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ABSTRACT

We discuss a mathematical framework for the use of asynoptic
data in determining initial states for numerical weather prediction
(NWP) models. A set of measured data, synoptic and asynoptic, is
termed complete if it determines the solution 6f an NWP model
uniquely. We derive theoretical criteria for the completeness of
data sets. The practical construction of the solution from a
complete data set by intermittent updating is analyzed, and the rate

of convergence of some updating procedures is given.
It is shown that the time history of the mass field constitutes
a complete data set for the shallow-water equations. Given that the

time derivatives of the mass field are small at initial time, we
prove that the velocity field obtained by the diagnostic equations we
derive will also have small time derivatives. Hence our diagnostic
equations also solve the initialization problem for this system,

namely they provide an initial state which leads to a slowly evolving
solution to the system.
Finally, we review the bounded derivative principle of Kreiss.

It states that in systems with a fast and a slow time scale, initial
data can be chosen so that the solution starts out slowly. For such
initial data, the solution will actually stay slow for a length of
time comparable to the slow time scale. The application of the
principle to the initialization problem of NWP is discussed.
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1. INTRODUCTION

Numerical weather prediction (NWP) is an initial-value problem

for a system of nonlinear partial differential equations in which the
initial values are known only incompletely and inaccurately. Data at
initial time can be supplemented, however, by observations of the
system distributed over a time interval preceding it.

A large number of observations is made by the conventional,
ground-based meteorological network. They consist of point values of
temperature, humidity, pressure and horizontal velocity. These
observations are produced at the so-called synoptic times, 0000 GMT
and 1200 GMT. It is customary therefore to choose a synoptic time as
initial time for a numerical forecast. Conventional observations are
insufficient in number in order to determine the initial state of the
model atmosphere. Furthermore, they are very unevenly distributed in
space, being concentrated over the continents of the Northern
Hemisphere, and much sparser over the oceans and over the Southern
Hemisphere.

A large number of additional observations are made at the
so-called subsynoptic times, 0600 GMT and 1800 GMT, as well as in an
essentially time-continuous manner, using geostationary satellites,
polar-orbiting satellites and  other nonconventional measuring
platforms. All these observations together are called asynoptic.

The object of four—dimensional (4-D) data assimilation is to

construct a set of complete, accurate initial data for a NWP model
from the measured data, synoptic as well as asynoptic. The

completeness question for the set of measured data can be formulated

as follows: do these measured data, with their distribution over a

time interval and over space, determine the solution of the model

equations uniquely? Furthermore, do they determine this solution in a

way which depends continuously on the data, so that small errors in

the data only cause small errors in the solution?

To understand better the accuracy question, we have to recall
that the primitive equations, which govern most operational NWE
models today, admit two types of solutions: slow, quasi-geostrophic,
meteorologically significant motions, and fast inertia~-gravity waves.
The latter are present in the real atmosphere only with very small .
amplitudes. In a model they interfere with short-range forecasts, up
to 12h, of all fields of motion, and with longer-range forecasts of
vertical velocity and precipitation. It is desirable therefore toO

eliminate entirely these waves from the model at initial time, or to
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reduce them as much as possible. To achieve this elimination or

reduction is the purpose of initialization.

The goal of preparing initial data in NWP can be restated thus
as that of going from a set of inaccurate data, both synoptic and
asynoptic, to a complete set of synoptic data which will not generate
fast waves when starting a forecast from it. Until rather recently,
the meteorological literature has handled separately the two problems
of 4-D assimilation, i.e., of passing from nonstandard, combined
synoptic and asynoptic data to complete synoptic data, and that of
initialization, i.e., of modifying synoptic data to prevent the
growth of fast waves in the ensuing forecast.

The purpose of this review is to outliné a number of approaches

which have contributed to put both aspects of data handling in NWP on
a more solid mathematical foundation, as well as pointing in the
direction of their eventual unification. A companion article in this
volume (Ghil et al., 1980) attempts to provide a systematic, unified
theory of 4-D data assimilation and initialization.

In the next section, we shall deal mathematically with the
problem of assimilating nonstandard data. The most common practical
procedure to use data available at times preceding initial forecast
time is intermittent updating. It was suggested by Charney et al.

(1969) and independently by Smagorinsky et al. (1970). The model is
provided the best available data at some preceding instant, e.g.,
24 h or 48 h earlier, and is integrated forward in time. Additional
data replace the model values as they become available: the model is
updated. When the model integration reaches the initial instant for
the next scheduled forecast, its guess of the initial state is
blended with the data available at that instant to produce the
desired estimate. Thus the model itself is used to assimilate the
data available up to the initial instant. Variations of this
procedure, as well as other procedures for the four-dimensional
(4-D), space-time assimilation of meteorological observations are
reviewed in Bengtsson (1975). '

Our discussion in Section 2 will be based on the work of Bube
(1978, 1980). Connections between the theoretical completeness
question and the practice of intermittent updating will be pointed
out.

In Section 3, another approach to completeness, based on the
work of Ghil (1975; Ghil et al., 1977) will be discussed.
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Connections with the initialization problem (Ghil, 1980) will also be
outlined.

