WNANYJOWIW 1VDIINHDAL

l am
4

S92

The DOCTOR system. A
DOCumenTary ORiented
programming system

J.K. Gibson

Research Department

January 1982

This paper has not been published and should be regarded as an Internal Report from ECMWF.
Permission to quote from it should be obtained from the ECMWEF.

European Centre for Medium-Range Weather Forecasts
Europaisches Zentrum fur mittelfristige Wettervorhersage
Centre européen pour les prévisions météorologiques a moyen

1. INTRODUCTION
‘DOCTOR is a programming standard‘'born out of the advantages and- shortcomings
found by the autﬁor during his experience wiéh other programming: standards.
.Two ‘standards ‘in particular have been used extensively fvthenOLYMPUS system
(Roberts, 1974):and the Control Data Corporation programming standard. -In
addition, many usgful ideas and concepts are based on Frank's (1971)
documentation processor. (DOCK,.'an Internal/External Documentation
“ Pprocessorm is a CDC- Proprietary Product, copyright Control Data -Corporation,
T971). - Since the DOCTOR system was first described (Gibson, 1980), it has
been developed and modified, and is currently beirng used for ECMWF's . new
' forecasting system. DOCTOR's application will be described with: particular
reference to FORTRAN. There is no reason why, suitably modified, some or all
“of its principles cannot be used’'in conjunction with any programming

“'language.

1.1 Basic ‘aims of the system

DOCTOR ‘attempts to:

a) provide well presented code. .
b) produce source code following a standard structure.
"¢) set up points of reference for external documentation.

d) enable the inclusion within the source code of documentation which can
be extracted mechanically.

¢) allow maximum communication between routines by storing universal
variables in structured pools or common blocks. : : ‘

£) facilitate the recognition of variable types, and the differentiation
between local variables, variables in common blocks, and dummy
arguments to routines. :

g) provide a set of utility routines for copying vectors, resetting
arrays, etc. ’

1.2 Documentation

Documentation is a means of retaining the ability of code to be understood.
The production of documentation is a skill at least as important as the skill
required ' to design and generate the code itself. Good documentation
increases the value of code - it assists maintenance, aids understanding, and
can be invaluable if language to language re-coding should ever be necessary.
One of the biggest problems with documentation is keeping it up to. date.
When documentation takes the form of typed or printed material there is
always a delay in producing amendments. There is also a danger of changing
the code, but'not the documentation. This danger may be reduced if much of
the documentation is ‘incorporated in the text of the source code. If
facilities are provided to extract the documentation from the source code,
delays in producing amendments are overcome, and labour costs reduced. The
DOCTOR system provides a simple set of conventions to enable sufficient
documentation to be included in the souce code of each routine to enable it
to be understood and used by another user. These conventions are such that
simple extraction programmes may be written to process the source code and
produce the documentation. In addition, routines are structured into
numbered sections and sub-sections, thus facilitating cross references to
lists of equations and symbols etc., which could not easily be included in
the source code. Such additional documentation should be detailed in the

section of the header comments titled REFERENCE (See 2.3.1 below).

2. CODING CORVENTIONS

Code should follow a modular structure, each module or routine fulfilling a
stated purpose. Modules should be divided into numbered sections and
sub~sections. Communication between modules should not involve long
parameter lists - shared data should be made available through shared data

pools, common blocks, etc.

2.1 Naming conventions

The type of a variable is indicated by the first letter of the variable's

name according to Fig. 1.

! PREFIX ! TYPE]
1 1 ’ !
! I,J3,X,M,N 1 INTEGER !
! ! !
f H ! INTEGER {(used for HOLLERITH) !
! 1 !
! L ! LOGICAL A
! ! !
1 Y ! CHARACTER i
1 ! 1
! ALIL OTHERS 4. REAL 1]
1) !

Fig. 1 Variable types

In addition, a prefix convention is used to indicate the STATUS of a
variable, to enable recognition of local variables, COMMON variables,; loop

control variables, dummy arguments, parameters, etc., according to Fig. 2.

A "Hollerith" type is included for ease of communicating character data via
COMMON blocks and including characters in records to be read or written via
unformatted input/output. Conversion between “Hollerith" and CHARACTER type

would be performed in FORTRAN by means of internal files.

