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1. INTRODUCTION

An experimental non-hydrostatic mesoscale forecasting model has been under
development at the U.K. Meteorological Office for a number of years and has been
described'By Tapp and White (1976) and Carpenter (1979). The model has a

uniform horizontal grid with a resolution typically of 10 Km and has up to 20
levels of variable spacing. If a model of this type is ever used for operational
forecasting for the British Isles it will be necessary to develop methods of fine-
scale data analysis that are reliable and efficient. - I shall describe a
technique of analysis that has been used successfully for producing detailed
analyses, mainly of surface observations, by using spatially-recursive numerical
filters to provide the correction fields of a 'successive-correction’ scheme.

The method used to date is essentially empirical, but I intend to indicate how a
variation on the successive correction method might be employed to provide an

iterative solution to the problem of determining an optimal analysis.

2. RECURSIVE FILTERS

In any analysis method it is necessary to find a technique that enables the
influence from a localised observation to be spread smoothly and consistently
across the analysis domain. In the case of the empirical analysis I shall
describe how this ig done through the repeated application of spatially recursive
filters. It is worth discussing the nature of these filters in a little detail,

although a more thorough description is given in Purser and McQuigg (1982).

The basic form of such a filter is exemplified in a one-dimensional uniform grid
by the following simple algorithm that generates a smoothed output, Egm y from an
input, AM » at grid point, " :

Bo = Aa
Bu: aB,., — (1-4)A, m >0

X is a smoothing parameter, taking a value between O and 1, that controls the

(1)

"

spatial scale of smoothing of the filter. By ’expanding the recursion in (1) we

may express the result:
"
B‘h = ("'0() (AM+ O(Am-l + - O(M‘Am-h + - - A Aa> (2)

or symbolically by the convolution operation,

B= ExA (3)
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with

En = (=)™ n 20 )
= 0 m < O
This filter has two notable properties: firstly its convolution kernel, E;, takes
the same shape (a decaying exponential distribution) for different scale
parameters, o , and secondly its characteristic scale may take any value. To-
gether these properties make it a simple matter to reproduce scale~dependent
effects of a filter applied to a distribution on a grid of one resolution with a
corresponding filter applied to the same distribution resolved by a different

grid. In fact all filters of this form have a continuous analogue in the

convolution: 00
Beo = ~logX g A(z-) & dx (%)
2 .

where the continuous variable, x, replaces the discrete index,m , of equation
(2). In the subsequent discusesion I shall neglect the effects of the grid's
finite resolution and its finite extent so that equation (5) serves as an

adequate model of the actual discrete filters used.

The convolution kernel of (S5) may be written,

F= 1L e > x>0
N
6)
- O W< O
where i
A= T g (7)
First and second moments of the distribution, EYI) , are:
M) = | xFeode = X
° . (8)
M. (€) = j'sz(x) I« = 2A

The natural measure of the spread of the convolution is the variance of E?(x)

about its mean:

M/ e)= M) = M) = X ©)

Thus A.may be regarded as the characteristic scale of the associated recursive
filter. ;

By itself the basic filter has an asymmetric effect on the field to which it is

+
applied. To remove the bias it is necessary to apply the conjugate filter, E s
which entails reversing the direction of operation of the algorithm., The

resulting symmetric filter may itself be expressed as a convolution operation,

S% , where

254



Sxh z ETxExA | (10)

with
Elex) = E(-%) (11)
and hence, -ix! '
{ ~
S = 3% (12)

Some insight into the behaviour of these filters is obtained by exammlng their

spectral response. Defining the Fourier transform of A(x) to be A(k) so that,
o0

- ik
At = gAc,o e dx (13)
-20
ko

Ao = S A(K) e Kk (14)
then the convolutmn theorem is, .

H= Fx6 = A-F& (15)
From the definitions of F(x) and E+Cz)

~ }

Ew = |+ ink

o~ | (16)

' = [F = | —iAk
Hence,

~ ~ % S B

S(O = FEw = |+ K (17)

A higher degree of smoothing is effected by repeating the operation. That is,

by applying 5 2 S * Sx ). S ( x) is continuous in two derivatives at
= 0 and possesses a spectral response that is clearly more effective at supp-

ressing high wave-number structures. 'l‘his may be seen from Figures 1 and 2

which illustrate the forms of S and 5 together with their respective Fourier

transforms.

g

Y %) % 4h -7}» -‘/h o Va k%

. ~~
Figure 1. Smoothing kernel, S(}), and its Fourier transform, Sw.
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Figure 2. Smoothing kernel, f; Cij and its Fourier transform , 13 (k)
In the general case of repeating the application of filter, f;, L times the
(L)
spectral response of the equivalent filter, S is
~ !
= L
STy = (1 + K (18)
As L increases we observe the central limit theorem applies:
21,2
N(L) --'L-“-k =~ .
SYw = e s G (19)
where 2
., S
| 4LN

- € (20)
G = P i

As expected from the additive property of variances of convolved functions, the

variance of the resulting smoothing kernel is
7 2
M, (&) = 2LA (21)

Thus we have at our disposal a simple method of smoothing a field as if we had
convolved it with Gaussian of a chosen width. A two-dimensional Gaussian filter
is simulated by repeating the application of the basic filters in both the x
and Y directions. The small edge effects on a finite grid have little

deleterious effect in the interior.