In Section 4, one particular aspect of the initialization
question will be addressed. Various procedures for eliminating or
reducing inertia~gravity waves exist, such as the nonlinear
normal-mode approach of Baer and Tribbia (1977) or of Machenhauer
(1977), and they are reviewed in this volume by Daley (1980). After
applying any such procedure, we still have to ask: for how long after
initial time has the rapid growth of the fast waves been prevented?

This question is answered by the bounded derivative principle of
Kreiss (1979, 1980). Given that the time derivatives of the solution

are small initially, these derivatives will stay small for a length
of time comparable to the system's slow time scale, 6-24 h say,
rather than merely to its fast time scale, O(10 min). The
application of the principle to a system of equations of interest in
NWP is illustrated. An initialization procedure based on the
principle's formalism (Browning et al., 1979) is sketched and 1its
connection with the completeness question and with other
initialization procedures is commented upon.

Concluding remarks follow in Section 5.

2. COMPLETENESS AND UPDATING

In this section we review some mathematical results which
address the completeness question for the shallow-water equations.
These equations have solutions which share some of the essential

properties of large-scale atmospheric flow. The initial=value

problem for this system of partial differential equations is the
problem of determining a solution of the system from complete initial
data, i.e., from the global specification of all the state variables
at a single time. For this system, the initial-value problem is well
posed: given the initial data, there exists a unique solution of the
system, and this solution depends continuously on the initial data.
We call nonstandard any set of measured data other than a
complete set of 1initial data. The completeness question for a

nonstandard data set can be formulated as follows: is it possible to
determine complete initial data at some time from the nonstandard
data set, with the initial data depending continuously on the
measured nonstandard data set? There are really two  separate
questions to be answered -- the theoretical uniqueness and stability
question for the differential equations, and the practical question
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of computationally constructing initial data from measurements of a
nonstandard data set.

For the sake of brevity, we consider only the case where the
nonstandard data set consists mainly of measurements of the mass
fields (i.e., temperature and surface pressure), with few
measurements of the wind fields. This case is of some historical
interest because the large number of mass field measurements
available from polar-orbiting satellites was the first important set
of nonconventional data used in NWP.

We shall consider in the sequel various forms of the
shallow-water equations, in order to illustrate as directly as
possible each one of a number of theoretical questions we wish to
address. The full, nonlinear system can be written in cartesian
coordinates on a plane tangent to the Earth at a latitude 80, say,
as:

uy + uu, +.vuy = - ¢X + fv, (2.1la)
ve tuv, + vvy = - ¢y - fu , (2.1b)
by * Uy Vo, = - g (ughv). (2.1c)

Here x is the coordinate pointing in the zonal, West-East direction,
vy in the meridional, South-North direction, with u and v the
corresponding velocity components. The height of the free surface is
h, with ¢ = gh the geopotential, g being the acceleration of gravity.
The Coriolis parameter £ is taken to be constant, £ = 20 sin 90’ 9]
being the angular velocity of the Earth.

We shall be also interested in a linearized form of the
equations; the 1linearization is made around a state with u = U, v =
0, ¢ = ¢, which satisfies the geostrophic constraint, fU = - & =

Y
const. (see also Ghil et al., 1980). The linear system is

u +Ouy =-9¢ + £fv, (2.2a)
v, o+ UvX = - ¢y - fu , (2.2b)
¢t + U¢x = - cI:(ux + vy) + fUv, : (2.2c)
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2.1 The completeness question
Bube and Oliger (1977) and Bube (1978, 1980) have considéred

completeness questions generally for linear first—order hyperbolic

systems where the nonstandard data set consists essentially of
measurements of a fixed set of the state variables, such as the mass
field. We present here the results for the model system

= a ¢X + b u (2.3a)

. «

ut = Db ¢X + a Uy s (2.3b)

with periodic boundary conditions in x. The linearized shallow-water
equations (2.2) for purely zonal, v = 0, one-dimensional flow around
the circle of latitude 8 = 60 can be written in this form, where ¢ is
the geopotential, u is the zonal velocity, and the constants =-a and
-b are U and /3, the zonal velocity and the geopotential of the basic
state, respectively.

We consider the theoretical question first. We want to find
nonstandard data sets, consisting as much as possible of measurements
of ¢ only, from which complete initial data, say at time ¢t = 0, can
be determined. Two important observations can be made immediately.
First, in order to be able to infer anything about u from

measurements of ¢, the equations must have sufficient linkage between

¢ and u; for systemv(2.3), we must have b # 0. For the linearized
shallow-water equations, this is satisfied aice & > 0. Second, u can
be determined at most up to a constant from measurements of ¢ alone,
since ¢ = 0, u = ug is a solution of system (2.3). It follows that
at least one measurement of u is needed.
The periodic domain in x will be the unit interval 0 < x < 1.

We examine three nonstandard sets of data:
(i) measurements of ¢ (x,0) and ¢t(xg0) for 0 < x <1,

and of u(0,0);
(ii) measurements of ¢ (x,t) for 0 < x <1 and t = =Jr

for some T > 0 and j = 0,1,...,m, and of fé u(x,0) dx;
(iii) measurements of ¢ (x,t) for 0 < x <land -T <t < 0

for some T > 0, and of fé u(x,0) ax.

