Fig. 3.5 Amplitudes of pressure (y), temperature (T) and
vertical velocity (w) waves as a function of

height for the most unstable two-dimensional
Eady mode

The amplitudes of pressure, temperature and vertical velocity.
as a function of height are shown in Fig. 3.5. The pressure
and temperature perturbations are largest on the boundaries,
but the vertical velocity is largest at the mid-level. We
note that the vertical velocity shown is consistent with the

omega eQuation (1.34)-(1.36) which for the Eady problem
becomes

N2 V2 w + f = of, 3 2%V (3.16)
h 0 3zZ * F 9x? : -
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Considering the lid as representing the tropopause, the
structure of the most unstable mode is in good qualitative

agreement with that observed.

The decaying modes, corresponding to the positive sign in
(3.15) have a similar structure except that the tilts in the
vertical are reversed. The pressure wave tilts eastward and
the temperature wave tilts westward with height.

The most general y- 1ndependent form for the solutlon of
@” = 0 would have included in (3.8) terms 1like
¢ sinh kz cos kx + d cosh kz sin kx. However, the problem for
(c,d) separates from and is entirely equivalent to that for

(a,b).
If y independence is included by modifying (3.8) to
¥~ = sin Ly(a cosh Kz cos kx + b sinh Kz sin kx)e®%  (3.17)

where K2 = k? + 22, then q” = 0 and the boundary conditions

now give instead of (3.12) and (3.13)

a _k K K K}

¢ p = f coth 3 [tanh 5 - EJ (3.18)
b _k K (K K)

g _Bt = % tanh 5 (ﬁé —-. coth —2-J - (319)

For fixed %, the growth rate curve is shifted towards longer
wavelengths and the maximum value of growth rate is reduced.
For very long total wavelengths, the asymptotic growth rate
is unaltered: o n k//12.

In terms of the general theory in the previous section we

note that the Eady model gives pure baroclinic instability.

The modes tilt in the vertical but not in the horizontal. The

interior potential vorticity gradient is zero and the instability
is possible only because of the temperature gradients (or equi-
valently the vertical shear in the zonal wind) having the same
sign at the upper and lower boundaries. The instability is thus
associated with the boundaries and pressure and temperature

perturbations are largest there.
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Finally, we note that the two-dimensional (y independent)
Eady wave is a solution of the nonlinear quasi-geostrophic
equations. The zero potential vorticity always satisfies the
interior equation and the boundary advection of potential

temperature:

[;E + (u + u’) é% + v~ g%ﬂ[é(y) + e’J =0

always simplifies to the linear equation because u” and 8~ are
independent of y. Quasi-geostrophic theory predicts unbounded
growth of the two-dimensional Eady mode, drawing its energy
from the uniform equatorward temperature gradient which is

infinite in extent.
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4. ADDITIONAL LINEAR INSTABILITY THEORY

In this lecture, we present some additional computations
and general theory relating to linearly-growing waves. We
also discuss the changes to the zonal-mean state that are
induced by these waves. This serves as an introduction to

the fully non-linear behaviour to be described in Lecture 6.

In models of baroclinic instability more complex than that
posed by Eady (1949) it is generally necessary to use
numerical techniques to solve the complete eigenvalue
problem. One such model is that considered originally by
Green (1960) in which the B-effect and compressibility are
added to the Eady model. Accurate numerical solutions for

this case are discussed in this section.

The dotted curves in Fig. 4.1 show growth rate and phase
speed as functions of wavenumber for the Eady problem while

the solid curves represent corresponding results when the

B-effect is added. Here f, = 1.03 x 1074 S—l,
8=1.6x1011 51 xv=1025" m-10%manday=5x 1050
The vertical shear is 3 (ms_l)km—l.

Inclusion of the B-effect has little effect on the growth
rate of the most unstable wave, but gives rise to a slowing
of its eastward movement by some 4 ms—l, a value close to
the 4% ms_1 westwardAphase movement of a pure Rossby wave
with similar length scale. The B-effect also has a
pronounced effect on the stability of shorter and longer

wavelengths.
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For short zonal wavelengths, there is a destabilization which
can be related to the distribution of potential vorticity
gradients. As in the Eady problem, there is negative ﬁy at
the lower boundary, but with B included, there is also
positive ﬁy throughout the interior of the fluid. Thus
however short the wavelength of a disturbance concentrated

at the lower boundary, it can be influenced by the change in
sign of qy. Asymptotic solutions in the limit as k =+ o

(as derived by McIntyre (1972) for a related problem)

reveal a growth rate that is directly proportional to the
value of qy in the interior of the fluid to leading order

in k1.

The p-effect also gives rise to a marked stabilization for
low wavenumbers with very weak growth rates for zonal
wavelengths longer than about 9000 km. For the latter 7
wavelengths there also exists a neutral mode which behaveé
as a barotropic Rossby wave in the limit of vanishing
wavenumber. Analysis of such long wavelength behaviour has
been given by Burger (1962) and Miles (1964) in the content
of the instability problem with H = « first studied by
Charney (1947).

Also shown in Fig. 4.1 are growth rates and phase speeds
when a mean density variation with
1

Yy " = 7.315 km
O

(_.j; a 0
Po dz
is included as well as B. A further slowing of phase
speeds and short-wave destabilization are evident. These

can be linked with an increased interior potential vorticity

gradient, which is given in this case by

£20 dg,
q =B+ P) (— dZ)’
N Po

and has the value EleO—lls_1 for the parameter values noted

previously.
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The structure of the most unstable normal mode with B8 and -
the mean density variation included is shown in Fig. 4.2.

In comparison with the Eady model, we note similar overall
phase tilts, although the meridional velocity tilts more at
~low levels, and less at upper levels. The three fields

shown are again particularly well correlated at the steering
level, which is much lower in this case. The low-level
vertical motion is thus better correlated with the temperature
field. The amplitude of the temperature wave is significantly
larger at lower levels while, conversely, the Vertical
velocity is somewhat biased towards upper levels. The
poleward eddy heat flux (Fig. 4.3) is a maximum at the lower
surface. Held (1978) has discussed its dependency on mean-

state parameters.

The tendency for the phase of v', w' and 6' to be coincident
at the steering level may be seen directly from the
perturbation thermodynamic equation. For a normal mode,
this gives - 4

- 2
. 5 - G 00 L N 65 0 _
kIm(c)6' + (u Re(c)) Ny + v 3y + = W 0

1
Since %% is 90° out of phase with 6', if v', 6' and w' are
in phase anywhere, this must occur where u - Re(c) = O,

i.e. at the steering level.

Modification of the baroclinic instability model to include
an upper-level jet maximum and stratospheric increase in
static stability is found to give rise to little significant
change in the solutions discussed above, although growth
rates are slightlysmaller, and perturbation velocities larger
in the upper troposphere. The eddy heat flux is generally
found to be poleward in the lower stratosphere, and thus

countergradient. A net upward eddy energy flux is thus
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required across the tropopause both to give wave growth in
the stratosphere and to compensate for the conversion from
eddy to zonal potential energy associated with the counter-
gradient heat flux. This accounts for the reduction in

growth rate noted above.

A low-level increase in vertical wind shear or decrease in
static stability is found to increase the maximum growth
rate, which occurs at a shorter wavelength. Examples of
stability calculations demonstrating this include those by
Eady (1949) and, more recently, by Staley and Gall (1977),
while Mansfield (1974) has discussed the application of
baroclinic instability theory for a shallow layer of fluid

to explain the development of polar lows in cold air outbreaks.

Meridional variations of the basic state

There have been a number of studies of how meridional
variation of the mean zonal flow and spherical geometry
influence the baroclinic instability problem. Early
numerical studies of the influence of zonal-mean shear
include those by Eliasen (1961), Pedlosky (1964b) and
Brown (1969), while analytical approaches include those of
Stone (1969), McIntyre (1970), Simmons (1974) and

Gent (1974, 1975). Recent numerical studies (all of which
use spherical geometry) include those by Hollingsworth
(1975), Moura and Stone (1976), Gall (1976a), Warn (1976),
Simmons and Hoskins (1976, 1977) and Frederiksen (1978).
Some of these utilized the primitive equations; 'detﬁiled :
comparisons by Simmons and Hoskins (1976) showed quasi-
geostrophic normal-mode solutions to be generally similar
to those of the primitive equations, although such small
differences as did occur were often consistent from case

to case.
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The results of these studies generally show that growth rates,
rhase speeds and the structure of each mode near the latitude
of maximum disturbance are much as found in f-plane models
without meridional shear. Meridional shear and spherical
geometry influence mainly the meridional scale of a
disturbance, the location of its maximum and its horizontal
phase tilts.

For a symmetrical jet flow on a B-plane, the disturbance
maximﬁm is located at the jet axis for the most unstable
mode, and the disturbance generally has a meridional scale
given by the geometric mean of its zonal scale and the
meridional scale of the jet. Inclusion of spherical
geometry gives generally a small poleward shift to the
latitude of maximum disturbance, a result which has been
interpreted as due both to the larger Coriolis parameter
closer to the pole and to the larger angular velocity

slightly poleward of the jet maximum.

The eddy momentum flux

For the pure baroclinic instability problem

v' = Re { ¢ (z)sin 2o¥ o 1k(x - Ct)},

7 (4.1)

where m is an integer.

Such a solution has no phase tilt in the horizontal, and
thus no associated eddy momentum flux, u'v'. This is
evidently a major deficiency of the classical theory since
observations indicate the flux to play an important role

in the momentum balance of the general circulation.
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 Some general remarks may be made concerning the eddy

momentum flux. The imaginary part of (2.17) gives

. 5
é% { fog Im(¢*a¢)} + {p Im(¢*—g)} = - Ilrn(c)—C’J—LL—-I-w
. N

2 @ - cl?

and using (2.14), (2.15) and (2.16), this may be re-written

9 (_gi_Q 0 W) - pO_?— (W) = kIm(c) P Z] ZkIm(c)t
. 0%z 60N2‘ o . oy 3 - Cl :

The right-hand side of (4.2) may be written more generally

as v'q', and in this form the equation is not restricted to
normal-mode disturbances. It has been used by Greén'(1970)'
as the basis of a parameterization of the momentum transfer
by large-scale eddies. Here we use the form (4.2) to galn
insight into the pattern of the eddy momentum flux associated

with growing waves.

Consider first purely barotropic motion. Equation (4.2)

‘then becomes

S (TTVT) = BkIm(e)q, —J——L—Iasz g2kIm(ert (4.3)
showing the sign of the gradient of the eddy momentum flux
to be determlned by the sign of the mean potential VOTthlty
gradient, B- d u/dy in this case (XKuo 1951). The eddy
momentum flux is a maximum or minimum at the latitudes
where q vanishes.For the eaSterly jet illustrated in Fig.
4.4a, the distribution of q is sketched in Fig. 4.4b, and
the pattern of eddy momentum flux for an unstable wave is
shown in Fig. 4.4c.
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A generalization of (4.2) for baroclinic motion has been
discussed by Held (1975), Integrating Equation (4.2) from
z = 0 to z = H, and using the generalized potential

vorticity gradient (2.21), we obtain

H H ~
] 2
A J p u'v' dz = 3kIm(c) —o%ylol” 2kIm(c)t 4,
e © i - o
o (4.4)

For each latitude y we may refer to the fluid as being
locally stable if qy is one-signed at that latitude, i.e.

if a baroclinic stability analysis applied for latitudinally
uniform flow using the flow parameters appropriate to the
latitude in question would yield stability. If'qy is
positive at all heights, (4.4) shows that

Thus, if a baroclinically-unstable region is bounded
latitudinally by regions in which qy is positive at all
heights, there will be a net eddy transfer of westerly

momentum into the region of local instability.

In the earth's troposphere, there is generally a region
of marked local baroclinic instability in middle latitudes
but at most a weaker baroclinic instability elsewhere,
particularly in the tropics where the Coriolis parameter
is small. As suggested by the above results, there is a
general convergence of the eddy momentum flux in middle
latitudes. Some examples of this flux obtaihed from
baroclinic instability calculations with meridional shear
and spherical geometry reported by Simmons and Hoskins
(1977) are given in Fig. 4.5. The flux has maxima at the
ground and at the tropopause. There is a tendency for a
bias towards poleward fluxes, although this is not as
marked as in atmospheric observations. The influence of
spherical geometry on such fluxes has been discussed by
Hollingsworth et al (1976).
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The mean meridional circulation and zonal—mean changes

Equations for the evolution of the zonal-mean zonal flow,

u, and potential temperature, 6, are given in the quasi-

geostrophic approximation by

U _ o5 _ D (g
-B—t— = fOV - 3y (U. v') - (4-5)
and
- 2
ﬂ = — ._a_ ' T — N e —_
3t 5y (V'8 =2 @ | (4.6)

where v must be calculated to higher than geostrophic
accuracy owing to its multiplication by a Coriolis
parameter large compared with the inverse of the time scale

of zonal-flow changes (assumption 1.9).