The default DOCTOR type convention may be established in FORTRAN by the

statement:

IMPLICIT INTEGER. (H), LOGICAL (L), CHARACTER *3 (Y)

REAL
INTEGER (HOLLERITH)

LOGICAL

CHARACTER

ANY REAL PREFIX
NOT INCLUDED ABOVE
H, BUT 1‘«0‘ HO,
HA,OR HP o

L, ﬁUT QOT Lo,

LA, OR LP

é, 'BUT NOT YO\,

YA, OR YP

! STATUS ! TYPE ! PREFIX !
l , : 1 ! o !
+ + 1 ——t
! LOCAL VARIABLES ! INTEGER ! I 1
! { ! !
! ! REAL i Z !
! ! : ! g !
! ! INTEGER (HOLLERTTH) 1 HO !
! ! LOGICAL t 2 Lo !
! ! ! !
! !" CHARACTER ! YO t
! ! A

DUMMY ARGUMENTS ! INTEGER - ! X !

! ! !

! REAL ! P(But not PP) !

1]]

! INTEGER (HOLLERITH) [- HA !

! !

! LOGICAL LA !

e R !

! CHARACTER YA !

1 1

LOOP CONTROL ! INTEGER J(But not JP) !

1 !

PARBMETER ! INTEGER JP i

! 1

! REAL PP 1

! 5 !

! LOGICAL LP !

! SRR : !

! CHARACTER YP !

: . ' ! 3 H o |
GLOBAL OR COMMON ! INTEGER ANY INTEGER PREFIX |

1 1

! NOT INCLUDED ABOVE !

H t

! !

! !

! !

1 !

! !

! !

! !

! t

! !

! I

! !

! !

! !

! t

{ !

! !

-}...._._.-...._..._._._........_.-._...._._._...._._.-_.—._..._._._...-.._.-...._...._...._

]
+

Fig. 2 Variables by status

The naming conventions enable the type and status of each variable in the

¢ode-to be recognized from its names

2.2 Conventions for comments

A1l comments within the code should take the form of titles, clauses, or
sentences terminated by full stops or periods. Abbreviations terminated by
full stops (e.g. etc.) should be either avoided or coded without:the full
stop (eg etc). Proper names appearing in the middle of a clause or sengence
should be prefixed by an asterisk-(*); indicating an upper case first:-letter
to the document extraction programme. Alternatively, proper names may be
parenthesised by asterisks (eg *PORTRAN*) to indicate that the whole word is
to be extraqted as upper case letters. Header titles and section titles
should be: "underlined"” by coding - -under each character in“the next
consecutive statement (including punctuation characters). Underlined titles
will be recognised by the document extraction programme and printed in upper
case. A single letter followed by a full stop will be assumed to be an

initial, and extracted as upper case.

With this convention, the following rules apply to an upper/lower case
documentation extraction programme.
a) The first letter after each full stop is UPPER CASE.
b) Words that are underlined are UPPER CASE.
c) Words backeted by asterisks are UPPER CASE.
d) Words prefixed by a single asterisk have first letter UPPER CASE only.
"e) Single letters followed by full stops are UPPER CASE. |

£) All other letters are LOWER CASE.

2.3 Code structure
Routines are divided into a preamble or "header", sections, ‘and subsections.
The header contains comments which describe the routine; the main body of the

code is divided into numbered sections and subsections. :

2.3.1 Header comments

The comments at the head of each routine should take the form of

‘a) A C**** card containing a ‘title beginning with the subroutine name..

-~b) The name of the author and the date written

¢} Modification details (name, date, and reason for modification)

d) headed sections, giving the following information:

© PURPOSE. the function of the routine
INTERFACE. how the routine receives its data and returns its
---------- results.
METHOD. how the results are obtained
REFERENCES. references to external documentation, if any.

Each headed section begins with a comment card containing the title key-word
followed by a full stop. The following card should underline the title and

the full stop.