For data set (i), the "instantaneous time-history” of ¢ at time

t = 0 is measured, i.e., its time derivative, in addition to ¢ (x,0).
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Assuming b # 0, Eq. (2.2a) becomes an ordinary differential equation
for u(x,0), which we can solve using the measured value of u(0,0).
For the solution u(x,0) to be periodic, the measured ¢t(x,0) must
satisfy the compatibility condition

1
{) b, (x,0) dx = 0, ‘ (2.4)

Thus data set (i) is a good nonstandard data set: we can determine
from it u(x,0), and u(x,0) depends continuously on the measured data.
This approach corresponds to the use of a generalized set of
diagnostic equations to complete a set of initial data. It will be
discussed further in the next section.

For data set (ii), we sample the time history of ¢ at discrete,
periodic points in time, with our last measurement at the initial
time for a forecast. This measurement pattern is closer than (i) to
the way data are gathered operationally; in fact, data are measured
on even more complicated space-time manifolds. To analyze the
completeness question for data sets (ii) and (iii), we expand ¢ and u

in Fourier series in x:

(-]

~ iE

p(x,t) = T (E,t) e2TIEX, (2.5a)
E:-co

A L onirx

d(E,t) = [ e "% g (x,t) dt, (2.5b)
0

where £ is the wave number. Note that

. 1

u(0,0) = u(x,0) dx. ' (2.6)
0

It can be shown that if tb is a rational number, then data set (ii)
does not determine u(x,0) uniquely. If tb is irrational, then data
set (ii) determines u(x,0) uniquely, but u(x,0) does not depend
continuously in the IL2-norm on the measured data, i.e.,
root-mean-square (rms) errors in u(x,0) will not be small if the rms
errors in the measured data are small.

For data set (iii), however, we do have continuous dJdependence,

In fact, for each T > 0, there is a constant CT for which
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Iou(x, 000 < Chl G(0,0) + max ng(x,£) ), (2.7)
-T<t<0
where I | is the L2 or rms norm,
1
Iy (x)12 = [|y(x)] 2 dx. (2.8)
0

Estimate (2.7) immediately implies both uniqueness and continuous

dependence.

2.2 Computational construction of initial data.

We now address the second question, of actually constructing the
initial data from nonstandard, measured data. In particular, we

consider the method of intermittent updating, where the measured

values of ¢ are inserted into a computation as the computation
proceeds. At first it appears that our results on data set (ii)
imply that intermittent updating does not use enough data to
determine u(x,0) even theoretically in a continuous manner. In
practice, however, only a finite set of measurements can be used for
any computation, and we cannot hope to determine a function of x
completely for all x in the interval 0 < x < 1 either. If our
discrete measurements of ¢(x,t) are sufficiently dense in x and t,
then these measured data are a good approximation to ¢ (x,t) in the

norm  max i (x,£)1 , and data set (iii) is actually the

appropriate z%zégetical model for the measured data set. Thus,
theoretically, enough data are being used. We now examine how
intermittent updating uses this data set.

For this purpose, we shift the time origin back to the beginning
of a numerical computation. Let t be the updating interval; we have ’
measurements of ¢ (x,t) for t = jt, j = 0,1,2,... We start with'
the initial measurement of ¢ and an initial approximation to u at t =
0. As we integrate forward in time, we replace the computed values
of ¢ by the measured values at times t = Jr.

Let e (x,t) denote the error in the computed u at time t. Notice

that ¢ is not reduced at the updating times, since u is not updated:
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only ¢ is. The error in u will decrease between updating times, as a

result of the linkage in the system beween u and ¢. _
Expanding e 1in its Fourier series and ignoring the distinction

between the numerical solution and the corresponding solution of the

differential equation, we can show that

€(E,(F+1)T) =op(E,T) E(E,5t) , ‘ (2.9)

where

p(E,1) = [cos (2mbEt)]. ' (2.10)

So the effect of an update is to multiply each Fourier coefficient of

the error in u by a decrease factor p (E,T) 1. Ifp(g,r) << 1, then

€(£,jr) approaches 0 rapidly as j increases. If p(E,t) = 1, then
€ (E,31) approaches 0 slowly as j increases.

For t = jr,

e, t)] =o(,m) EE,0) |, (2.11)
where

o(E,1) = p(e,)T. (2.12)

It can be shown that, for £ # 0, o(£,t) is a strictly decreasing
function of T as long as 0 < 1 < 1/(4|bt]), and

limo(t,1) = 1. (2.13)
>0

In other words, as t decreases, o increases monotonically and tends
to 1. Hence updating ¢ more frequently does not necessarily make
e(x,t) =+ 0 faster as t‘increases. We must allow enough time for the
new information to pass from ¢ to u; alternatively, the energy of the
error has to have time to pass from u to ¢, and then out of the

" system when ¢ is updated.
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Note the important dependence of p and o on both wave number &
and updating interval . First, if & =0, thenp =¢ = 1, S0 no
improvement is made in the mean velocity u(0,t). If e(x,t) 1is to
converge to 0, the value of 1(0,0) in the initial approximation to u
must be correct. For other values of £, the best updating interval
is

~ 1

~aTeET

T

This result for t has an intuitive explanation. Consider
initial data for system (2.3) of the form

p =0 , v = v, sin (27EX) .