Equations (4.5) and (4.6) are completed by the zonal-mean

continuity equation

oV 1 3 =N _

and the thermal wind equation

@l

)
L. (4.9
O

<<

which may be obtained from (1.16), (1.17) and (1.21).

The circulation in the height-latitude plane defined by
(v,w) is known as the (Eulerian) mean meridional circulation.
In the quasi-geostrophic approximation it maintains thermal
wind balance when eddy fluxes of heat and momentum, and more
generally diabatic and frictional effects, tend to destroy

this balance. It is determined by using (4.7) to introduce
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a streamfunction v

k4

v = 3y

L) o o= _
o 0% (pOW) W=

and (4.8) to eliminate time-derivatives in (4.5) and (4.6):

2 3 ,1 3 2 3%y 32 =+ . B 3% e
£ G— 5 (p ¥ ) + N S = ¢ (WV+ g= +=r(V78)
o dZ Po 9% o 3y odydz 60 oy

(4.9)

This is a zonally-averaged form of the omega equation
(1.34).

For a solution of form (4.1) to the pure baroclinic

instability problem, neglecting the exponential growth factor,

VT = F(z)sin® "Y/y’ and TVT = 0

for some function F(z). Equation (4.9) becomes

2
£ 59,1 3 2 5%y 272gF(z) 21y (4.10)
= =— == (p_¥))+N = 3 cos —=
0O 3% Po 0z o Ay?2 v eo Y
with

¥(0,z) = ¥(Y,z) = ¥(Y,0) = ¥(Y,H) =0

The general solution to (4.10) may readily be written down,
but we indicate the form of the solution for the simpler
case of the Eady model, for which F(z)/eO is independent of
height. In this case

2 3%y 2 5%y _ 272 21y
fo 922 * N g3z = = F, cos 5 (4.11)

where FO is constant.
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The solution isf

. Tz nf_my nfoﬂ(ny)
= G(z)cos —?— z i {e 7 S }(4.12)

where F
G(z) = - _%?-{1 - (sinh %ﬂgf + sinh “”N(H f/ ZFNH}

2N °
and £ Y /NH H 0T

1 an(1+e ) = - J G(z)sin 5 4z
O

The first term on the right-hand side of @.12) is a particular
integral of ¢.11) with a positive wvalue for

Z<<y < %E, and negative values for O<iy<:z and 3%;< y< Y.

The second term is the complementary function satisfying

2 3%y + N2 32y
O az2 sy 2

f =0
which yields the correct boundary conditions on y = 0 and

y = Y.

The solution for the most unstable Eady mode is illustrated
in Fig. (4.6a) . As first noted by Phillips (1954) the
tendency of the eddy heat flux to heat the region §<:y<:Y
and cool the region O<<y<:% results in a 3-cell mean
meridional circulation with maximum rising and sinking
motion close to y = %g and y = % , the latitudes of
maximum heating and cooling. The cooling and heating
associated with this mean upward and downward motion
partially compensates for the changes due to the eddy heat
flux in the interior of the fluid, but can have no such
effect at the boundaries, where changes are largest. In

the absence of an eddy momentum flux the zonal-mean zonal
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flow changes only due to the Coriolis force associated
with the mean meridional motion. At the lower surface
westerlies are formed for % <v g~§X, with easterlies

elsewhere. Zonal wind changes of similar strength and-

opposite sign occur at the upper boundary.

Fig. 4.6b shows the mean meridional circulation for the
most unstable mode when the f-effect and mean density-
variation are included. The eddy heat flux (Fig. 4.3)
is now significantly larger at lower levels, giving a
largest change in zonal-mean temperature at the lower
surface. The associated mean meridional circulation
however, shows little concentration inylower»layers,
and zonal-flow changes at the upper surface are only
some 20% weaker than at low levels.

These results for upper levels are changed markedly in
calculations which include meridional variations of the
mean state. It is generally found that the eddy transfer
of westerly momentum in towards the jet maximum almost
exactly cancels the effect of the Coriolis force due to
the mean meridional motion. An example of the resulting
change in the zonal-mean zonal flow (again taken from
Simmons and Hoskins 1977) is shown in Fig. 4.7. At low
levels the eddy momentum flux reinforces the mean meri-
dional circulation in forming the pattern of westerlies
and easterlies. The associated change in the zonal-mean
temperature is an order of magnitude larger at the surface
than at the tropopause. Detailed examples and discussion
may be found in Simmons - and Hoskins (1976, 1977).
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We conclude this lecture with some remarks on vertical

eddy heat transfer. Equation (4.6) shows that in the ,
quasi-geostrophic approximation the zonal-mean temperatupe
changes only due to a horizontal eddy heat flux and to

mean vertical motion. The vertical velocity scaling (1.19)
is such that the convergence of the vertical eddy heat flux,
g% (w'8") is formally negligible. A consequence of this

is that the area-mean temperature, and thus the mean static

stability, does not change in time.

Quasi-geostrophic theory does yield an estimate of the
vertical eddy heat flux, and Fig. (4.2) shows vertical
velocity and temperature to be better correlated at the
height when the product of their amplitudes is a maximum
than are horizontal velocity and temperature. This results
in the vertical eddy heat flux playing a more significant
role than scaling alone suggests, as illustrated by Simmons
and Hoskins (1976) in a strict comparison of zonal-mean
changes in the primitive-equation and quasi-geostrophic
systems.
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wavenumber for the Eady model (dotted), with B included
(solid), and with B and compressibility included (dashed).
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Fig. 4.2

Aspects of the'vertical structure of the most unstable
mode shown in Fig. 4.1 for the case with the B-effect and

compressibility included. ' The amplitﬁde”of the wave is
chosen such that the maximum velocity perturbation is

10 ms-'1

Consistent with approximation (1.11) 8

a uniform value of 250 K.
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Fig. 4.3 The variation with height of the poleward eddy heat flux
for the most unstable Eady mode (dashed) and for the most
unstable mode with 8 and compressibility included (solid).
The normalization is as in Fig.4.2.



88

I0F¥

wmpﬂﬁﬂnmumcﬁ ordoxjoaeq
‘,A,n ‘xniF¥ uwnjuswow £ppa pue ‘ b ‘jusipeald L3TOo1jI04

‘ueew ‘(4A)n ‘MOTF TBUOZ FO SUOTINQIAISIP OTISTIDIOBIBYD

vr

814

A




89

100

1

200

P (mb)

5001

1000 —

100
b)
200t

P (mb)

1000 .

o~

100 :

P (mb)

500¢t .

e
10000 ——— AN
60° 30° 0°

- — - —

-

Fig. 4.5 Meridional (pressure/latitude) cross-sections showing typical results
of computations of poleward eddy momentum fluxes associated with
baroclinic instabilities of jet-like flows in a spherical geometry.
Jet maxima are at 300, 45° and 55° latitude for cases a), b), and
c) respectively.
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Fig. 4.6 Meridional cross-sections showing the mean-meridional
circulation induced by a) and the most unstable Eady mode,

and b) the most unstable mode with B and compressibility
included.
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Fig. 4.7 The net rate of change of zonal-mean zonal velocity resulting from
a baroclinic instability. The corresponding poleward momentum
flux is shown in Fig. 4.5. The zero contour is dashed and
W and E denote respectively westerly and easterly accelerations.
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9. THE INITIAL-VALUE PROBLEM FOR BAROCLINIC INSTABILITY

In the preceding lectures we have adopted a normal-mode
approach, seeking solutions for disturbances to a zonal
flow which grow exponentially, move uniformly, and bossess
a purely sinusoidal dependence on longitude. We have thus
considered the growth of a wave in the pPresence of a se-
quence of identical waves both upstream and downstream,
Attention has been concentrated on the mode whose wave-

length gives rise to the maximum growth rate.

In this lecture we examine the initial-value problem for
baroclinic instability, with particular emphasis on the
case for which normal—mode-stability was first examined
by Eady (1949) (see Lecture 3). The discussion will be
focussed on the response to an initially-localized per-
turbation. We thus examine dispersion in an unstable
fluid.

The initial-value problem for the Eady model was first
considered by Pedlosky (1964c). Subsequent analyses using
two~-layer models have been published by Thacker (1976) and
Merkine (1977), while a more general investigation has been
reported by Simmons and Hoskins (1979). This lecture is
based largely on the latter paper, to which reference
should be made for further detail.

The observational motivation for the examination given

here is that local growth of a particular large-scale
system is commonly followed between one and three days
later and some 55° to 90° downstream by either the develop-
ment of a new system or the amplification of a pre-exist-
ing wave (see, for example. Petterssen 1956). This has

been interpreted in terms of the dispersion of stable
Rossby waves (Rossby, 1945; Yeh, 1949) but it is clear

that baroclinic processes must also be important in
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general (Krishnamurti et al., 1977).

The linearized dinitial value problem for the Fady model

We consider small amplitude perturbations to the basic
state considered by Eady, one of uniform vertical shear,
u = M=z , With uniform mean density and
static stability, and no B-effect. Writing the pertur-

bation stream function in the form

Re{¢(z,t) sin(ry/¥)e F¥) (5.1)

1
-2

and scaling z by H and t by A(fo/N)(l + 72 /Y2Kk2)

the linearized potential vorticity equation (2.1) becomes

+ iaz) (32—"’ -a2¢) =0 : . (5.2)

82¢ 3¢ _ -

T3 2 + io T icy = 0 at =z 1 (5.3)
and 32¢ ) 5 4

s@mg - 10 =0 at z = 0 (5.4)
where

1
2

o = (NH/f_ ) (K*+ w2 /Y¥2)

Examination of the solution to the problem represented by
(5.2), (5.3) and (5.4) has been made by Pedlosky (1964c)
using Laplace transformation. Pedlosky showed that this
solution could be written as terms of normal-mode form
plus a residual.The latter comprised a contribution which
was O(1) as t » » for wavelengths shorter than the short-
wave cut-off to normal-mode instability, while for longer
-wavelengths the residual decayed at large time. Thus if
an initial perturbation is represented by a Fourier
expansion of terms of form (5.1) the solution is eventu-
ally dominated by the most unstable mode.
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‘An.explicit solution to the initial-value problem was dis-
cussed by Simmons and Hoskins (1979). (5.2) was inte-

grated with respect to time to give

a2 52 : .
876 42 =[ 3% _ d2¢] o—lazt (5.5)
3z 2 3z 2 _

t=0
and in the special case of an initial perturbation with
amplitude independent of height, and equal to unity,  the
right-hand side of 5.5 became simply - a? exp(-iazt).
Then |

e—iazt .
$(z,t) = =——— + A(t) coshaz + B(t) sinhaz (5.86)
(1+t2)
with A(t) and B(t) determined by the boundary conditions
(5.3) and (5.4). Explicit expressions for A and B have
been given by Simmons and Hoskins.

As a particular example we take the initial perturbation
to be independent of height, with a relative vorticity

which varies longitudinally as

2 Tx _ x2/42 L« <L

cos” exp(- x</d°) 5 X 5
. s . - _ L L
Assuming periodic boundary conditions at x = - 5 and oL
solutions of the form 5.6 are determined for k = 2n7/L,
n=1,2,3..., and combined numerically to give

an initial perturbation of form 5.7. Parameter values
3(m s Nk, H = 10 km, £ =10% s § = 1072
5000 km, L = 30,000 km and d = 1000 km.

are §
s—l, Y

it

Height/longitude cross sections showing the initial rela-
tive vorticity perturbation and that after 2, 4 and 6 days
are presented in Fig. 5.1. Immediate consequences of the
symmetry of the basic state are that the initial disturb-
ance moves at the mid-level with the flow speed at that
level, and also that the upper-level downstream develoypment

-1s identical to the low-level development upstream of the
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initial disturbance. The latter can be seen to develop
soon the‘wéstward tilt with height which characterizes

a growing baroclinic wave, and thereafter a succession of
troughs and ridges develop upstream and downstream. New
disturbances appear first with a small horizontal length
scale which expands towards that of the most unstable
normal mode. Fig. 5.1 shows the low-level disturbances
to form regularly close to one fixed longitude in this
case of zero surface flow, while downstream disturbances
first appear at a position on the upper surface which
moves with a speed indistinguishable from that of the

basic flow. at this surface.

. DAY

4 5 6 7 8 9
Amplitude of ' .05 .26 .82 2.2 5.8 14.6
upper maximum (.06) (.23) (.79 (2.2) (5.8) (14.6)
Zonal extent (km) 1400 - 1300 1400 1500 1600 1700
Phase speed (m s”l) 17 18 18 17 16 16

|Growth rate (day™') 2.2 1.4 1.1 1.0 0.9 0.9

Upper-level amplitude
Surface amplitude

- 13.7 7.2 5.3 4.3

TABIE 5.1 The variation in time of several properties
of the positive vorticity region which at day 4 is the
latest downstream system. Zonal extent, phase speed

and growth rate are estimated at the upper surface.