The headed section following the PURPOSE section should contain C** in
columns 1 to 3. This enables the header comments up to this section to be

extracted as OVERVIEW documentation, while the complete header comments would

be extracted as EXTERNAL or INTERNAL documentation. (OVERVIEW, EXTERNAL and

INTERNAL levels of documentation are defined in Section 3). An example of a

routine header is given in Fig. 3.

@]
*
%
*
*

¥
*

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

SUBROUTINE EG1(HATEXT,KLEN) s e L

EG1 - ROUTINETO 'PRINT ‘A TEXT ARRAY.

‘J«K+GIBSON E.CiM.W.Fs =~ 13/1/82%

“MODIFIED ‘BY "~ J.K.GIBSON -~ - 16/1/82 = TO DEMONSTRATE THE WAY
IN WHICH CHANGES SHOULD
BE ‘DOCUMENTED.

PURPOSE.

EGl PRINTS A *HOLLERITH* ARRAY CONTAINING 8 CHARACTERS PER
WORD. ' R

INTERFACE.

CALL *EGI(HATEXT KLEN)*

HATEXT - *HOLLERITH* ARRAY CONTAINING TEXT.
TRELEN® - LENGTH OF *HATEXT.* :

~ "METHOD.

HATEXT IS PRINTED USING FORMAT *(10A8) *

EXTERNALS.‘

NONE.-

REFERENCE.

Fig. 3. Routine header

The header comments should normally be followed by
a) an IMPLICIT statement
b) common blocks

c) the main body of the code.

2.3.2 Common blocks

Common blocks should begin with a C* card containing a title beginning with
the common block name. This should be followed by the name of the author and
the date written, and modification details. If an editor capable of allowing
cénditional code is available, a section of comments can be condiﬁionally
included giving a table of information under the headings:

c* ’ VARIABLE o TYPE PURPOSE

c‘ R o -__; -_—;—__

It may also be considered desirable to include the FORTRAN source code of
some common blocks in the extracted external or internal level documentation.
This is indicated by bracketing such code bf Cx** cardg. ‘Common blocks
shouid be "ruled off" from one-ancther\ﬁy includingka_comment card containing
minus signs in columns 7 to 72 at the end of each block. Figure 4
illustrates the format for a common block. The CDC UPDATE cohdition;l
statements *IF DEF, DOC and *ENDIF may bé used to restrict tﬁe inclusion of
the table of variables, and the inclusion of the C*** brackets_dnléss "poc"
is defined to UPDATE. A common block with conditional statements is

illustrated in Fig. 5.

"I HBMSG(l0)
*IF DEF,DOC
C*** co
*ENDIF
c

C =mcecmcaccecec=-

c S ,
c* *COMMON* *COMEGl* -- EXAMPLE OF A COMMON BLOCK.
C J.K.GIBSON EeCeM.W.F, 13/1/82.
c S -

COMMON /COMEG1/

I NDVIN, NDVOUT, - HMSG.

C .
Cc* VARIABLE TYPE .+ PURPOSE..
C ________ ———— e s o e e -
c ®*NDVIN%* INTEGER LOGICAL UNIT FOR INPUT.
c - *NDVOUT#* INTEGER LOGICAL UNIT FOR OUTPUT.
C ®*HHSG* HOLLERITH ARRAY CONTAINING A TEXT MESSAGE.
c

DIMENSION

I HMSG(1l0)
c
P D ittt

Fig. 4. Common block format

C , , ,
c*® - %XCOMMON* *COMEG1* - EXAMPLE OF A COMMON BLOCK.
c
C J.K.GIBSON E.CuaM.W.F. 13/1/82.
C .
c MODIFIED BY J.X.GIBSON 16/1/82 ~- TO ILLUSTRATE HOW *CDC*
c *UPDATE* DIRECTIVES MAY
C BE USED TO CONTROL THE
c DOCUMENTATION PRODUCED.
C i L) ‘
*IF DEF,DOC
Chk%k*
*ENDIF o

COMMON /COMEG1/

I NDVIN, NDVOUT, HMSG

*IF DEF,DOC
C***
C* VARIABLE TYPE PURPOSE.
C ________ e e e - es o -
c
c *NDVIN* INTEGER LOGICAL UNIT FOR INPUT.
c *NDVOUT* INTEGER LOGICAL UNIT FOR OUTPUT.
c *HMSG* HOLLERITH ARRAY CONTAINING A TEXT MESSAGE.
o
C***
*ENDIF