In other words, the error in geopotential is zero, while the error in
velocity 1is purely in wave number £. The corresponding solution of
(2.3) has

b (x,t) = 0 sin (2nEbt) cos [2nE (at+x)] .

The geopotential error at time t generated by the velocity error
at time t = 0 is thus also a pure E-wave, travelling at phase speed
a, but amplitude-modulated with frequency w = |bg| . Hence our result
means that the best updating interval for this wave of frequency w is
T ® 1/4w, i.e., 1/4 of the period of this amplitude modulation.

We are interested in what happens if the frequency of updates
were increased. For fixed £ # 0 and "assimilation cycle length” t >
0 , letting the update interval t decrease, T + 0, Egs. (2.11,2.13)
imply that '

‘E(E,t)l‘* ‘E(Ero)| 7

i.e., the error at time t is not decreased from that at t = 0, even

thougn ¢ was updated more often and more data were used. In other
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words, t ® 1/4w is really an optimum, and further decrease of 1 is
counterproductive,

If the entire error is in only one wave number £, i.e., if
e(£,0) # 0 only for one value of £, then t can be chosen judiciously
to decrease the error quickly. In practice, € (£,0) # 0 for many
values of £. The trouble is that if t >> 1/(4]bt|), then p(E,r) is
Just as likely to be close to 1 as it is to be close to 0. The best
© for a small value of [£| may give a p ® 1 for some large values of
I3
number may converge slowly; if t is too small, waves with low wave

. The dilemma becomes: if t is too large, waves with high wave

number will converge slowly.

One possible solution to this dilemma is to use several
different updating intervals TyressrTm, and repeat them in a cycle.
If there is a 1. = 1/4w for each frequency w of interest, then
convergence should be reasonably rapid for all corresponding wave
numbers. Numerical experiments with model system (2.3) confirm all
the theoretical results above. ’

This analysis extends directly to the case of forward and
backward integration in an update cycle: one such cycle is equivalent
to two updating intervals. Talagrand (1980) has also analyzed
forward-backward updating schemes.

3. COMPLETENESS AND INITIALIZATION
In the previous section we have seen that, for the

one-dimensional, linear system (2.3), instantaneous mass field data
$(x,0) and ¢,.(x,0) determine the velocity field u(x,0), provided the
velocity at a single point, u(0,0) say, 1is given and that (2.4)
holds. 1In this section we shall show first that similar results hold
for a two—dimensional linear version of the shallow-water equations,
as well as for the full, nonlinear system (2.1). Then it will be
shown that complete initial data determined by the procedure outlined
here from nonstandard mass field data lead to a solution of (2.1) in
which fast waves have moderate amplitude.

3.1 Diagnostic equations for compatible balancing

We consider first the shallow-water equations linearized around

a state of rest, U =0, ¢ = const.:

u. = -¢_ + fv , (3.1a)

v, = -¢._ - fu, (3.1b)

230



¢t = - @(ux+ Vy) . (3.1c)

We deal here only with this special case of (2.2), in which U = 0,
for the sake of simplicity.

Our purpose is to derive a set of equations for u and v at time
t = 0, say, given ¢ and its "instantaneous time history” ¢ s as well
as higher time derivatives, if necessary, at t = 0.

Clearly (3.lc) is such a diagnostic equaticn for u,v, given ¢ po
In the present, two-dimensional case, this equation does not
determine u and v completely, while (2.3a} did determine u completely
for the previous, one-dimensional case. '

A second diagnostic equation can he derived easily.
Differentiate (3.la) with respect to x, (3.1b) with respect to y and
(3.1c) with respect to t., The quantities Uge and Vor appearing in
the differentiation of (3.l¢) can then be substituted from their
values obtained when differentiating (3.1la) and (3.1b), respectively.
This leads to the diagnostic system (Ghil, 1975, 1980):

=
+
<
il

=4/ (3.2a)

jwr
{
<
it

- (l/f)(v2¢ = 4 /2) (3.2Db}

2 = 7 i o =3 o ¥
where V5 = ¢ ey + b Thus dppr @8 well as ¢, is necessary here to

yy©
determine u and v at t = 0,

The linear system (3.2) is a set of inhomogeneous Cauchy=-Riemann
equations for the functions v, u; cross~differentiation of these

equations would lead to a Poisson equation for either u or v. A

fes

boundary-value problem having a unique, stable solution for (3.2) s
the Dirichlet problem: prescribing u, say, on a closed contour 3D.
These boundary conditions determine u completely and v up to an
additive constant, in the domain D bounded by the contour 3D; the
value of this constant can be given by prescribing v at some point in’
D. Alternatively, one can prescribe v on 39D and u at one point.
Alsoc u can be given on one part of 9D and v on the rest. Either one
of these possibilities corresponds in the present case to the
prescription of u(0,0) in the previous gection. Appropriate
compatibility conditions, similar to (2.4), are discussed in Ghil and
Balgovind (1979).