Further detail is given in Table 5.1 for the latest
downstream disturbance shown in the plot of the vor-
ticity at day 4. For comparison, the most unstable
normal mode has a half wavelength of 2100 km, equal sur-
face and upper maxima in relative vorticity, a phase
speed of 15 ms™1 and a growth rate of .74 day—l. Thus
from the Table it is seen that the growth rate of the

new upper-level disturbance is significantly more rapid
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than that of the most unstable normal mode, while its
phase speed is only slightly faster. The vertical vari-
ation of amplitude only slowly approaches normal-mode
form, -although phase tilts appear from Fig. 5.1 to be

set up more quickly. It should in addition be noted that
downstream development at the lower surface also occurs
substantially faster than a normal-mode calculation based
on the local amplitude of the incipient surface pertur—
bation would suggest. Examination of maps of surface
pressure shows this commonly to be the case in reality,
and it is clear that very rapid initial growth rates, such
as found by Buzzi and Tibaldi (1978) in a case study of
lee cyclogenesis, do not imply that baroclinic insta-

bility is not a causative factor.

The bracketed figures for upper-level amplitude in Table
(5.1) are obtained from the part of the solution that

is given by exponentially-growing normal modes, and the
agreement with unbracketed figures clearly illustrates

the results of Pedlosky's analysis.

Interpretation

a. Omega equation

A diagnosis of the initial-value problem for the Eady
model may readily be made using the formulation of the
quasi-geostrophic "w-equation" described by Hoskins et
al. (1978), and'ihtroduced in the first lecture. We con-
sider the development in time of the vertical component
of relative vorticity, £. It satisfies the prognostic
equation

D .5 8 = oW ‘ (5.8
(at + 1 3X> £ f ( )



with the vertical velocity w determined diagnostically by
solution of the equation. '
2w

2 _a___ 2 2 = :
fo 2 + N Vh W 2f0

L~5]
Y

(5.9)

ol
zl

Since the left-hand side of 5.9 is of the form of a three-
dimensional Laplacian operator acting on w, to a first
approximation the sign of w will be opposite to the sign

of the right-hand side. Thus when westerly winds increase
with height in the northern hemisphere (fo du/dz > 0)

we anticipate ascent in a region in which the relative
vorticity decreases with increasing longitude (3g/3x < 0),
and descent in the reverse case. As vertical velocity
vanishes at the upper and lower boundaries a region of
ascent will, through the "stretching'" term on the right-
hand side of (5.8), give a tendency for a reduction in
vorticity at upper levels, and an increase at lower levels.
Vorticity will also change as a result of advection by

the basic zonal-mean flow, but for a vorticity distribution
of limited spatial extent, the solution of (5.9) will
generally give a vertical velocity distribution of broader
extent than the vorticity gradient, and thus the stretching

term dominates at the fringe of the disturbance.

The development illustrated in Fig. 5.1 may be analysed in
terms of these ideas. The initial isolated source of posi-
tive vorticity gives ascent downstream of the vorticity
maximum, and descent upstream (Fig. 5.2a). The resultant
stretching term at the upper boundary is generally larger
than the advection term (measured relative to the mean flow)
and thus at the upper level there is a tendency to gener-
ate negative vorticity downstream of the initial maximum,
and positive vorticity upstream. Since the reverse occurs
at the lower surface, the region of positive vorticity ac-
quires a westward tilt with height, and regions of negative

vorticity form downstream at the upper surface and upstream
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at the lower surface (Fig. 5.2b). Areas of downstream
descent and upstream ascent are associated with these
regions of negative vorticity, and the consequent stretch-
ing and shrinking yields the vorticity distribution
sketched in Fig. 5.2c¢). It should also be noted that the
pattern of vertical velocity shown in Fig. 5.2b) tends to
lead to the reinforcement of the initial vorticity maxi—

mum.

Computations of the stretching and advection terms for
this case, and further discussion, are given by Simmons
and Hoskins (1979).

b._ _The normal-mode_ approach

We have already noted that the solution at large time is

dominated by a sum of exponentially-growing modes, and

as modes with different wavenumbers have different growth
rates it is clear that an initially-isolated disturbance

will spread as a series of developing troughs and ridges.
Asymptotic theory may be used to determine some of the

characteristics of this spreading.

We examine solutions of the'form

v(x,z,t) = J a(k) ¢k(z)eik(x—c(k))tdk

—_ 00

(5.10)

in the limit as t * = . Here c(k) is the complex phase
speed determined by the normal-mode instability problem
for wavenumber k, and ¢k(z) is the corresponding vertical
structure function. a(k) is determined by the form of the

initial perturbation.

‘The asymptotic theory for expressions of the form 5.10
has been extensively developed in plasma physics (see,
e.g., Bers (1975)), and limited applications to baro-

clinic instability in two-level models have been made by
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Thacker (1976) and Merkine (1977). We consider the sol-

ution at a point x which moves downstream with velocity
U. Then

—1Q(k)tdk

= J( a(k) ¢, (2)e (5.11)

—00

where 2(k) = k(c(k) - U). The rate of spreading of the
disturbance is given by the velocities U which are limit-

ing values beyond which (5.11) yields decay as t » o

The asymptotic theory requires a(k),¢k (z) and c(k) to be
sufficiently well behaved functions of k for the contour
of integration in (5.11) to be deformed off the real-k
axis. This deformation is performed in the direction which
diminishes Im(® (k)) for all k, and continues until one

of two possibilities occurs. The first of these is that

a contour is reached with Im(® (k)) < O for all k, in
which case ¥ does not grow as t -~ = , and the solution is
seen as stable by an observer watching a point moving
with the particular velocity U. The second possibility is
that one encounters a saddle point, at k = kS say, where
3/8k = 0, and Im(gz(ks)) > 0. In this case, as discussed
by Bers, instability occurs locally and the solution as

t > = is proportional to

ak_) ¢ks (z) t7F 10kt

This gives a local wavelength 24 /Re(ks), a local growth

rate Im(sz(ks)), and a local phase speed Re( g (ks))/Re
(ks) + U.

For the Eady problem a dimensionless form of . Q is

0(k) = k(3-1) :tv/kg - coth )(§ - tanh %) (5.12)
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- 2 2
where k is scaled by f_/NH, U by AH, andcx-‘V£2+w2N2H /E£2Y
In the special case of infinite meridional scale,a = Kk,

a solution of analytical form may be found for the fringe
of the instability.

Replacing o by k, (5.12) gives

39 _ 1 v 1 1] 5.13)
31';-5"”-4[X+ (

k K
X = tanh? %—\/(—12% - coth —12-‘-] [5 - tanh EJ

Taking the positive root, a saddle point (92/3k = 0)
occurs for

X =-(1-20) % 2+VU0% -0

When U = 1, the dimensionless speed of the basic flow at
the upper surface, ©¢9/9k Q0 ags k > = , and analyti-

cal solutions may be obtained for values of U close to 1.

We set U =1 -¢, where O < € < 1, The saddle point then
occurs for

1
X =1 % 2ie® + 0(e).

and this gives

. .om %
kg = - n(e®) - n(3) £ 15 + 0(e¥)

The positive root gives a saddle point with positive Im(Q ) >
and thus demonstrates the existence of local ins}ability
with a short zonal wavelength of order - 27/&n(e?),

a local growth rate of order €7 /2, and a phase speed of

1
order 1 + 1/&n(e?) . A similar approach reveals local
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stability for negative e.

The above analysis thus indicates that the downstream
fringe of the disturbance will move with the speed of the
basic zonal flow at the upper surface. Although further
analysis shows that the time at which the asymptotic
solution becomes formally valid increases without bound
as £+0 this result is in good agreement with the behav-
iour of the complete solution as examined after as short
a time as one day. By symmetry, or by analysis of the
negative root of (5.13) as k  *+-* , the asymptotic
theory predicts that each new low-level disturbance will
develop at the same location if the zonal flow is zero

at the surface.

Repetition of the analysis for U =1 - when the per-
turbation has finiteé meridional scale Y r§vea%s stability
to leading order in €, with kg ~ (NHw/fY¥)® e~

However, a numerical determination of saddle points for
Y = 5000 km, the case considered in Fig. 5.1, indicates
that instability occurs for U < .996, and local wave-
lengths, phase speeds and growth rates, which are shown
in Fig. 5.3, differ little from the case of infinite Y.
As found for the complete solution discussed previously,
new disturbances rapidly attain a phase speed little more
than of unstable normal modes. Wavelengths are initially
about half that of the most unstable normal mode, and
subsequently increase gradually. The local growth rate

increases with increasing distance from the fringe.

It is important not to confuse the '"local growth rate"
discussed above with the growth rate estimated for a par-
ticular disturbance, which we have seen can well exceed
normal-mode values. The local growth rate for a point
moving with velocity U is a measure of the rate of in-

crease of amplitude at that point. However, phase speed
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is less than U if 4 < U <1 , and individual disturb-
ances will thus be moving towards lower U, and thus
towards a region of higher local growth rate. The growth
rate estimated for a particular disturbance may thus

significantly exceed the local growth rate.

Further linear quasi-geostrophic solutions

Further linear quasi-geostrophic solutions have been
discussed by Simmons and Hoskins -(1979), and we summarize
these here. Considering first the Eady basic state we
note that for infinite meridional scale the time scale

of the development is simply inversely proportional to
the vertical shear of the mean flow, and this holds to
good approximation for meridional scales of the order

of several thousand km. Changing the Coriolis parameter
or static:stability does not significantly alter the rate
of spreading, but changes the local wavelength and growth
rate. Asymptotic theory predicts that the rate of
spreading, and local wavelength, phasé speed and growth
rate, are generally independent of the form of the
initial perturbation; some comparisons are given in

Fig. 5.4.

Fig. 5.5a) illustrates the vorticity at day 6 for a para-
bolic flow profile with the same velocity difference
between upper and lower surfaces as in Fig.5.1 but with
shear concentrated near z = 0 . The rate of spreading of
the instability is much as before, but the downstream
development is of longer wavelength and deeper vertical
extent. Fig. 5.5b) shows the change to the case shown in
Fig. 5.1 that results from inclusion of compressibility
with a density scale height of 7 km. There is a small
reduction in the rate at which the instability spreads
downstream.
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Fig. 5.6 shows how the solutions for day 6 presented in
Figs. 5.1 and 5.5b) are modified by including the g -eff-
ect. Here g = 1.6x10_1ls—1. The fringes of unstable
regions are masked by small-amplitude longer-wavelength
components of Rossby-wave type, but‘detailed examination
shows the upstream fringe again to be located close to a
fixed position. Fig.v5.6 re-emphasizes the slowing of the
downstream fringe which results from the variation of
density with height, and the B —effect itself causes some
further slowing. Downstream disturbances are generally

of longer wavelength and deeper extent than found for

the Eady basic state, while upstream disturbances are

somewhat shorter and shallower.

Non-linear primitivg—quation results

Simmons and Hoskins (1979) also presented results from
some non-linear integrations using a hemispheric primitive-
equation model. Fig. 5.7 illustrates one initial dis-
tribution of surface pressure, together with the resulting
distributions at days 5, 8 and 11. New disturbances form
downstream with a length scale that corresponds closely
to that of zonal wavenumber 6, and the downstream fringe
moves at about 35-40° longitude/day, this corresponding
to a velocity of 33-37 m s_1 at the latitude of the jet
maximum, where the initial flow speed is 47 m S_l. We
again note the formation of smaller-scale upstream dis-

turbances at a position close to that of the initial per-
turbation.

Most of the upper-level wave activity is associated with
the developing downstream disturbances, and these reach
larger amplitude than found either for earlier disturb-
.ances or for normal-mode initial Cbnditions(see Lecture 6).
Downstream development occurs first in the upper tropos-

phere, and upper-level maxima occur earlier than surface
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maxima in later systems.

In the linearized problems considered earlier in the
lecture the wavelength of a particular disturbance eventu-
ally approaches that of the most unstable mode. In this
and other non-linear examples wave growth ceases before
normal-mode form is established, with downstream length
scales some 30% longer than that of the most unstable
mode, and some significant differences in structure.

Further discussion has been given by Simmons and Hoskins.