DIMENSION

Fig. 5. Common block with conditional statements (CDC update form)

2.3.3 Main body of the code
The main body of the coce should be divided into sections. Each section
should be numbered, and shculd begin with | |

a) A C* ’card containing the section number and title -

b) A comment card underlining the title.

c) A CONTINUE statement numbered in accordance w1th the sectlon number.
(i.e. NOO for sectJ.on N). ‘ ~

eg

C

c* 1. SET INITIAL VALUES.
c : . —— e ms - mee—————
C

100 CONTINUE

Sections should be "ruled off" from-one another by a comment card containing

minus signs in columns 7 to 72.

‘Secticns should be vdivided into subsections. Subsections should be numbered
such that N.M is snbsection M of section N. Each subsection should begin
withs
a) A C* card containing the subsection number and title
b) A CONTINUE statement numbered NMO. |
eg \
C

C* 1.1 SET LOGICAL SWITCHES.
110 CONTINUE :

2,3.4 Additional comments

Blank comment cards (ie C in column 1 only) should be included as necessary
tok improve the layout of documentation and to enhance the readability of the
code. Very few additional comments will be necessary, as a listing of the
section and subsectic_)nAtitles‘ should reéresent the steps in the coded

algorithm. Additional comments are useful to document branches in the code,

10

and are necessary in the case of any unusuai;cpding constructiop. Thg aim
should bejto provide comments which, whgn extracted,'list the algorithm‘coded ‘
;:Stepﬁbj's£ep.‘ Créés references should be to section and subsection numbers,
not to statement numbers in the code

eg

GO TO 300
c* BRANCH TO 3.

Figure 6 illustrates the code structure definéd;'

11

SUBROUTINE EG2(KDVIN,KDVOUT)

o

%kx* XEG2* - ROUTINE TO CONTROL A PROCESS.
J.K.CIBSON = E.C.M.W.F. 13/1/82.
' MdDIf1ED BY J.K.GIBSON 16/1/82 - CALLS TO *SUB2* WERE

ADDED TO EXTEND THE
SCOPE OF THE ROUTINE.

PURPOSE.

EG2 CONTROLS A PROCESS. IT IS AN EXAMPLE OF THE *DOCTOR%
PROGRAMMING SYSTEM. '

*
*

INTERFACE.

CALL *EGI(KDVIN,KDVOUT)*

KDVIN - LOGICAL UNIT FOR INPUT DATA.
KDVOYUT =~ LOGICAL UNIT FOR OUTPUT DATA.

METHOD.

VARIOUS SUBROUTINES ARE CALLED TO PERFORM THE TASKS REQUIRED.

EXTERNALS.

SUBROUTINE TO SET DEFAULT VALUES.
SUBROUTINE TO DECODE INPUT PARAMETERS.
SUBROUTINE TO PERFORM PART 1 OF PROCESS.
SUBROUTINE TO PERFORM PART 2 OF PROCESS.
SUBROUTINE TO PRINT RESULTS.

SETCOM
GETP
SUB1
SUB2
OUTPUT

REFERENCE.

A DESCRIPTION OF THE PROCESS MAY BE FOUND ON FILE 234,
NUMBER 567,

OOOOOOOOOOOODOOOOOOOOOOOOOOOOOOOOOOGOOOOOO

IMPLICIT INTEGER(H),LOGICAL(L),CHARACTER*8(Y)
* *COMMON* *COMEG2* - VARIABLES USED IN THE COMPUTATION.

J.K.GIBSON E.C.H.W.F, 13/1/82.

[sNeNesNoNe]

COMMON /COMEG2/

I NUMI, NUM2, NUM3,
R COEF1, COEF2, COEF3,
L LFLAGS

*

VARIABLE TYPE PURPOSE.

NUM1 INTEGER NUMBER OF TYPE 1 PRODUCTS.
ANUM2* INTEGER NUMBER OF TYPE 2 PRODUCTS.
NUM3 INTEGER NUMBER OF TYPE 3 PRODUCTS.
COEF1 REAL COEFFICIENT FOR TYPE 1 PRODUCT.