231



Hence, within the framework of model (3.1), solving the

Dirichlet problem for system (3.2) solves the completeness problem

for the nonstandard data set comprised of 4, L and I measured - in
D, and of u and v measured in a very small subset of D. Furthermore,
this solution is stable, i.e., it depends continuously on the
nonstandard data.

We are ready to turn our attention to the full, nonlinear system
(2.1). A diagnostic system for u and v at t = 0, given ¢, ¢4 and LI

at t = 0 can also be derived (Ghil, 1975; Ghil et al., 1977). The
procedure is similar to that leading from (3.1) to (3.2), with the
material derivative d/dt = 3/8t + ud/ox + v 3 /Ay replacing the

partial time derivative 3/3t in the cross-differentiation. The

resulting diagnostic system is:

ux+vy = —\l’xu—\l’y—‘llt, (3.3a)
u2 + 2u v _ + v2 + f(u,-v_)
X v X vy Yy X
av ar av
= f(¥Y _v-¥_u) + __E + u __f + v Y
XY dt dt t
_ 1 2 2y _ g2
T L¢x + ¢yJ V7%, (3.3b)

where ¥ = log ¢. More general diagnostic systems for the wind field,
given instantaneous mass field history information, have been derived
in Ghil (1975) for three-dimensional primitive-equation systems
closely related to those used in operational NWP.

System (3.3) reduces, when § = 0 = 4§ /dt, with § = ux+vy being
the divergence of the wind field, to the classical Monge-Ampere
equation. Its solution, which raises interesting mathematical,
numerical and meteorological questions was studied in Ghil et al.
(1977). Our system, which generalizes this equation, seems to have a
unique, stable solution in most situations of meteorological
importance. This settles for our purposes the completeness dquestion
with respect to system (2.1) and the nonstandard data set comprised
of measurements of ¢, ¢, and ¢, at one time instant.

Given measurements of ¢ at discrete time intervals tj, ¢j(x,y) =
¢(x,y,tj), this approach would appear to suggest the possibility of
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constructing initial data in a way different from updating (cf. also
Sec. 2.2, first paragraph). Namely, the history of the mass field,
¢ (x,y,t), could be interpolated from ¢j(x,y); furthermore, the
partial time derivatives ¢, and ¢, can be computed at the last
measurement time, tm (m > 2), which is the initial forecast time.
Then u and v could be computed at t = tm from system (3.3).

In fact, the nonstandard data sets available today are much more
complex, and the completeness question from mass field data is of
interest mostly from the historical viewpoint and as a relatively
simple illustration. FProm this illustrative perspective, we shall
proceed to point out the connection with the initialization question.
Specifically, we wish to show that a solution of the prognostic
system (3.1), given initial data satisfying (3.2), will contain no
fast waves of large amplitude, provided the mass field data had small
¢t and ¢tt at £t = 0. A similar result will be outlined for (2.1) and
{(3.3}.

3.2 Compatible balancing and initialization

Various systems of diagnostic equations have been considered in
the past under the name of balance equations (Bengtsson, 1975, Ch.
6). The idea of static balancing is precisely that of obtaining a
complete initial state which leads to a balanced, i.e.,
quasi-geostrophic, slowly evolving solution to the prognostic
equations. We shall show that the solution to system (3.2), which is
dynamically compatible with (3.1), does indeed produce such a slow
evolution of the solution to (3.1), when it is used as its initial
state.

Define the guantities

[
1

. - fv, (3.4a)

s
m

W
>
o

¢ + fu. (

It follows from (3.4) and (3.2) that G and H satisfy (Ghil, 1980):

(9]

4

]
t

= 0 /2 (3.5a)

G
i
jus)
I

(f/®)¢t. (3.5b)
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Egs. (3.5) are a system with the same structure as (3.2).
Under suitable boundary conditions, its solution (G,H) depends
continuously on the right-hand side (¢tt,¢t). That is, smallness of
¢, and L will imply smallness of G and H.

But (3.1a,b) state that u, = G, Ve = H. Hence, provided ¢ and
¢ are small at t = 0, u, and Ve for a solution of (3.1) obtained

from an initial state given by (3.2) will also be small at t = 0.
For a discussion of cases in which ¢, and ¢4 are not small at t =0,
see Ghil (1980). We conclude that the diagnostic system (3.2) solves
the initialization problem for (3.1), given a set of nonstandard data
b, ¢t and e at £t = 0. It can be shown further that small L will
lead to small Ui, and Vegr @and so on: higher temporal smoothness of
the instantaneous mass field data will lead to higher smoothness of
the initial velocity tendencies.

For the nonlinear shallow-water equations (2.1) and the
corresponding, dynamically compatible diagnostic system (3.3), the
proof is similar. It is technically more complex, and will only be
sketched here (cf. Ghil, 1980).

Let the variables be nondimensionalized by

x =ILx', y=Ly', u="Uu', v =Uv', (3.6a)

and

]

¢ =0 + o', , (3.6b)

with & the mean geopotential and $gr

¢0 = LfU ,

a characteristic magnitude of the geopotential's deviation from &.