Predictability

The possibility that the major trigger of baroclinic
instability is provided not by random smail—amplitude
perturbations, but by large-amplitude disturbances some
distance from the region in which a new disturbance de-
velops, is evidence for the longer-term predictability
of large-scale atmospheric motion. Conversely, models
designed for weather prediction are prone to errors in
phase speed, and might be thought to be weak at simu-
lating events involving dispersion which typically
depends on the variation of phase speed and growth rate
with wavenumber. The examples considered in this paper
indicate, however, that the overall development is not
especially sensitive to details of the model employed,
particularly as regards the spreading of the instability,
and it is thus difficult to draw any specific conclusions
regarding predictability from these studies.

Hollingsworth et al. (1979) have recently examined the
numerical simulation of observed cases of downstream
propagation. The mainly dynamical nature of the phenomenon
was confirmed by the similarity of results obtained using
two quite different physical parameterizations. Both

successful and unsuccessful simulations were noted, and
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it appeared that forecast success depended strongly on
the initial data. In a successful case the phenomenon
was predictable nine days ahead. Hollingsworth et al.
also noted the necessity to maintain correctly the
location of the quasi-stationary troughs for a successful

forecast of downstream propagation.
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Height/longitude sections showing the relative vorticity at
days 0, 2, 4 and 6 for the Eady basic state. Contours are
drawn for values £.01, *1, £2.5, *5, *10 and *25. The zero
contour is not drawn in order to avoid the illustration of
small-scale variability of negligible amplitude.
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Fig. 5.3 Local wavelengths, phase speeds and growth rates determined

by numerical calculation of saddle points for the Eady basic
state specified in the text.
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(a)

(b)

(c)

Fig. 5.4 Height/longitude sections showing vorticities at day 6 for

three different initial perturbations. Details are as for
Fig. 5.1. For Cases a) and b) the initial longitudinal
scale of the perturbation differs from that in Fig. 5.1 while

for case c¢) the initial perturbation is concentrated at
upper levels.
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(b) |

Fig. 5.5 Vorticities at day 6 for (a) a parabolic velocity profile and
(b) a calculation including a decrease in mean density with height.

(a)

(b)

~ Fig. 5.6 Vorticities at day 6 for two calculations including the
R-effect. In this case the zero contour is drawn (with a
heavier line) in place of the contours *.01.
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Fig. 5.7

North polar stereographic plot showing surface pressure at

~days 0, 5, 8 and 11.  Solid contours are drawn at intervals of

4 mb for values 4 mb, 8 mb ..... , while the dashed contours

are for values +4 mb. Background lines of latitude and
- longitude are drawn at intervals of 209.
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6. THE LIFE CYCLES OF NON-LINEAR BAROCLINIC WAVES

In this lecture we examine the non-linear development of
baroclinic waves, concentrating our attention on the be-
haviour of the larger scales of motion. The formation, on a
smaller scale, of atmospheric fronts will be the topic of
following lectures.

Two types of approach have been adopted in the study of
large-scale non-linear behaviour. The first (e.g. Pedlosky
1972) has been to examine using largely analytical methods
how non-linearity modifiés the development of marginally-
unstable modes. The second has been to investigate rela-
tively complete numerical simulations of the growth and
subsequent behaviour of rapidly-growing modes. This latter
approach, whilst not giving the type of precise understand-
ing that can be obtained from an analytical solution,
nevertheless yields results of more obvious atmospheric

relevance, and it is this which will be considered here.

We thus investigate some aspects of non-linear behaviour
by means of a series of numerical integrations of the
primitive equations with spherical geometry. Initial con-
ditions comprise in each case a zonal, baroclinically-un-
stable jet perturbed by a small-amplitude disturbance of
predetermined normal-mode form. The results presentéd
largely summarize the study published by Simmons and
Hoskins (1978), which confirmed a number of results con-
cerning the non-linear modification of wave growth ob-
tained earlier by SimDns (1972) and Gall (1976 b), and
which also provided evidence concerning the behaviour of

the large-scale fields once baroclinic growth has ceased.

The numerical model

The numerical model used to obtain the results presented

here was the spectral model described in detail by Hoskins
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and Simmons (1975). For these calculations a triangular
truncation at total wavenumber 42 and 14 unequally-spaced
levels in the vertical were used. The model included no
parameterization of physical processes other than a bi-
harmonic internal horizontal diffusion, Further details are
given in Simmons and Hoskins (1978).

Initial Conditions

Each integration had as initial conditions a zonal jet per-
turbed by a small-amplitude disturbance of normal-mode
form. For a given zonal wavenumber this mode was predeter-
minéd. by applying the initial-value technique used by
Brown (1969) to a linearized, adiabatic version of the nu-
merical model. When used as initial conditions for a non-
linear integration each mode was scaled to give a surface

pressure wave of amplitude 1 mb.

The zonal flows chosen for study were those whose linear
stability was examined by Simmons and Hoskins (1977). All
have a maximum at 200 mb, and will be referred to by their
horizontal structures, which comprise jets of relatively
broad meridional scale centered at 30° and 55° latitude, a
jet centered at 450, and a second 30° jet of smaller mer-
idional scale. These flows were not intended to model in -
detail any specific observed or climatological profile,
and should be regarded as particular examples from a range
of possible atmospheric flows. Since the qualitative
nature of solutions varies little from flow to flow, we
concentrate on results for the 45° jet. Most discussions
will refer to initial perturbations with zonal wavenumber
6.

Some synoptic features

The surface pressure and low-level temperature after seven

days of integration are illustrated in Fig. 6.1 for the



114

wavenumber 6 disturbance to the 45° jet. By this time the
surface low has deepened to an amplitude of about 32 mb

and moved some 8° poleward to a position 12° north of the
jet maximum. There is a larger area of weaker high pressure
to the south. The temperature wave shows a pronounced dis-
tortion, with the strongest gradients located in positions
typical of occluded and cold fronts, and the region of
relatively warm air has diminished as the wave develops.
These and other fields are in close agreement with the
usual synoptic picture of anoccluding mid-latitude dis-
turbance. Little further intensification occurs at the sur-
face beyond this time.

The streamfunction at an upper tropospheric level is illus-
trated in Fig.6.2 for day 8 and the five following days.
The sequence shows the disturbance continuing to grow up
to a time between day 9 and day 10, during which there is
a gradual enhancement of the southwest to northeast tilt
to the south of the disturbance maximum and a reduction of
the opposite tilt to the north. In the absence of vertical
coupling such a pattern would imply a barotropic strength-
ening of the jet and decrease in wave amplitude. Just such
a process is observed to occur rapidly beyond day 10.
During this time the tilt of the wave is from southwest to
northeast at almost all latitudes and the corresponding

eddy momentum flux is almost entirely poleward.

A similar sequence occurs at other upper tropospheric and
lower stratospheric levels. Such pronounced tilts are not
evident in patterns of low-level streamfunction, but here
too there is a significant loss of eddy energy between days
10 and 12 and an enhancement of the easterly-westerly-
easterly distribution of surface zonalmean wind forced by

the wave in its growing phase.
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Energetics

The growth and decay indicated by the synoptic features
described above are illustrated in Fig. 6.3 which shows the
variation in time of eddy energy for initial wavenumber 6
disturbances to three zonal flows. In each case growth of
the disturbance is followed by a period during which it
decays at much the same rate as that at which it grew. It
is clear‘that well-defined life cycles exist.

An example of the variation with time of the various ener—
gy conversions is given in Fig. 6.4 for the wavenumber 6
disturbance to the 45O‘jet. Up to day 8 baroclinic pro-
cesses evidently dominate, with conversions from zonal to
eddy available potential energy and from the latter to
eddy kinetic:energy. As these conversions decrease in
magnitude the barotropic conversion from eddy to zonal
kinetic energy becomes dominant, reaching a maximum value
at day 11 when the baroclinic conversions have decreased’
almost to zero. Although at each day the internal dissi-
pation is weak compared with the major conversions, its
overall effect is significant, the net loss of zonal
available potential energy being slightly more than twice
the gain of zonal kinetic energy. A similar cycle is found

in other cases.

A feature of the nonlinear growth of many disturbances is
the development of amplitudes that are substantially larger
at upper levels than close to»the surface. This is illus-
trated in Fig. 6.5 which shows the distribution with lati-
tude and height of the eddy kinetic energy density at days
O and 10, and the distribution averaged over the 10 day
period from day 4 to day 14. At day 10 the eddy kinetic
energy is a maximum, and the contribution from about this
time dominates the average over the 1ife cycle, as is the

case for many other fields.
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Factors determining the cessation of wave growth

Results for a variety of flows reveal substantial vari-
ations in the maximum attained levels of eddy energy. Maxi-
mum values are reached a few days after the time the meri-
dional temperature gradient first reverses somewhere at
the surface, and at a time when the low level static stab-
ility has been significantly increased. Determination of
the most unstable normal mode for the zonal-mean state at
this time indicates that a marked change of structure
would be required to achieve further (but much weaker)
baroclinic growth. What appears to happen in the examples
presented here is that barotropic processes bring about a
decay of amplitude, and further zonal-mean changes, before
such an adjustment can be completed. As growth ceases
there remains a considerable amount of zonal available po-
tential energy. Thus the indication is that growth is
limited largely by a local stabilization of the flow,

rather than by the overall amount of available energy.

We have already noted a tendency for some growth at upper
levels after it has ceased at the surface, this giving
relatively larger upper-level amplitudes than found for
normal modes. In diagnosing this, it is found that vertical
energy transfer plays a relatively small role in the
separate kinetic energy budgets of the upper and lower
troposphere. Larger upper level amplitudes may thus be
viewed as resulting from a larger upper level conversion
of eddy avalable potential énergy to eddy kinetic energy.
This in turn may be linked with the tendency inherent in
normal-mode results for zonal-mean changes to be concen-
trated at the surface, thus leaving an upper level structure
initially more suitable for further baroclinic growth than
that at lower levels. This lasts only for a limited period
of time,and upper-level growth ceases as barotropic effects

become dominant.
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Barotropic effects may also exert an influence on eddy
energy levels earlier in the iife cycle., A marked example
of this is given in Fig. 6.6, which shows the two conver- -
sion terms involving eddy kinetic energy for two inte-
grations using wavenumber 6 initial conditions. Both have
a virtually identical zonal-mean temperature field (which
is close to that associated with the 450jet) but in case
W55 there is an approximately barotropic flow component
with a 10 ms4lwester1y surface maximum at latitude 55°
and a latitudinal width of 30° superimposed on the bal-
anced jet with zero surface flow, while for E55 the baro—
tropic component is of similar form, but easterly. Normal-
mode growth rates for the two cases differ little, and

the development is similar to day 5. Between day 5 and day.
7, however, the barotropic conversion for case E55 changes
markedly from normal-mode form, and instead of inhibiting
growth it enhances it. The resulting maximum eddy kinetic

energies differ by a factor of more than 5.

Although the above case is extreme in that particularly
strong surface easterly flow is set up near 55° in the
absence of surface friction, it nevertheless appears that
such barotropic effects may be of some quantitative im-
portance in reality. Certainly the level of energy reached
by a growing baroclinic wave appears to be determined
rather subtly. |

Eddy fluxes and mean meridional circulations

Meridional cross sections showing (normalized) poleward
eddy heat fluxes averaged over the life cycles of various
disturbances with initial zonal wavenumber 6 are presented
in Fig. 6.7. In comparison with linear calculations (e.g.
Fig. 4.3, solid curve) upper tropospheric fluxes are sig-
nificantly larger relative to surface values, and now exhi--

bit the observed secondary upper tropospheric maximum
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(Oort and Rasmusson, 1971; Newell et al., 1974). Fluxes
are also of broader meridional scale, particularly at low

levels.

The corresponding patterns of poleward eddy momentum fluxes
are illustrated in Fig. 6.8, and exhibit much less vari-
ation from flow to flow than is the case for linear modes
(Fig. 4 .9.Increases in upper level amplitude and changes

in tilt as the waves mature and decay are reflected in
momentum fluxes which in all cases -are concentrated in the
upper troposphere, with predominant poleward maxima located
at latitudes close to those of the initial jet maxima.

Such results are in good agreement with observed net tran-
sient eddy fluxes (Oort and Rasmusson, 1971; Newell et al.,
1972). |

The magnitudes of eddy momentum fluxes measured relative
to heat fluxes are much larger than in linear solutions,

and these also are in better agreement with observations.

The corresponding mean meridional circulations differ

from those induced by the normal modes in that there is an
increase in the relative strength of the cell equatorward
of the jet maximum, and a reduction in the polar cell. We
have already seen that in the quasi-geostrophic approxi-
mation the mean circulation is determined by eddy heat and
momentum fluxes and acts to maintain thermal-wind balance.
The change noted here is consistent with the enhanced

upper-level poleward momentum flux discussed previously.