[sEeNeNoNeNeRo K]

12

C *COEF2%* REAL COEFFICIENT FOR TYPE 2 PRODUCT.
C *COEF 3% REAL COEFFICIENT FOR TYPE 3 PRODUCT.-
c *LFLAGS* LOGICAL LOGICAL SWITCHES.
C
DIMENSION
L LFALGS(20)
c
C ——-—————--.-—..——..__..—__..__.._..___..__.._'_.._..__.; ________________________
o
C* 1. OPEN FILES.
C —— - - -
C
100 CONTINUE
OPEN(NDVIN)
OPEN(VDVOUT STATUS=' OLD‘)
o
C __
c
C* 2. CONTROL THE PROCESS.
C _______ - ——
o
200 CONTINUE
c v ;
c* 2.1 SET DEFAULT VALUES AND DECODE PARAMETERS.
210 CONTINUE
: CALL SETCOM(NDVIN)
. CALL GETP
c , LE B
c* 2.2 PART 1 OF THE PROCESS.
220 CONTINUE ' '
CALL SUBI1
iF (.NOT.LFLAGS(l)) GO TO 220
C* BRANCH BACK TO 2.2 FOR NEXT ITERATION IF PART 1
c* HAS NOT CONVERGED. : .
222 CONINUE
c : : .
c* 2.3 PART 2 OF THE PROCESS.
230 CONTINUE o SRR S
CALL SUB2
IF (.NOT.LFLAGS(2)) GO TO 230
c* BRANCH BACK TO 2.3 FOR NEXT ITERATION IF PART 2
C HAS NOT CONVERGED. . ; ;
o
232 CONTINUE
C
C —---—-"----""-"-—--_---’—--—‘—“-""'-“-"-—--’_—-—?—--—-—f__-- --------
c
c* 3. PRINT THE RESULTS.
C _____ [
c
300 CONTINUE
" CALL OUTPUT(NDVOUT)
c
C ___
C
c* 4, CLOSE FILES.
C ___________
c
400 CONTINUE
CLOSE(NDVIN)
CLOSE(NDVOUT)
C ;
C __
c
RETURN
END

Fig. 6. Subroutine coded to DOCTOR standard

fﬁ‘-?‘..

3. EXTRACTION OF DOCUMENTATION

Some of the coding conventions defined in Section 2 are intended to enable
documentation to be extracted by means of a fiked set of rules. Using these
rules it is possible to write a simple documentation extraction programmé to
process the source code and extract the documehtatibn. Akprogramme Ealled

DOC is available at ECMWF for this purpose.

3.1 Levels of documentation

Four levels of documentation arg defined -~ OVERVIEW, SPECIAL, EXTERNAL, and
;NTERNAL. Users may request three levels - OVERVIEW, EXTERNAL or IﬁTERﬁAL.
Sections of documentation within the source code at each lvel 5egin with a

"trigger" and end with a "terminatoxr".

3.1.1 Overview documentétion

Overview documentation is triggered by a C**** card, and terminated at the
first subsequent non-comment card, unléss é trigger for another documentation
level is encountered first. Normally overview documentation will‘contain the

title and purpose of each routine.

3.1.2 Special documentation

Special documentation is triggered by 'a C*** card, and terminated by a
subsequent C*** card. The special level of documentation is used to enable
source code other than comments to be extracted as part of EXTERNAL or
INTERNAL documentatiqn. It should be used to allow the extraction of code

which sets the values of critical constants, etc.

3.1.3 External documentation

External documentation is triggered by a C** card, and terminated at the next
subsequent trigggerror non-comment card. It is assumed that a request to
extract external documéntation implies the extraction of overview and special

2

documentation as well. The documentation extracted at the external level is

14

intended to provide sufficient information for an external user to.use the

routines documented.

3.1.4 Internal documentation

Internal documentatlon is triggered by‘a C* card, aﬁd terminated at the next
subsequent trigger or non-comment card. A request to extract internal
documentation implies the extractioe of overview, special, and external
documentation as well. The rnternal documettation should contain the basic
steps of the algerithms coded,kand should be sufficient to enable melntenence

and modification of the code.