3. ANALYSIS STRUCTURE

I shall now describe the construction of a two-dimensional successive correction
analysis scheme based on the use of the composite 'pseudo-Gaussian' filters
reviewed in the previous section. I shall adopt the notation that a Roman suffix
denotes a value at an analysis grid point, a;Greek suffix indicates observation
points and a bracketed superfix denotes the iteration index. Let Ox be the
observation value at position « and let ,Aﬁm be the analysis value at grid
point i at the nth iteration. Assume /\an takes a uniform value for the
first guess (though in an operational analysis this would be greatly improved by

using a forecast background field instead of a constant initial value).
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For simplicity I shall assume that all observations coincide with analysis grid
points (but in reality a simple interpolation to nearest grid points is required).
At any stage ) of the analysis we may construct 'observation-residuals',

(Cl‘— AS”) y at the observation points and associate with each one a ‘'weight',
(w) '
-4

the strength of influence, of each observation. (This point will be discussed

s whose value may be used to prescribe the degree of reliability and hence,

more thoroughly below). An improved fit to the observations may be obtained by
adding to (2 a weighted average of the neighbouring observation-residuals.
If (:(:l denotes the application of an appropriately gauged pseudo-Gaussian
filter of the type described in Section 2, then we may generate an improved fit
to the observations while preserving smoothness by the operations summarised

symbolically:

G CPx Q(0-A")
A = A + C(m* Qm (22)

The choice of scale parameters of the basic recursive filters that comprise (:“9
enables the effective scale of (:&) to be varied not only from iteratiom to
iteration but also from one region of the grid to another if these parameters
are space~dependent variables of the scheme. This allows us to account for the
variable coverage of obsérvations. A useful measure of the observation density,
and hence the characteristic separation distance, is obtained by ensuring that

reliable observations have approximately unit weight,

Qu = | (23)
)
and extracting a scale of separation,lzw , as a biproduct of equation (22) by

(n) !

Ry = —m (24)

where

(M) (") ('VI)
W' CT% Q (25)
) T
w may then be used to control the scale of smoothing filter of the next

iteration to ensure that no attempt is being made to analyse scales inadequately
resolved by the local observation density. Apart from this important restriction

the characteristic scale, Fe s of the smoothing operator,<:4+, is permitted to

decrease exponentially with each iteration from an initial %afge scale, F?M ’
=)
towards an empirical predetermined small positive limit, F?M . Formally:
’(‘“) ) )
R™ = Max (Ru , Ruw) (26)
wvhere,

(o0}

R‘:] (°°) (—2(")_ RN ) S
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The principle of this strategy is essentially to fit observations with large-
scale analysis structures whenever possible (ie at an early stage) and to
reserve the fitting of small-scale structures to accommodate only those features
that cannot be readily analysed by large-scale perturbations alone. This
follows the conventional approach of successive correction gnalysis, eg Cressman

(1959).

The observation weights are controlled to ensure that strongly deviant
observations (which are probably erroneous) have negligible effect in the final
analysis. Apart from a crude preliminary climatological check, there is no
explicit rejection of observations, but a weight formula based on the latest
observation residual ensures that a large departure from zero causes the
observation in question to acquire a very emall effective weight at the next

iteration. The function takes the form:

() o0\ 4
Q. = |+ ( | O~ Au l) 27)
ToL™

where the !tolerance', TOLa” s decreases exponentially with each iteration

towards a finite limit.

) "
) (=) (o) - T L(no o
ToL™ = ToL™ + (Ter roc ) (28)
()
the function for « in equation (27) is illustrated in Figure 3.
Q.
P
g4
.6_
.*__
.2}
i L s s N L . i

6 o1 T o -3 —6 =4 =7 0 2 4 6 3 o 17 4 1%

Figure 3. Qat as a function of D = (O« - A«)/ToL .

The gradual reduction of TOL prevents good cbservations from being prematurely
eliminated due to the inevitable crudeness of the analysis at an early stage of

the iterations.

Figure 4 shows a sea-level pressure analysis constructed by the technique using

ten corrections on a 21 x 21 grid. In this case the principal analysis
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parameters were:

Re” = 900 Ku
R = 22:5K.
s = -7
TOL(°)= | O mlb
Toﬁwg I wml
o -6

Note that in this case the anomalously high pressure observation in the middle
of the English Channel has been successfully ignored by our method of quality
control. Some idea of the relative scales and amplitﬁdes of the successive
corrections comprising the analysis of Figure 4 is obtained by comparing Figures
5, 6 and 7 which show the 1st, 5th and 10th corrections reepectively, together

with the corresponding observation-residuals from which they are derived.