Zonal-mean changes

The different regimes of baroclinic growth and barotropic
decay are clearly illustrated in Fig. 6.9,which shows the
strength of the maximum upper level zonal-mean flow as a

function of time for the 45° jet. A feature of normal-mode
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solutions that has been noted is a relatively small induced
upper level change to the zonally averaged state, and this
result appears from Fig. 6.9 to continue to hold up to
about the time of maximum disturbance energy, day 9, al-
though by this time some change in shape of the upper level
jet has occurred, the maximum being located some 5° nearer
the pole. ‘

Rapid production of a stronger jet of smaller meridional
extent takes place over the next three days as the wave
decays, and this is followed by a slow decrease in the
strength of the jet. During the latter there is a weak
transfer of zonal to eddy kinetic energy, and the internal

dissipation of zonal kinetic energy is of the same order.

Zonal-mean temperature. changes over the life cycles of dis-
turbances are largest at the surface, where theére is a
marked reduction in the mid—latitude'temperature gradieht,
although sharper gradients are formed to north and south.
There is remarkably little overall change in the middle

and upper troposphere, and an enhanced (reversed) lower-
stratospheric temperature gradient in association with the

stronger upper- troposphere jet.

Shorter zonal wavelength perturbatipns

Shorter zonal wavelength normal modes generally have am-
plitudes more concentrated at the surface than longer
wavelength modes, and differences in structure revealed
by linear theory are found to be enhanced by non-linear
effects. In the absence of any representation of moist
processes these shorter waves do not exhibit a pronounced
upper level growth around the time growth ceases at the
surface, and although linear growth rates may be larger
than for longer wavelength modes, maximum energy levels

are generally significantly smaller. In addition the
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horizontal structure of short wavelength disturbances re-
mains similar to normal-mode form, Simmons and Hoskins
(1978) showing a predominantly equatorward eddy momentum

flux for the wavenumber 9 initial perturbation to the 45°
jet.

Eady (1949) pointed out that the low effective static stab-
ility associated with moist air may result in the rapid
development of shorter wavelength features, and the in-
fluence of moisture has been the subject of a number of
more recent stability studies. For example, Tokioka (1973)
showed that inclusion of a parameterized convective heating
caused a decrease in the most unstable wavelength and an
increase in growth rate. Non-linear integrations by Gall
(1976 c) showed wavenumber 15 to have a much more pronounced
growth and much larger upper level amplitudes when moist
brocesses were included. The 1bnger waves nevertheless
reached significantly larger energy levels, as in the

dry experiments noted above.

The large differences in the non-linear behaviour of long
and short waves may pose difficulty for eddy-flux para-
meterizations of the type used in climate models. In par-
ticular it appears necessary in a parameterization to
specify the spectral distribution of eddy fluxes. Knowl-
edge of the linear growth rate spectrum may be of help in

this respect, but it is not clear that this is sufficient.

The barotropic decay process

A detailed discussion of the barotropic decay process
noted for longer-wavelength disturbances has also been
given by Simmons and Hoskins (1978). 1t was shown both
experimentally and theoretically that as baroclinic growth
ceases, the motion becomes to good qualitative accuracy

as described by the barotropic vorticity equation, as in-

deed has been long recognized synoptically (Charney et al.
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1950). However, the vorticity actually changes at about
half the rate which would occur in a purely barotropic
fluid (see Fig. 6.10) because of an adjustment (through
vertical motion) of the temperature field to maintain ther-

mal wind balance.

Further barotropic integrations clarified the reasons for
the pronounced wave tilts and decay of eddy energy.. As

in essence recognized synoptically by Namias and Clapp .
(1944), marked latitudinal variations in the mean flow and
length scale of the quasi-barotropic wave gave rise to
différent phase movements at different latitudes. In par-
ticular, the change in the zonal-mean vorticity gradient
was shown to be of crucial importance for the establish-
ment of predominantly poleward momentum fluxes. Reference
should be made to the paper by‘Simmons and Hoskins for
further detail. |

Some numerical aspects

2) Horizontal resolution

A number of integrations have been performed using differ-
ent horizontal resolutions for the case of the 450,jet-
with wavenumber 6 initial conditions. Use of triangular
truncation at wavenumber 63 (T63) gave results very similar
tokthose using T42, but some marked differences were found

using lower resolutions.

The lower-resolution integrations comprised runs with
triangular truncation at wavenumber 21 and rhomboidal
truncation at zonal wavenumber 16, together with a zonally
truncated version retaining only zonal-mean and wavenumber
6 components, meridional resolution being as in T42. The
resultingAvariation in eddy energy shown in Fig. 6.11 in-
dicates close agreement up to day 7. Maximum energies

reached at day 9 are 20% lower in all three,lower‘resol—
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ution integrations, agreement being apparently fortuitous
as there are larger but cancelling differences in energy

conversions at day 8.

Results beyond day 9 show more substantial differences.
The rhomboidal integration captures the relatively rapid
decay in wave amplitude found in higher resolution re- o
sults, but the other two show little initial decay and
generally less loss of eddy energy, with averaged poleward
momentum fluxes that are only about half that obtained
using higher resolutions. The rhomboidal resolution uséd'
here represents the hemispheric meridional structure of
zonal wavenumber 12 by eight nonzero modes, just three
more than in the lower resolution triangular truncation,
but these additionai modes appear to give rise to a much
more accurate representation of the decay. Care should be
taken in interpreting this as evidencé favouring rhom—
boidal truncation for general use, since for relatively
low resolution the appropriate choice of truncation
appears to be quite dependent on the pérticular nature

of the problem under investigation (Simmons and Hoskins,
1975).

b) Internal diffusion

Some form of internal dissipation is necessary in numeri—‘
cal experiments designed to simulate the full life

cycles of baroclinic waves in order to prevent the
attempted formation of fronts on scales that cannot be re-
solved, but the ideal form of dissipation is far from
clear. To obtain some indication of the sensitivity of
results presented in this lecture to dissipation, several
experiments have been performed. For the wavenumber 6 dis-
turbance to the 45° Jjet thése comprised halving the dif-
fusion coefficient everywhere, reducing it aboVe 0=0.5 to
a quarter of its standard value, and doubling it every-

where as applied to vorticity and divergence but halving
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it as applied to temperature. Resulting changes were
small, amounting to at most 10% for the averaged eddy heat
and momentum fluxes, and up to 20% for the more subtle

net change to the upper level zonal-mean flow. Such.
differences are insignificant in the present context in
view of marked quantitative differences from flow to flow

and qualitative differences between wavenumbers 6 and 9.

Recent analytical studies of the interaction between waves
and the zonal-mean state (Andrews and McIntyre, 1976,1978;
Boyd, 1976) have generalized earlier work and reemphasized
the crucial importance of transience and dissipation in
bringing about zonal-mean changes. With this in mind it
should be noted that our finding that net changes are not
particularly sensitive to the formulation of the 1nterna1
dissipation does not imply that dissipation itself is
unimportant. We have already noted that over the life
cycle of the wavenumber 6 disturbance to the 45° jet the
net dissipation accounts for about as much o6f the loss of
zonal available potential energy as does the gain in

zonal kinetic energy. In the corresponding experiments
with different forms of diffusion, compensating changes

in the amplitudes of smaller scales result in net dissipa-
tions which differ by less than 25%. The lack of sensi-
tivity to the precise formulation suggests the possibility
that the dissipation is mainly determined by the large-
scale motion. This is consistent with theoretical work
presented in the following lectures that envisages fronto-
genesis as being a direct result of the large-scale flow

in a growing baroclinic eddy.

Concluding Remarks

It is evident from the examples presented in this lecture
that nonlinearity can significantly modify several results
of linear stability theory. Finite-amplitude disturbances

exhibit more baroclinic growth at upper than lower levels,
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and a subsequent quasi-barotropic behaviour. Related
changes in structure are of particular significance in
that the largest eddy fluxes occur close to the time of
maximum eddy energy, when deviations from linear theory
are marked. One result is that net eddy fluxes of both
heat and momentum have upper level amplitudes substan-
tially larger relative to surface values than given by
linear stability analyses, and agreement with observation

is improved.

Barotropic processes become important as the disturbance
occludes, although the three-dimensional nature of the mo-
tion is such that the response of the vorticity field is
about half that which would occur in a barotropic fluid.
Eddy momentum fluxes become stronger relative to heat
fluxes, and predominantly poleward for the longer wave-
length disturbances which dominate at upper levels. These
changes are also such as to bring results into closer
agreement with observation. In the present examples we
find a barotropic decay of wave energy at a rate similar

to that of baroclinic growth.

We have noted a number of factors which influence the
level of energy reached by a developing wave, but this
level has been found to be quite variable from case to
case, and difficult to estimate in advance of numerical
integration. Barotropic processes depend on the second
derivative with respect to latitude of the zonal-mean
zonal flow, and the decay is inadequately represented in
lower resolution models. Errors in the intensity and dis-
sipation of mid-latitude systems can be a problem in
numerical models designed for forecasting or general cir-
culation studies, and diagnosis of the causes of any such

errors is unlikely to be straightforward.

The differences in behaviour noted here between longer and
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shorter wavelength disturbances is consistent with the
classical synoptic distinction between "long waves'" (with
zonal wavenumbers 3-7) which typically dominate the upper
level flow and shorter, shallowef ﬁcyclone waves," sev-
eral of which may deVelop in‘succession superimposed on a
relatively stationary long-wave pattern(see e.g., Palmen
and Newton, 1969).Although the shorter waves are respon-
sible for much of the day-to-day variability of surface
weather in middle latitudes their 1nd1v1dua1 influence
on the upper flow 1s Weak Studles of the longer waves
(e.g., Cressmanv 1948) have noted their: tendency to re-
main almOst‘statlonary for several days, but emphasis has
also often been placed on their growth, dlstortlon or decay
(such as 111ustrated in th1s lecture) since a change in
long-wave pattern may bring about a basic change in weath-
er type, and thus may be of importance for extended range
forecasting.

Such synoptic considerations lead us to stress in con-
clusion, that We,have‘examined some nonlinear aspects of
baroclinic Waves-in what is still, in comparison with the
atmosphere, a very simple situation. In particular, the.
barotroplc decay of a wave- takes place with 1dent10a1 d1s—
turbances and jets both upstream and downstream. Examln—
ation of either sequences of 300 mb charts or past synop-
tic studies (e.g., Newton et al., 1951) does indeed reveal
events resembllng those illustrated in Fig. 6.2, but a
variety of other behaviour may also be observed. Thus the
barotropic'decay discussed here, and associated effects

on eddy fluxes and the zonal—mean state, should be re—; f”
garded - not as general propertles of mature atmospherlc
systems, but rather as propertles of one particular type

of atmospheric behaviour.
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North polar stereographic plot showing surface pressure

(solid contours) and low-level temperature (broken contours)
after seven days of integration for the wavenumber 6 perturba-
tion to the 45° jet. Contours are drawn at intervals of 8 mb
and 4°C using linear interpolation between values on the
computational grid comprising 32 "Gaussian" latitudes and 32
regularly spaced points per 9 0° longitude. Background lines
of latitude and longitude are drawn at intervals of 20°.

Streamfunction at an upper tropospheric level at daily intervals
from day 8 to day 13 for the wavenumber 6 perturbation to the
45° jet. The zero contour is dashed to avoid emphasis of
insignificant small-amplitude variability close to the equator,
and the contour interval is 1.5 x 10-3 a2Q , where a is the
radius of earth and Q its angular velocity.
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Variation with time of various energy conversions and the net
rate of energy dissipation (dotted curve) for the wavenumber 6
disturbance to the 45° jet. A, and K, are the zonal and eddy
available potential energies, and K, and K, the corresponding
kinetic energies. Positive values of C(Az> Ag) imply a transfer
from A, to A,, and negative values imply a reversed transfer.
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Fig. 6.5 Meridional cross sections of eddy kinetic energy density

[4(u'2+ v'2)] at (a) day O, (b) day 10, and (c) averaged from

day 4 to day 14, for the wavenumber 6 disturbance to the 45°

jet. For this and subsequent sections values are linearly
interpolated to pressure coordinates using a mean surface

pressure of 1000 mb., Contours are drawn using linear interpola-
tion between values defined on the computational grid, and results

are normalized by choosing the contour interval to be one
fifth the maximum value of each field.
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Fig. 6.7 Meridional cross sections of time-averaged horizontal eddy
heat fluxes v'T' for wavenumber 6 disturbances to (a) the 45°
jet, (b) the broad 30° jet, (c) the 559 jet and (d) the narrow
30°jet. The direction of each flux is indicated by an arrow.
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Fig; 6.9 'Variation with time of the maximum zonal—mean ve1001ty in the

case of .the wavenumber 6 disturbance to the 459 jet.