Introduce also the Rossby radius of deformation

A = Vo /f . (3.7)

and the nondimensional Rossby number

e = U/LE , (3.8)
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which is small for midlatitude large-scale flow. We shall assume
that (A0): '

L/A = 0(1), (3.9)

which in particular means that inertia-gravity waves have velocities
roughly equal to pure gravity waves. This permits us to introduce

two nondimensional time scales, a fast time t* and a slow time 1, by

= ft, (3.10a)

T = (U/L)t =et”, (3.10b)

For brevity, we shall use the sympbol 9. for

5y = 3/5t™ +e 3/8T (3.11)

and drop primes in the sequel.
We make now the two assumptions that: (A1) the geopotential data

satisfy
¢y ¢Y =0(1) , (3.12a)
3.0 3§¢ = 0(e) 3 {3.12b)

and that (A2) the solution (u,v) of (3.3) with such data has a
characteristic length L(y,y) which equals that of the data, Ly}

L(u,v) = L(p) = L (3.13a)

and a characteristic magnitude U such that the corresponding Rossby

number RO is indeed small
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Ry

U/fL = e << 1 ., (3.13b)

Assumption (A2) actually follows from (Al) in certain cases, and
seems to be plausible in general.

Defining G and H as before, in nondimensional form though,

G=¢y,-v, (3.14a)

H=¢_ 4y, (3.14b)

yields immediately

2
. . v + uy = Ve o (3.15a)

G}
+
o
[}

G)
|
s}
il

- (gt vy) (3.15b)

The right-hand sides of (3.15), however, cannot be equated directly
with L and dpr respectively, as was the case for the linear system.
Instead, system (3.3) has to be rewritten in nondimensional form, and
Egqs. (3.7=-3.13) used to show that in fact

GX + Hy = {1 + 0(1)} o(e) , (3.16a)
Gy - Hx = O(E) . (3.16b)
From (3.16) we can then conclude, as for (3.5), that G,H = O(e).

Using (2.1) and (3.14), it follows that

du/dt Btu+e[u8u/ax+v8u/ay) o) ,

dv/dt atv +e(udviax + v av/iay) Ok) .

This in turn implies atu = 0(), 8tv = 0(c) at t = 0.
We saw in Sec. 3.1 that the nonstandard data set comprised of

the "instantaneous mass field history" (¢, g ¢tt) at t = 0
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determines completely an initial data set (¢, u, v) for the nonlinear
shallow-water equations (2.1). The wind field is determined from the
diagnostic system (3.3). We have shown here that (3.3) is
dynamically compatible with the prognostic system (2.1), which is
equivalent to the statement that the smallness of ¢t and LI measured
at t = 0 will result in small U and Ve at t = 0.

This leaves open the question of how long will (¢t, ug vt),
after initialization by compatible balancing, as above, or any other
correct initialization procedure (Daley, 1980), stay small. This

question is addressed in the next section.

4, THE BOUNDED DERIVATIVE PRINCIPLE

Tn this section we address the question of how long a solution
will continue to vary on the slow time scale after initialization.
Kreiss (1978, 1979, 1980) has considered this question for both
ordinary and partial differential equations and has formulated an
easily stated principle, the bounded derivative principle. We will
explain  this vprinciple for a system of ordinary differential
equations (ODEs) with two time scales, give an example demonstrating
the correctness of the principle, and illustrate its application to a
system of partial differential equations (PDEs) of interest in NWP.

The occurrence of both slow quasi-geostrophic motions and fast
inertia-gravity waves in NWP models indicate the presence of two
‘different time scalés in the same system of equations. After an
appropriate scaling of the equations of motion, the slow waves have
time derivatives which are O(l) times their space derivatives and the
fast waves have time derivatives which are O(l/e) times their space
derivatives, where ¢ is ‘the nondimensional Rossby number (Sec. 3),
0 < & << 1. Both the slow and fast time scales are associated with
purely oscillatory behavior: no exponential growth or decay occurs.
This fact is important in the application of the bounded derivative

.1 The bounded derivative principle for systems of ODEs

To present the principle in its simplest form, we consider a

system of ODEs with two time scales,

dy/dt = A(t)y + (), (4.1)
where y is an n-vector and A is an n x n matrix. We assume that A(t)
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is diagonalizable with purely imaginary eigenvalues Al,...,k . We
n

also assume that solutions z(t) of the homogeneous equation

dz/dt = A(t)z (4.2)

satisfy an estimate of the form

lz(t)] < K|z(0)] . ; (4.3)

These assumptions imply that solutions of system (4.1) behave like
solutions of a hyperbolic system of PDEs, with motions which are

essentially oscillatory. We suppose that the eigenvalues split into
two sets

Ml = {)\1,... ,Am}

M2 = {Am'{'l’...')\n}

where Aj = 0(l/e) if Aj € Ml and Aj = 0(1) if xj € MZ' with 0 < e
<< 1. Eigenvalues with two different orders of magnitude yield
motions with two time scales: the motions associated with M, are
fast, i.e., their time derivatives are 0(1/£), and the motions
associated with Ml are slow, i.e. their time derivatives are O0(1).
The initialization problem is to choose y(0) so that the motions with
the fast time scale stay small in amplitude.