L, ITERATIVE OPTIMAL ANALYSIS

The analysis scheme I have described is based entirely on empirical consider-
ations and has required a certain degree of experimental 'tuning' to produce
consistently acceptable results. It appears to perform well and can certainly
be made computationally efficient, even when dealing with a very large quantity
of observations, thanks mainly to the simplicity of the numerical filtering
technique employed. However, it lacks any formal theoretical basis that would
enable the various parameters to be prescribed objectively. I would like to
complete this presentation with a somewhat speculative look at the prospects of
applying an essentially iterative algorithm to the task of generating an
analysis that is in some formal sense ‘optimal’. By this means we may hope
that some of the serious practical problems associated with the manipulation of
the large matrices of conventional optimum interpolation schemes may be

aleviated.

Expositions of the standard theory of optimum interpolation may be found in the
publications of several investigators, eg Gandin (1963), Rutherford (1972),
Lorence (1981). The central equation of the theory is the linear set:

A-B = % Coa (7 +E) o (05=B1) (29)

where A;,IE;, C)x are analysis, background (or first-guess) and observation

fields respectively. C:ix is the covariance of background error between grid
point | and observation & . (:’ is the corresponding matrix of values between
observation points and E’ is the matrix of observation error covariances. In

practice the correction to the background field is determined by solving a
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Figure 4. Analysed sea-level pressure at 12% , 2.6.81.
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Figure 5. First correction field of the analysis of Figure L and
plotted observations. '
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Figure 6. Fifth correction field of the analysis of Figure kL,
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Tenth correction field of the analysis
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manageable approximation to this highly interactive linear system. Unfortunately,
for a mesoscale analysis it is less easy to justify the artifical and rather
drastic cut in the order of the matrices involved since a relatively large number
of observations lie together within the characteristic scale of the error

covariance distribution, C.

An equally valid representation of the optimum interpolation equation (29) is the

implicit form, »
A.I—B‘.:D(Zﬂ Cio( E/,(/g(oﬂ‘Aﬂ) (30)

which is more suggestive of an iterative formulation. Since the covariances, C,
are normally considered to be spatially quasi-homogeneous we may rewrite (30) as
a convolution or pseudo-convolution (in which the convolution kernel varies
slowly in space):

A—B*-C*X 31

“where

-1
/
X« = % E 3 (Oﬂ ‘A/3> ‘ (32)
’
Note that usually ><x may be easily obtained since E is generally sparse off

the diagonal.

It is likely that typical covariance functions, C, (including multivariate forms)
can be well approximated by the superposition of a small number of Gaussians. If
such is the case the correction to the background field can presumably be
generated by applying the appropriate combination of the recursive filters of
Section 2 to the impulsive distribution )(. But since )< itself is defined in
terms of the unknown field,lA y by equation (32) we must seek an iterative
solution to avoid the large matrices that would otherwise have to be inverted to
determine X . A possible contender might be the scheme defined by the following

recursive set of equations:

g =0 (33)
-t —X'(’V‘)
(n) /
X = % Em Op (34)

AT = cx X+ B (35)
X’(M)

" () _
O:(““) = O*(\ + % Hxx (OJ - Ob‘ - AF ) (36)

o«

where the matrix, F# y has only a small number of non-zero elements in each row

but is also an approximation,
-1
7/
Ho o % Els (E7+C”) py (37)

Depending on how good an approximation this is, the scheme defined by equations
(33) to (36) should converge rapidly to the desired optimal state. Thus it
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appears possible that by successive correction of the estimated observation-
residuals, O s and by the spreading of analysis information by the use of
recursive filters a reliable approximation to an optimal analysis might be

efficiently achieved.

REFERENCES

Bergman, K. H. 1979 Multivariate analysis of temperatures and winds using
optimum interpolation. Mon. Wea. Rev. 107, 1423-1L43.

Carpenter, K. M. 1979 An experimental forecast using a non-hydrostatic
mesoscale model. Quart. J. R. Soc. 105, 629-655.

Cressman, G. P. 1959 An operational objective analysis system. Mon. Wea. Rev.

87, 367-381. .

Gandin, L. S. 1963 Objective analysis of meteorological fields. Leningrad
Gidromet; Jerusalem, (Israel program for scientific translations. 1965
252pp).

Lorenc, A. 1981 A global three-dimensional multivariate statistical inter-
polation scheme. Mon. Wea. Rev. 109, 701-721.

Purser, R. J. and McQuigg, R. 1982 A successive correction analysis scheme

using recursive numerical filters. (Unpublished) Met O 11 Technical Note

No. 15k,

Rutherford, I. D. 1972 Data assimilation by statistical interpolation of fore-
cast error fields. J. Atmos. Sci. 29, 809-815.

Tapp, M. C. and White, P. W. 1976 A non-hydrostatic mesoscale model. Quart.
J. R. Met. Soc. 102, 277-296.

265