Fig. 6.10 Streamfunctlon after (a) 12 h and (b) 1 day from an 1ntegrat10n
of the barotropic vorticity equation which used as initial
- .. .conditions the field at day 10 shown in Fig. 6.2.
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Fig. 6.11 Variation with time of the net éddy energy for the wavenumber
6 disturbance to the 459 jet integrated using triangular
truncation at total wavenumber 42 (T42), triangular truncation
at wavenumber 21 (T21), rhomboidal truncation at zonal wave-
number 16 (R16) and a severe zonal truncation [(0,6)].
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7. Two dimensional frontogenesis theory: cross-frontal
circulation

The theory presented so far has been based on linear models
or nonlinear integrations of the primitive equations on the
sphere. We have concentrated on the rather larger scale features
of the baroclinic waves but now we wish to turn to some of the
finer structure and perhaps some understanding of the "weather"
associated with them. The obvious smaller scale features which
dominate the forecaster's vocabulary are the fronts which are
embedded in mid-latitude cyclones. The primitive equation
integrations discussed in the previous section do exhibit the
formation of frontal regions, even in the absence of physical
processes such as precipitation. However in any model built to
represent the largest scales of the atmosphere the resolution of
a strong frontal region is limited and such models tend to have
rather weak fronts. The forecaster interested in small length
and time scales clearly requires more detail of frontal regions.
For the forecaster interested in the larger space and time scales
the interest centres on the feedback to the larger scales from
frontal regions. 1In the free atmosphere the dissipation is
concentrated there and so is much of the precipitation. Thus to
both forecasters more understanding of frontal regions is a
necessity.

In this section we follow the work of Sawyer (1956) and
Eliassen (1959, 1962) in deriving an equation for the circulation
in a frontal region. We shall see how this equation leads to

understanding of the reasons for the intensity of surface fronts.

Atmospheric fronts are marked by strong gradients in
velocity and temperature and by rainfall. For strong fronts a
velocity-scale V ~ 20 m s~'and a cross-frontal length-scale
£ " 200 km would be reasonable. Then Ry = V/f2 ~ 1, so that
~quasi-geostrophic theory cannot be strictly applied. However,
it is still not necessary to appeal to numerical solutions of
the full nonlinear equations.
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Fig. 7.1 Scales relative to a stationary front

We choose a coordinate system in Which the front is
vstationary. As in Fig; 7.1, let &, U and L,V be respectively
length and velocity scales across and along the front. Obser-
. vations show that V >> U. To perform a scale analysis, we
assume that D/Dt ~ U/2. Then the ratios of the accelerations

and the Coriolis forces in the x and y directions are

2
.DU/Dt - U/ n [U] -V 1 (7.1)

fv -tV v £e -

and

Dv/Dt _ UV/&  V T :
E<h = ¥ n I AV | . (7.2)

VThus we may use geostrophic balance in the cross-front direction,
but not in the long-front direction: the acceleration of the
long-front wind cannot be neglected. : '
The Boussinesq equations with the cross—front géQStfophy

approximation are ‘ ‘ ' ' o

Dv ap _
)

Dt + fu + = =0 (7.3)

<

D8 (7.4)
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Veu = 0 ,
with fvzgg ’
For simplicity we take f = constant.

From (7.6) and (7.7) we have thermal wind balance

38
ox

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

The role of the cross-frontal circulation is to maintain this

i lanas whesg

SIS =

Py

v is predicted from (7.3) and 6§ from (7.4).

7 A
We set u=u,+u’, v=v , w=w"
g g
where the primes indicate ageostrophic velocities, but no
linearisation is implied. Using (7.8),'g/eOo 9/9x of (7.4
D g 298 _ _du g 36 _ 3v g 38 _ 9w g 238
Dt 6, 9x dx 6 9x 9x 6 _ 3y 9x 6_ 9=z
=q-2u” g 3% aw” g 36
8x 6  38x 90X 0_ 9z

where the purely

The first term in Q describes the formation of larger x-

(7.10)

) gives

(7.11)

(7.12)

temperature gradients due to geostrophic convergence and the

second term the effect of meridional shears in a basic

temperature gradient. Similarly f 5/3z of (7.3) gives
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D 3V _ _ 50UV _ 3V IV _ . 9W IV _ .o JU
Dt 9z - 9Z 98X 9Z 9y 92 3Z oz
| | ng au” g 38 3w~
=‘Q"f(f+ax]§z—e—'a‘;z“a‘z‘ (7.13)

The second line follows after a little manipulation. (7.11) and
(7.13) show that the geostrophic motion acts through Q to tend
to destroy thermal wind balance (7.9) by changing the two halves
equally but in opposite senses. The ageostrophic circulation
(u”,0,w”") acting through the other terms in (7.11) and (7.13)

is necessary to maintain geostrophic balance.

Since the geostrophic wind is non-divergent, (7.10) in

(7.5) gives
+ + == =0 . (7.14)

Therefore we may define a cross-front streamfunction Y such
that |

u = = s w o= - =X . (7.15)

Subtracting (7.13) from (7.11) gives

' oV 5
g 86 3%y - , g 936 3%y gl %W _ _
6, 9z o9x? 2 B_ 9x 9x9z I R T vy - 2Q (7.16)

This is the cross-front streamfunction equafion. Following
Eliassen (1962) it may be turned into standard form by intro-

ducing a new variable in the x-direction:

X = x+ v, /T . (7.17)

It can be shown that (7.16) then reduces to

32] 2Q
e i o + fz -y = - ——T 7

where q = =& [[f + él]ﬁﬁ _ dv 38 (7.19)
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is an approximation for the Ertel potential vorticity
consistent with the cross-front géostrophy approximation. The

equation is elliptic if g is positive which is normally true.

For a closed streamline around a region where Q is
positive and the right hand side of (7.18) is negative,
integration of (7.18) over the area bounded by the streamline
shows that the normal derivative of ¢ is negative. Thus the
circulation is in the sense shown in Fig. 7.2a. Point sources
give elliptical streamlines with ratio of axes q%/f. As shown
in Fig. 7.2b transformation back to x tilts the ellipses along
lines X = const.; and produces more intense flow in regions in
which 3X/3x > 1.

Fig. 7.2 (a) Closed streamline around a region where
Q > 0, shown in transformed space.
(b) The same streamline in physical space.
Two lines X = const. are indicated

So far the coordinate transformation has been treated
Jjust as an analytical aid, but it is now worth considering it
a little deeper and in particular to discover the significance

of the condition 3X/3x > 1. From (7.17), the Jacobian of the
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transformation is

19 - |
X _ ? — 8 e ©(7.20)

Bx

The cross-front geostrophic balance implies that du/9y (v U/L)
should be neglected compared with 3v/3x (nv V/2) in the vertical
component of relative vorticity so that the vertical component

of absolute vorticity is
t = f + ng/ax - EE (7.21)
-Therefore the Jacobian of the fransfdrmation is

_z |
= =2 . (7.22)

This implies that X changes rapidly compared with x in regions
of large vorticity such as fronts, i.e. X acts as a stretched

coordinate for regions of largervorticity. .The interpretation
of Fig. 7.2b is thus that there are intense gradients in cross-

front circulation in regions of large positive vorticity.

> |colp = WARM €

>vX

Flg 7.3 A frontogenetlc 51tuat10n in Wthh in
large-scale motion is pr0v1d1ng a region in
which cold and warm air are tending to move
together. ® indicates flow into the paper
and ® out of the paper
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Now consider the situation shown in Fig. 7.3. An x-

temperature gradient is balanced by a vertical shear in v.

The large-scale geostrophic motion is such as to tend to

increase the temperature gradient’either because of the
horizontal convergence shown or because of horizontal shears in
v in the presence of a y-temperature gradient. Thus from (7.11)
and (7.12) Q is positive. We note that (7.13) shows that the
geostrophic motion is tending to decrease the vertical shear in
v, though this is not as obvious. To maintain thermal wind
balance the cross-front circulation must be as shown, these
ageostrophic motions tending to decrease 38/3x and increase
dv/dz. 1In region A, the relative vorticity is positive. The

vorticity equation at the ground is
Dt =  — . _ (7.23)

The stretching due to the ageostrophic cross-front circulation
(aw/az;tis positive and so the vorticity'increases. As the
vorticity increases so the cross-front circulation gradients
locally become more intense. 1In particular ow/9z increases with
. Thus (7.23) predicts a nonlinear feedback leading to
unbounded vorticity in a finite time. As the vorticity becomes

large so does the temperature gradient.

Thus the diagnostic éross—front circulation equation can be
used to explain why strong'surfacé fronts occur. The front is
predicted to occur on the warm side of the temperature contrast
and to have the warm air rising above it. The ageostrophic
circulation tends to slope the region of maximum positive
vorticity with height, thus giving the frontal slope. Away from
the surface the front can be eXpected to be weaker though if the
tropopause acts somewhat like a 1id”frontogenesis can be expected

also in region B. Such upper tropcspheric frontogenesis is also
Oobserved.
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8. Semi-geostrophic theory: two-dimensional frontogenesis

The discussion in the previous section centred on a
diagnostic cross-frontal circulation equation. However the same
basic cross-front geostrophy approximation and transformation
of coordinates allows analytic solution of models in which the
time development of two-dimensional frontal regions is described.
The derivation is a specialisation of the three-dimensional semi-
geostrophic theory. Here we briefly derive the semi-geostrophic
equations and apply them to two-dimensional models of fronto-
genesis. In the next solution we shall use them to study

frontogenesis in growing baroclinic waves.

The geostrophic approximation to the wind (1.4) was
deduced from a small Rossby number analysis. It is however more
general than this implies. It is a good approximation to the
wind vector if ' '

2 ul /e

Dt Yn Up| << 10 (8.1)

i.e. if the magnitude and direction of the momentum of a fluid
particle changes little in the time f-! ~ 3 h. The latter
restriction is equivalent to demanding that the curvature
vorticity be much smaller than f£f. Any theory based on this
approximation clearly filfers out gravity-inertia waves but
not frontdgenesis which from the Lagrangian point of view is
not a process with rapid fluctuations. All that happens in
frontogenesis is that fluid‘particles which were initially a

long way apart become neighbours.

We shall use the Boussinesq f-plane equations for thé
subsequent analysis. Taking the vector cross product of the
momentum equation (1.42) with k yields

DU | S
_ 1 DYy
Uy = U " B~ F 3% ‘ (8.2)

Using this expression for U,_ in the last term on the right

hand side gives

1 DUg 1 D2Uh
Uy = U * K v 5 50 - ¥ DET (8.3)
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Clearly this substitution could be continued, but we ngw

neglect the last term on the basis that symbolically %€ << f2,

This is called the geostrophic momentum approximation because

the full Boussinesq equations are retained except that the
momentum is approximated by its geostrophic value. The

approximation was first introduced by Eliassen (1948),

Our equations are thus (1.43) - (1.45) but with (1.42)
replaced by

DU
~g =
Dt + f g ~ gh + Vo 0 . (8.4)

It should be noted that the ageostrophic motions are retained
in the advection but not in the momentum. This is analogous
to the hydrostatic approximation in whuch the vertical motion

is also retained in the advection but not in the momentum.

Like the original Boussinesq equations, this modified set
conserves potential temperature, has a full energy equation,
three-dimensional vorticity equation and an Ertel potential
vorticity conservation equation. The kinetic energy is only
that associated with the geostrophic flow and the vorticity
Eg is the full three-dimensional vorticity evaluated using
geostrophic velocities plus a term that is negligible when the
curvature vorticity is negligible. The Ertel potential

vorticity is

oV ou oV ou
= r U9 = — 986 , ~ g 98 8 _ 96
qg Eg Ve = 9% X * 0% v * [f N X 3y |93z (8.5)

The inclusion of the first two terms should be noted.

Just as in the analysis of the cross-front streamfunction
equation we introduce a transformation of coordinates. For

the three-dimensional case we use
X =x + vg/f, Y=y - ug/f, Z =2z, T=1t . (8.6)

Again the Jacobian of the coordinate transformation is
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showing that they quite generally act as stretched coord-
inates for regions of large vorticity. The horizontal
coordinates (8.6) may be referred to as geostrophic

coordinates because

Dv
DX _ i_ g _ - by _
S + T Dt = ug and DT = vg . (8.7)

Thus in the transformed space horizontal advection is

geostrophic and the material time derivative becomes

D _ 3 = 9 2 9
Dt = Dg + w 5 where Dg = 3T + ug 7% + Vg Y (8.8)
If we set
o+ Hlug v D
it can be shown that
VX§ = VX¢ s (8f10)
so that
- . 1232 - 123¢ g = 90 230
U - F37 , Y%¢~- T3 , °° g 37 (8.11)

Neglecting small terms in the vorticity, the non-dimensional

vertical component is

Toq sl {ng EEE\ . {1 1 [, EEE.};l .
B ?‘“a?‘ayj‘ Cf X = (8-12)
so that
gl=1 - L [g;‘f " géf} (8.13)
Finally it can be shown that
a, = £ %% _ : (8.14)

Substituting for J from (8.13), for 6 from (8.11) and

rearranging,
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1 (326 . 3%0) . f6_ 1 320 _ -
7 [+ o) L a ezz Tt - (89

We recall that qg and 6 are conserved quantities so that

) S
[Dg + W_S—Z-} qg = 0 5 (8.16)
; ] ad
SN R o (8017
and [Dg + w az} s 0 | . -‘( )

If qg is advected in the fluid using (8.16) then (8.15) is an
elliptic equation for & and hence ug, vg and 6 which is soluble
if 99/3Z is determined on horizontal boundaries by (8.17) with

w = 0. Once ug and vg are found, the solution may beé transformed
back to physical space. The advection of qg as given by (8.16)
requires a knowledge of w. This could be determined by the
consistency of (8.16) and (8.17). However a diagnhostic equation
for w has been derived in Hoskins and Draghici (1977). It is a
generalisation of the quasi—geostrophic omega equation. In the
two-dimensional case it reduces to the cross-frontal circulation
equation (7.18). The equations (8.15) - (8.17) are the semi-
geostrophic equations (Hosklns 1975).