The bounded derivative principle arises from a simple
observation: If y(t) varies slowly, then its first few time
derivatives satisfy

dvy
_3?5'= o(ly, fqr v=1...,p"1 (4.4)

and some suitable p > 0. In particular, equation (4.4) must hold at
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time t = 0. This leads to the principle: choose the initial value
¥(0) = y, so that

avy

T =0(l) att =0 forv = 0,1,...,p-1. (4.5)

The result which Kreiss has proved for ODEs and hyperbolic PDEs is
that initial values which satisfy the bounded derivative principle
generate solutions which vary only on the slow time scale for t in
some finite interval 0 < t £ T, with T = O(l). His results depend on
assumptions on the structure of the systems which we will not discuss
in detail. Some of these assumptions involve the existence of
transformations of the systems into  normal forms. Such
transformations correspond roughly to the construction of normal
modes in nonlinear normal-mode initialization procedures. One
important feature of the principle is that these transformations do
not have to be carried out in practice, when applying the principle
to a given system.

To illustrate the validity of this principle, consider the

scalar equation

it)

dy = i + e (4'6)
3t “E'(y ’

y(0) = YO'

The solution of this equation is

y(t) = yq(t) + y,(8) (4.7a)
where
1 it :
t T s e (4o7b)
¥y () -

is the slow part of the solution, and

it
vp(e) = (v + ) &'/° (4.7¢)
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is the fast part of the solution. The derivatives of y are,

correspondingly,

vy _ _svyp 1 it 1.V 1 it/e
atv ( l—s) ( € (v l—eJ

For each time derivative dvy/dt“, v =20,1,2,..., to be 0(1), we need

Yo = = * 0. | (4.8)

Hence a particular derivative will be dounded, d“y/dﬁv = 0(1) for all
t, if and only if d"y/at’ = 0(1) at t = 0.

The homogeneous equation corresponding to equation (4.6) has
solutions which vary only on the fast time scale O(l/). For a
solution of the homogeneous equation to have p bounded derivatives,
its initial value must be O(eP). Equation (4.6) has really only a
fast time scale, so we expect at most one solution of the
inhomogeneous equation, to within O(EP), to have p  bounded
derivatives. Because of the forcing term, this solution yl(t) is not
zero to within 0(eP); its scale of motion is like a slow time scale.
The choice of Yo "in equation (4.8) depends in fact on the forcing
term in equation (4.6).

For this simple example, in which the explicit solution (4.7) is
known, the initialization problem can be handled completely by

setting
= - 1
Yo l—¢
Then all derivatives of y are bounded. In general, the

initialization problem is not as straightforward as this. We now
illustrate how equation (4.6) can be used, together with the bounded
derivative principle, to derive equation (4.8) without using the

explicit solution (4.7).
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By differentiating equation (4.6), we can derive equations for

dvy/dt“ in terms of v, e.g.,

it)

=1 (1 (y+e + ielty, (4.9)
€ >4
Evaluating (4.9) at t = 0,
2
a’y 1
—L == = + 1+
dt2 &? (yo o
=0
we see that y"(0) = 0(l) if and only if Yo + 1 +e = O(ez)a

Differentiating equation (4.9) successively and using equation (4.6)

after each differentiation, we obtain

Y . . .
&y = (dyy o+ i3 V3 elt 4.10)
Gy L T (

Evaluating (4.10) at t = 0, we see that (d“y/dﬁ))(O) = O0(1) if and
only if

Yo == ) ed + o), (4.11)

which agrees with equation (4.8), being just the power series of
-1/(1=-e}). ‘

In systems where there 1is only a fast time scale, in general.
only one solution to within 0(eP) has p bounded derivatives. An
asymptotic expansion in powers of ¢ for the initial data of this
single slow solution can be obtained £from the system using the
bounded derivative principle as we have just illustrated.

In systems where two time scales are present in the homogeneous

equations, the "slow parts" of the initial data can be specified



arbitrarily; then the bounded derivative principle can be used to
determine an asymptotic expansion for the "fast parts" of the initial
data. For example, consider the system

F 1 1 1 5, T oI 7] [T 1 (I
La. La 1
4 = 211 & "1zl ¥ — 3
dy
4
— = . + .
at € o (4.12)
II II II
X A1 Popil| ¥ | £
e — - P I N - ]

where XI is the fast part, and XII the slow part of the solution.
Under certain assumptions, Kreiss (1979) has shown that for every
yII(O), there is a yI(O) so that the solution of system (4.12) with
these initial values has p bounded derivatives, and that given
yII(O), this yICO) is unique to within O(P).
4.2 The bounded derivative principle in NWP

In the systems of PDEs governing NWP models, it is not clear a
priori what the "slow and fast parts" of the initial data are. The
bounded derivative principle can be used to determine a sequence of
diagnostic equations which hold up to a certain order in e. Initial
data which satisfy these diagnostic equations will generate solutions
of the model equations which vary on the slow time scale up to a time
which is O(1). The question of how initial data which satisfy these
diagnostic equations are constructed from asynoptic measurements does
not have a simple answer; each pair of model and nonstandard data
sets must be analyzed separately.