In the subsequent development we shall restrict ourselves to

cases of a uniform Ertel potential vorticity fluid bounded above

and below by surfaces z = constant. (8.16) is now trivial so that,
setting ‘
f0
= ——= N2 | 9§ = ¢ - N2Z?%/2 , 8.18
Ay = / - ( )

1 {3%e” | 3%°) . 1 3%~ _ | o
7 |5%7 vz | tnzamz = O (8.19)
. 3 13878 ., 1238° 3) a0” _
with [5T T ¥ ovexX T T O3 SY] 3z -0 (8.20)

on horizontal boundaries.
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Referring back to (1.48) we see that the problem is identical with
that given by quasi-geostrophic f-plane theory for cases of uniform
quasi-geostrophic potential vorticity. The crucial difference is
that the solution has to be transformed back to physical space.

The importance of this will become apparent below.

Guidéd by the quasi-geostrophic studies of Stoné (1966),
Williams and Plotkin (1968) and Williams (1968) we first consider
a two-dimensional model in which the frontogenesis is forced by
large-scale horizontal convergence, i.e. the first term in Q in
(7.12). We consider a basic wind field corresponding to

?

= f o XY , ug = -aX , v_=0aY . (8.21)

In physical space this is

- _fa o 2,42 = - _° o
(b _ﬁ[xy + 2f (X +y )] H ug 1-(12 [X + f YJ ]
f2 3
Vg = ;—iia7 {y + % x} . (8.22)
-5

Since we will take o/f ~ .1, this basic flow is little different

from the classical horizontal deformation field of Bergeron :
u_ = -aX , V. =09y o .- (8.23)

If we set
7 = 07 + © ' - (8.24)

in (8.19) we see that if ©® is initially independent of Y then it

remains so. In this case the equations reduce to
1 3% 1 923 _
2 oxz TRz gz - O (8.25)
. (3 3) 89 .
with - —- o0X =| a5 = O on horizontal (8.26)
oT 3X| 9% .
boundaries .

(8.26) implies that if %% = O(X/Ly) on a horizontal boundary at time T = 0,
at any later time T its distribution on that boundary is @(X/L) where

L=1L, e . (8.27)
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The scale of the potential temperature distribution on
boundaries decreases exponentially with time._ Thus if initial
boundary potential temperature distributions are specified,
boundary conditions for (8.25) may be given at any subsequent

time and“thé prdblém may be sOlved by standardbmethods.

. For boundary potential temperatu;e distributions of the form
tan~!'(X/L) with 24K total temperature contrast a solution when

L = 200 km is shown in Fig. 8.1. At‘thevground there are large
gradients in velocity and temperature towérds the warm side of
the region. The maximum vertical component of relative
vorticity is about 1.3f but the minimum is only - .36f. The
maximum gradients tilt with height with a slope of order one

in one hundred. For this problem it is not necessary to compute
the cross-frontal circulation but for interest the figure also
shows this circulation added on to the basic convergence. There
is rising motion in the warm air above the surface front and
~descent in”the colder air. The frontogenesis process is so
rapid that the maximum vorticity triples for L = 150 km which
for o = 10~° s~' takes 8%th. In another 5h infinite gradients

are predicted.

The quasi-geostrophic solution in comparison has equal
positive and negative vorticity, no tilts with height and no
tendency to produce discontinuities. When the semi-geostrophic
theory gives relative vorticity z = 1.3f, 3.9f and «, the
quasi-geostrophic theory gives ¢ = .6f, .8f and 1.0f respectively.
All these characteristics are associated with the ageostrophic
motion implies by the coordinate transformation. This may be
understood by referring to the y equation of motion which with
the geostrophic momentum approximation may be written

Dv - Dx

-8 - _ = _ ag
Dt f uag f DT (8.28)

where we define‘xag to be the x-displacement of a particle due
to ageostrophic u. Therefore if a fluid particle changes its
y—veloéity’by Avé, it must suffer an'ageostrophic displacement
in the x-direction

Ax = - Av /T ; 8.29
og o/ (8.29)
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Two-dimensional frontogenesis forced by horizontal convergence.
Details in text. Dashed contours are potential temperature drawn
every 4K and continous contours are long front wind v drawn every
5 ms™2 . The total cross-front motion is indicated by vectors.
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This is precisely the displaéement of the particle implied by

the transformation X + Xx.

To produce a two-dimensional frontogenesis model in which
the process is forced by the second term in Q in (7.12), i.e.
by meridional velocities in the presence of a temperature'
gradient, we again allow ourselves to be guided by quasi-
geostrophic theory. The two-dimensional Eady wave discussed
in section 3 was a solution of the nonlinear quasi-geostrophic
equations, having uniform potential vorticity. Thus it is also
a solution of the semi—geostrophic-equafions and the physical
space solution merely requires the final coordinate trans-
formation. Cross-sections of the solution have been given in
Hoskins and Bretherton (1972) and compared with the numerical
primitive equation solutions of Williams (1967). The fronto-
genesis is very similar to that for the convergence model °
though the meridional winds reach * 50 m s~! before large
vorticities are formed and these vorticities are associated to
some extent with temperature gradients of both sign. For a
different view, a surface chart for this Eady mode is shown in
Fig. 8.2. At this time, the relative vorticity maximum in
the low is 2.1f. With typical numbers, infinite velocity and

temperature gradients are predicted within one day.

It has been shown in Andrews and Hoskins (1978) that semi-
geostrophic theory predicts for strong fronts kinetic and
available potential energy spectra closely approximating a
- 8/3 power law as a function of horizontal wavenumber. The
energy in the smallest scales is forced directly by the largest
scales. This is in direct contrast with the quasi- geostrophic
turbulence arguments of Charney (1971) which predict a -3
power law. The spectrum observed in the atmosphere and in
general circulation models is not inconsistent with either

theory.



147

dimensional Eady

Contours of ¢ are dashed and drawn every 75m

(v 9mb) and those of € are continuous and drawn every

Surface map for the nonlinear two

wave.

6K.

The domain shown is 5623 km in both horizontal

This is approximately 1% wavelengths in

the zonal direction.

directions.
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9. Warm and cold fronts in baroclinic waves

9.1 Simple jet flow solutions

The nonlinear two-dimensional Eady wave showed many of the

characteristics of observed baroclinic waves but clearly to

- understand the formation of warm and cold fronts in baroclinic
waves it is necessary to introduce some more complexity. The
nonlinear development of Eady waves with latitudinal dependence
has been investigated in Hoskins (1976). However more realistic
results are obtained from consideration of the grbwth of baro-
clinic waves on zonal flows with horizontal shears. The zonal
flows discussed in Hoskins and West (1979) have uniform potential

vorticity and
W=0on%Z=0,u="0U- % U(l + cosiY) on 2 = H . (9.1)

The domain is periodic in the Y direction with period 2m/%. For

H = 0 we recover the Eady flow.

The semi-geostrophic equations (8.19) and (8.20) are used
first to determine the linear stability characteristics. By
increasing p from zero to unity it is found that the most unstable
mode for each u is a development from the two-dimensional Eady
wave. TFor increasing u, as the baroclinity becomes more concen-
trated near Y = w/4, so the amplitude of the most unstable mode
becomes more biased to this region. This mode is always baro-
tropically stable, its horizontal tilts being with the jet.

Having determined the unstable modes, these may be used as
initial conditions for nonlinear integration of the semi-
geostrophic equations (8.19) and (8.20). The solutions to be
described here will be for the most unstable wave for that u.

The solution procedure is to set for the perturbation

ei(rkX+S£Y)

(A _(t) cosh K _z”~ + B__(t) sinh K__z")
-N<r,s<N LS rs S rs

(9.2) .

Then the interior equation is satisfied identically. The time

tendencies of Ars and B g are obtained from (8.20) using a

spectral-transform technique on both boundaries. Time
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integration is by means of a simple leap-frog scheme. The
perturbation amplitude is determined to make Z(A1SZ + B1sz) the
- . ’ ]

same for each case.
Parameter values are: ‘
N2 = 1.2753.10"* s=2, H = 9 km, f = 10~* s-!,
U=29.43 m s™!, g/6_= 0.0327 ms™% K-',
meridional wavelength 2m/% = 5623 km, |
truncation N = 21, time stép_lZ minutes.

The model requires 70 sec CP time per simulated day on a
CDhC 7600. ' :

For u = 0, the most unstable mode has an.xéﬁavelength of
3976 km and a doubling time of .89 days. The initia1 amplitude
of Vg is .9 m s~! and Fig. 8.2 showed the modéf?t day 5 when
the maximum Vg was 45 m s~!. TFor p =3 the basic upper flow

-! on the

varies from 29.4 m s~! in the centre to 20.6 m s
edges. The most unstable mode has Wavelengthvalﬁost exactly
4000 kmkand a doubling time of 1.1 days. The ipitial vg
amplitude is 1.5 m s~!. By day 5% this has risen to 36 m s—!
and the surface pressure, temperaturé:and relative vorticity
are as shown in Fig. 9.1. The low has drifted ndrthwards and
has vorticities up to 3.8f in its centre. The high has moved
southwards but has maximum negative relative vorﬂicity only
—-.44f. There is a secondary maximum in positiﬁe vorticity,
values up to 2.2f, and associated large horizontal temperature
gradients in a cold frontal region to the south of the low.
There is no warm front if one defines this to be an almost
linear region with iﬁtense gradients in velocity and temperature
tending to become infinite in a finite time. The kink in the

zero vorticity contour ahead of the low is however interesting.

For ¥ = 1.0, the basic flow at the 1lid varies from 29.4

=1 at the middle to zero at the edges. The most unstable

m s
mode has a wavelength of 4090 km and a doubling time of 1.3
days. The initial amplitude of Vg is about 1.7 m s~!. By day 6
a cold front has developed and by day 6.3 (Fig. 9.2) it is”™
intense. There are also signs of a weak warm front east of the
low. The maximum northward wind is 30 m s—' and the cold front

contains vorticities of 5f and a temperature contrast of 4K in
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40 km. 1In the weak warm front the relative vorticity is up to
.9f. By day 6.5 infinite gradients are predicted in the cold

front region and more than 1.5f vorticity in the Warm front.

Using symmetries, the above solutions may be inverted to
give the growth of baroclinic waves on a flow with meridional

shear at the ground and uniform flow aloft:

i=40Ucoss¥onz-=o, ﬁ={1—'l§-]Uonz=H. (9.3)
The waves tilt with the shear at the ground and thus in the
opposite sense from previously. The ¥ = 0 solution is, of
course, still the two-dimensional Eady wave. For yuy = .3 the
previous lid solution inverts to give at day 5% the surface
maps shown in Fig. 9.3. There is in this case a strong warm
frontal region with relative vorticities of 2f runhing south-
east from the low. This is clearly a very different warm front.
from that exhibited in Fig. 9.2.

These experiments and others have suggested that baroclinic.
waves tilting with an upper westerly jet tend to produce strong
cold fronts and later in their development a weak almost
zonally oriented warm front which we shall call type A. Baro-
clinic waves tilting NW-SE on their southern flank in sympathy
with positive vorticity in the surface zonal flow produce just
strong warm fronts running south-east from the low and which we
shall call type B. The occlusion process is present in that
the area of warm air near the surface decreases in time.

However the overtaking of a warm front by a cold front is not

found.

The frontogenesis in these experiments is diagnosed in
detail in Hoskins and West (1979) and only a summary is possible

here. The crucial ingredients of the model frontogenesis are:

(1) the particle trajectories in semi-geostrophic
space implied by a growing wave,
(2) the deformation fields in semi-geostrophic space

produced by a growing wave,

(3) the ageostrophic motions implied by the semi-

geostrophic transformation.
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Fig. 9.4 shows the Z = 0 semi-geostrophic space day 6
solution for the u = 1 flow and is equivalent to the quasi-
geostrophic physical space solution. Also shown are some

trajectories relative to the system from day 3 to day 6%.

Initially air at the surface moves westWardsirelative to the
growing wave at the phase speed (v 113 m s—!). As the wave
grows, air south of the low tends to slow dOWn'énd that north
of the low tends to speed up. The‘air ahead of the low moves
north and that behind it moves south. Fig. 9.5 shows the
deformation field in semi-geostrophic space for this case at
day 6. 1Its pattern is not significantly different from that
given by the normal mode. As particles slow up approaching AC
and then move towards BD their trajéctories are correctly
aligned for large temperature gradients to form in the region
ABCD. The transformation>implies strong frontogenesis on the
warm side AB and this is the cold front. The region A"B°C”D”
is entirely symmetrical with ABCD in Semi—geostrophic space
but nonlinear frontogenesis occurs only on the warm side of the
contrast which is this time C’D”. Here the process is slower
and occurs only when the trajectories in the "warm secfor” turn
eastwards relative to the system. This is the formation of the
warm front type A.

Deformation fields at Z2 = 0 for the pu = .3 inverted case
at day 5.5 are shown in Fig. 9.6. This time the deformations
south~east of the low are favourable for growth when the non-
linear trajectories are such that air moves tbwards the low
centre along this region and the temperature contours align
with the dilatation axes there. The transformed solution
contains frontogenesis on the warm side of this region and’

this is the warm front type B.

The crucial difference between the two cases discussed is
the meridional tilt of the surface mode. It can be shown that
for small tilts of a pattern the dilatation axes tilt through
the same angle and this accounts for the difference between
‘Figs. 9.4 and 9.6. The different tilt ensures that in the
first case the transition region west of the warm sector
exhibits frontogenesis (the cold front) while in the second it

is the transition region east of the warm sector that is
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Fig. 9.4 Semi-geostrophic space Z =70 potential temperature
"¢ . and heightfield for the u = 1 mode at day 6.
"Also shown are trajectories from day 3 - day 63
relative to the system. ' o
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Fig. 9.5.

Deformation field in semi-geostrophic space

at Z = 0 for the y = 1 mode at day 6. The dashes
indicate the direction of the dilatation axis
and the magnitude of the deformation. Height

field extrema and some temperature contours are
also shown.



157

Fig. 9.6. Semi-geostrophic space deformation fieid at |
7Z = 0 for the 1 = .3 inverted mode at day 5.5.
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enhanced (the warm front B).

9.2 Differences between cold and warm fronts

Sections across the cold front and warm front type B show
very different structures. In particular the warm frontal
region slopes less, in agreement with observation. These
differing characteristics may be traced back-to the two-
~dimensional Eady wave. There the transition from warm to cold
air sloped more than the transition from cold to warm“aif,
assuming that the system was moving from west to east. The
horizontal shears in the zonal flows have forced the baroclinic
waves described in this section to emphasise either the first
transition (cold front) or the second (warm front type B) but
the basic characteristics ofbthe two transitions are-not
altered. 1In the two-dimensional Eady wave the different slopes
of the transition regions are associated with-the eagtwarthilt
of the temperature‘wave with height. Thus in the inéipiént
cold (warm) front region there is a tilt towards the warm (cold)
air with height.

The horizontal convergence model described in section '8 is
easily modified to take account of such tilts. Fig. 9.7 shows
the solution for the same problem as in Fig. 8.1 exceht that in
(a) the upper boundary temperature distribution is displaced
eastwards by 500 km and in (b) it is displaced an equal amount
to the west. The cold front case (a) shows large vorticity and

temperature gradients in a steep region. The warm front case
(b) exhibits large vorticity only near the boundaries.’ The'
largest température gradients occur in a region with a shallow
slope.

, It seems likely that many of the observed differences
between cold and warm_fronts’may be'associated with the forward
tilt of the temperature wave with height, this being a necessary

feature of a growing baroclinic wave.

9.3 Further studies

The basic meridional temperature fields used for the
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Fig. 9.7. Two-dimensional horizontal convergence model as in
' Fig. 8.1 but with the upper temperature wave displaced.
(a) '"Cold front'" - upper displacement 500 km towards
warm air.
(b) "Warm front" - upper displacement 500 km towards

cold air.
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studies described so far have been extremely smooth. Further
integrations have been performed with the uniform potential
vorticity model in which irregularities have been inserted
into the basic surface temperature field. With irregularities
only of the order of 1K it is possible for the developing

» baroclinic wave to have multiple frontal structures as

- delineated by vorticity maxima. These multiple fronts
~typically have separation of the order of 150 km.

The representation of physical processes occurring in the
--boundary 1éyer and in the free atmosphere, in particular rain-
-fall, has-been attempted both in two-dimensional frontal models
and in multi-level primitive equation models on the sphere.

The basic developments appear to change little. A growing
baroclinic wave tends to produce convection along the cold
front region and large-scale latent heat release ahead of and
in the low pressure region. However, it is probably fair to
state that the details of the feedback onto the larger scale

of the‘processes happening in the frontal region are not well

- understood.
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10. A mixture of theories, observations and unSolVed problems

10.1 Baroclinic 1nstab111ty as ‘a wave over- reflectlon
phenomenon

Recently Lindzen and co-workers have been considering- -
many instability phenomena -in terms of the over-reflection. of
waves. In Lindzen et al. (1979) they propose the following
picture of baroclinic instability viewed as the over-reflection
of vertically-propagating gravity waves. As.was suggested in
section 2, the surface temperature gradient. and assoc1ated low
level vertical shear in the zonal wind is replaced by a laver
in which q is large and negative. As 1ndlcated in Flg 10 1
Rossby Waves with horizontal phase speed c greater than the
zonal flow speed at low levels propagate vertlcally in thls
layer. Above the layer, in region 2, qy is now positive but
(u - ¢) is still negative and so the vertical structure of the
waves is exponential. Over-reflection from the crltlcal 1ayer
or steering level, at which u = c, can lead to a larger wave
reaching the lower boundary. If the phases match then that
wave reflected from the lower boundary may be in phase w1th the

Y

z=0 ‘
q, <O i-c <0 1)
= _d Y
z — — —
Fig. 10.1 Mod1f1cat10n of the zonal flow and the
three regions for the wave over- -reflection

view of baroclinic 1nstab111ty
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original wave. Consideration of the gain in amplitude achieéeved
~in such a ‘process and the time taken give a good first guess at
the actual growth rates of baroclinic modes.‘fThé;region 3
above the steering level is considered to be an "echo chamber”

just passively responding to the growth below. -

We have preferred to consider models of baroclinic instab-
ility with many levels or a continuous representation in the
vertical. However the baroclinic instability of a two-level
model has been studied extensively (e.g. Phillips,‘1954)i The
stability characteristics are generally similar except that

there is a critical shear

oul . B y2 N
N . EQ-N H . v (10.1)

below which instability is not possible. Stone (1978)

compared the temperature gradient predicted by this criterion
with the observed zonally averaged meridional gradient for -
the four seasons. His picture for winter is shown in ..

Fig. 10.2.

8k
6_
3
= 4 XN\x
44 X \\\x
x N
X\

15 30 45 60 75
Laﬁtude

Fig. 10.2 solid curve gives the critical value as
given by the 2-level model and the crosses
the observed winter mean values
(from Stone (1978))
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The similarity of the observed shears and the critical
shear is apparent in middle latitudes at all seasons. Possible

Treasons for this have been deta1led by Held (1978) He po1nted
' ou
2z
.. .models predlct 1nstab111ty but Wl%h a he1ght scale

out that for shears less than contlnuous or multi- level

h = f2 Bu/BN2 | (10.2)

Wthh is smaller than the scale height H which is also almost
) the tropospherlc depth For shears_greater than Bu/BZ]C the
he1ght scale is H. Scale arguments suggest that depth integrated
heat transports by barocl1nlo eddies should be proport1onal to
R . _
N d° [%%] ” e

where d is the height scale. TFor shears much less than the

critical value, taking d = h as defined in 10.2 gives heat trans-

pu) e
' ’ 6 ERNE]
("a':ZJ ’f/s N° oL (10.4)

For supercritical shears, d = H and the heat transport is

ports proportional to

proportional to

35 2 |
{E] NH® ot (10.5)

In particular, much below aﬁ/azlc the heat transport is
proportional to the fifth power of the shear and much above the

critical value it is proportional to the square.

Therefore in an atmosphere with small meridional tempera-
ture gradients and‘associated vertical shears below Bﬁ/azlc
the baroclinic eddies might be expected to be weak and shallow
and thus to transport only a Very small amount of heat polewards.
The meridional temperature gradient may thus be expected to
inorease{” On’thepother hand, in an atmosphere with supercritical
meridional temperature gradients the eddies are strong and deep.

Dependent on the actual diabatic heating rates, it is possible
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that the temperature gradient may decrease.

Thus the similarity of the observed shears and the
critical shear for a two-level model is consistent with ideas
défived from linear g-plane theory. Whether noﬁ—linearity,
true spherical effects and jet structure alter these ideas has
yet to be tested.

10.3 Interaction of transient and steady waves

. In a sequence of papers emanating from the University of
Washington and NCAR, (Blackmon 1976, Blackmon et al., 1977,
Lau, 1978, 1979a,b) NMC data for 9-11 winters has been used to
build up a picture of the Northern Hemispheric géneral circul-
ation varying in longitude as well as in latitude and préSsure.

Fig. 10.3 gives a summary of some of these findings. The 250mb

Fig. 10.3. The Northern Hemispheric winter time mean
geopotential height at 250 mb plus jet streams
(continuous arrows) plus transient eddy maxima
(dashed arrows) (from Lau, 1978). o

height field shows major troughs over east Asia and eastern

N. America and a minor N. European trough. The zonal wind has
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a maximum of 68 m s—! off east Asia and 43 m s-! over the east
coast of N. America. The Pacific and Atlantic¢ jet streams are
marked in Fig. 10.3. Also marked are the regions of max imum
geopotential height varlablllty in the 2.5-6 day period. These
transients appear to be a manlfeqtat1on of barocllnlc instability.
They seem to develop downstream of the jet intensification. and

decaylbeyond the jet stream exit region.

The picture that emerges is one of mean zonal acceleration
associated with upper level poleward ageostrophic velocities of
5m s-! over east Asia and 2 m s=! over ' central N. America and
then, in the Pacific and Atlantic sectors, comparable eduator-
ward flows tending to decelerate the jets. ~The' eddies appear to
grow on this mean flow. The transports of heat: and momentum by
the eddies provide the feedback onto .this mean- . flow.., The trans-
port of heat appears to act. largely as a dissipation on the
steady long-wave pattern. At 700 mb and 50°N, the zonal: wave-
numbers 2, 3 and 4 components of the horizontal eddy heat.flux
divergence are almost exactly in phase with the .corresponding
temperature wave components and give dissipation. times .of 7, 3
and 3 days respectively. The importance of the momentum trans-
ports u u~ and u v~ has also. been stressed by Holopainen (1978).
He presents evidence that suggests that vertically integrated
eddy transports contribute significantly to the maintenance of

the mean North Pacific and Icelandic lows.

Green (1977) has suggested that the anticyclonic vorticity
of a major blocking event was also largely maintained by the

transient eddies.

Thus a major new direction to the study of baroclinic
instability is to view the process on a non-uniform basic flow
and to discover under what conditions the eddies act to dissipate
or maintain a long wave pattern. Lau (1979a) made some
comparisons of the observed growth and decay in space and time
of the baroclinic eddies with the life-cycle experiments
described in scetion 6. However, the analogy is clearly not

exact.
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Frederiksen (1978, 1979) has studied the linear stability
of a zonal flow plus planetary waves to perturbations of the
form

et £(x,y) cos[wt + é(x,y)] .  (10.8)
Each mode tends to be dominated by one zonal wavenumber and
the growth rate and phase speed associated with thisrwévenumber
is little altered by the presence of the planetary. wave. The
envelope of the instability f(x,y) indicates maximum amplitudes
downstream of the regions where the critical shear (Eq. 10.1)
is most exceeded. The non-oscillatory part of the heat and

momentum transports also show maxima there.

In the U.K. Universities' Atmospheric Modelling Group -
nonlinear experiments on baroclinic instability on a long-wave
flow have been started. These follow directly on from the‘
previous life-cycle experiments. This time the experimental
domain is hemispheric and the initial conditions contain a
long wave which is the steady nonlinear solution corresponding
to some prescribed forcing. Initial results indicate the
interesting nature of the interaction between -the long wave

and the eddies but no definitive results are yet available.
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