We conclude this section by presenting a part of the application
of this principle to the shallow-water equations with orography H =
H(x,y); this work is due to Browning, Kasahara, and Kreiss (1979).

The equations are

%IE+¢x-fv=0, ‘ « (4.13a)
dv L4 +fu=0 ' (4.13b)
at by !
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3 x _
_54'% +(w), + (v )Y * (gm0)8 - (ud 4ve ) = 0, (4.13¢)

where d/dt = 3/6t + ud/fAx + v 3y, ¢y = mean geopotential, ¢ =
deviation in geopotential from the mean, & = u, + vy = divergence,
r = —uy-!-vX = vorticity, and ¢ = gH. The nondimensionalized and

scaled equations for the case of a midlatitude beta-plane become

du 4 5 =0 4.l4a
% ’ ( )
dv
+b=0, . 4.14b)
— ’ (
3;3_+ (w), + (vo), +c =0, (4.14c)
where
_ =1
a =g {¢X - fv) , (4.15a)
- .~ '
b =c¢ (¢y + fu) , (4.15b)
c = e 24 0)s - T(us_+ vb_) (4.15¢)
0 b4 AR :
and f = fO + eBy, € = Rossby number = 0(1/10). When we say in the

sequel that a function is O(l), we mean that the function and its
spatial derivatives are O(1l).

The first—order time derivatives Upp Vis and ¢, are o(1ly if and
only if a, b, and c are O(l). Differentiating (4.15a) with respect
to x and (4.15b) with respect to y, this requires

a +b =c Hy% - £ +epu) =0(1) , (4.16a)

s - 08 — (o ave ) = O(1) , (4.16b)



V2¢ - fr + eBu = O(e) , (4.17a)

e(u®x+v¢y)

A L o(?) . (4.17b)
=

Dropping terms O(e) in (4.17a) and 0(52) in (4.17b), we obtain the

diagnostic equations

v2% - f£ =0 , (4.18a)

§ = s(u¢x+vq>y)/¢0 . . (4.18Db)

Equation (4.18b) implies that 8§ = O(c), so the divergent part of the
wind is O(e). Hence it is permissible to replace u and v by their
rotational parts uo and v0 in equation (4.18b), making an error of
0(82). If the rotational part of the wind is measured, which is
equivalent to - the vorticity ¢ being measured, then & can be
determined by (4.18b) and ¢ by (4.18a). Then u and v can be
determined from § and ¢ by the Helmholtz theorem.

Notice that equation (4.18a) is the linear balance equation.
The numerical experiments of Browning et al. (1979) indicate that
requiring Jjust the first time derivatives of u, v, ¢ to be O(l) at
time t = 0 does not effectively prevent the growth of inertia-gravity
waves., The improved diagnostic relations obtained by requiring that
the second time derivatives of u, v, ¢ also be O(l) at time t = 0 do
effectively prevent the growth of the first waves. These results
corroborate those obtained in the practical implementation of
nonlinear normal-mode initialization schemes (Daley, 1980).

We will not present the second-order relations here. In
particular, the nonlinear balance equation can be derived from these
second-order relations (compare also Sec. 3, and Leith (1980)). The
reader is referred to Browning et al. (1979) for details.

5. CONCLUDING REMARKS

We have pointed out that there are two problems in passing from

a set of measured data, distributed in space and time, to a solution
of the governing equations for an NWP model: one is completeness, the

other 1is, for lack of a better term, accuracy. We call a set of
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measured synoptic and asynoptic data complete if it determines
uniquely the solution to the model equations, and if small errors in
the data lead only to small errors in this solution. Criteria were
outlined for the theoretical completeness of data sets considering
some very simple model equations.

Given a complete data set, we studied the practical congtruction

of the unique model solution by intermittent updating. The

convergence of updating procedures was investigated, and its
dependence on the updating interval was stressed.

The second problem, that of accuracy, is linked to the presence
of two time scales, a slow and a fast one, in the model equations of

NWP, For a model system, the shallow-water equations, we showed that

the geopotential field and its first two time derivatives, or
tendencies, form a complete set of data. The velocity field can be
constructed by solving a set of diagnostic equations which use the
mass field data. T+ was shown that the initial state thus

constructed generates a slow solution to the prognostic model
equations, provided the rendencies of the mass field at initial time
are small. Hence this solution of the completeness problem also

solves the initialization problem, that of ascertaining that the

evolution of the model is on the slow time scale only.

T+ remained to show that, given small initial tendencies of the
solution, the solution will continue o evolve slowly for a time
interval comparable to the model's slow time scale. This is in fact

the case, as shown by the bounded derivative principle. This

principle was first illustrated for simple systems of ODEs with two
time scales. It was then applied to the shallow-water equations.

in conclusion, we have addressed certain theoretical questions
of 4-D data assimilation and initialization: completeness of data
sets, convergence of intermittent updating, the time span of slow
evolution of NWP model solutions. The questions and their solution
were illustrated for the shallow-water equations. ‘
e hope toc have shown the close relationship between data
assimilation and initialization. A unified treatment of both aspects
of the data problem in NWP appears in the companion paper, Ghil et

al. (1980).
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