4. UTILITY ROUTINES

The concept of utility routines is taken from the‘dLYMPUS system (Roberts,
1974). The purpose of utility routinee is to grovide the user with a set of
tools for performing common routine’tasks,ksuch as eopyieé or re;setting

arrays.

With the advent of the X373 FORTRAN 77 standard, formatted 1nput/output in
FORTRAN has been considerably simpllfled, especially where text strlngs are
involved. Thus many of the standard OLYMPUS utilities are not included in
the basic set of utilities for DOCTORf (It seems pointless to iﬁclue a
routine such as

eALL MESSAGE (ésﬁ text of message)
to perform the single statement

WRITE (NDVOUT, '(A)}') 'text of message')
Figure 5 lists a basic set of DOCTOR utility routines, their CALL sequence,

and their purpose. This basic set should be available to users of the DOCTOR

system. It may be supplemented as desired.

15

CALL SEQUENCE -

PURPOSE

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

RESETR (PA,KLEN,PVAL)
RESETI (KA,KLﬁN,KVAL):H
RESETL (LA ,KLEN ,LAVAL)
RESETH {HA,KLEg,HAVA@)
COPYR (PR,K1,PB,K2,KLEN)
popxl (KA,K?,?B,K?,KLEN)H
COPYL (LAA,gi,LAB;KZ,kLEﬁ)
COPYH (HAA,K1,HAB,K2,KLEN)
SCALER (PA,KPENfPB)

SCALET (KA,KLEN,KB)

SIGNR (PA,KLEN)

SIGNI (KA,KLEN)

Set the first KLEN ﬁaiue of fA to
PVAL.

Set the first kLEN ééiﬁes of
kA‘to KﬁAﬁ.‘ | | A

Sét £he first KLEN values of
tAktokLAVAL | |

Set the first KLEN values of
HA £0 HAVAL o .

Copy KLEN vaiues4from'

PA(K1) to PB(K2).

Copy KLEN values from

KA(KT) to K8(K2).

Cééy KLEN’values from

LAA(K1) to LAB(K2).

Copy KLEN values from

HAA(X1) to HAB(K2).

Scale fﬁe first KLEN Qalueé of
PA by PB. | V

écale tﬁe first KLﬁN ﬁélues of
xa by KB,

- Negate the first KLEN values of PA.

Negate the first KLEN values of KA.

.}...._...._..._._._._._._._._...._._._...._...._._...._._._........._...._....._...._._._._-._.-......._.0....._.'.

i i i T T e T Sy LU MU VG SV

Fig.7 DOCTOR utility routines

16

N . - - - am o - gem bem adn v emm $m pan sem s b g P ok gem b e
G o e s tm = s 0 G s me S b Gee i bee 0 s S e S b S g M G e e e s s - - -

REFERENCES

Frank, R.H. 19271 DOCK - an INTERNAL/EXTERNAL documentation processor
(Copyright Control Data Corp.). {(Extracted from the source code by
courtesy of Frank Stevens, CDC).

Gibson, J.K. 1980 Programming Systems, Docmentation, OLYMPUS,, DOCTOR.
ECMWF Tech.Memo.No.20, pp«61. - »

Roberts,K.V. 1974 The Olympus Programming System Computef Physics

Communication, 7, 237-240.

17

Current Status of Meteorological Bulletins

The following indicates the status of Meteorological Bulletins at
29.10.1991:~

Refarence
MO.

M0.0

Ml.

M1.0
M1.0/1

M1.0/2
M1.1

M1.1/1
M1.32/2
M1.,1/3
M1.1/4

M1.1/5
M1.1/6

M1.2

M1.3
M1.3/1

Ml.4
M1.4/1
M1.4/2
M1.4/3
M1.5
M1.6

M1.7
M1.7/1

M1.8
M1.9
M1.9/1
M1.9/2

M1.10

Title

-General

Introduction

Basic Functional Design of
ECMWF’ s Meteorological Cperational
System (EMOS)

General description

Current and Planned Meteorological
Applications Systems at ECMWEF
Standards for Software Development

Data Bases
General

Message Data Base
=“=ports Data Base
Fielas Data Base

Products Data Base
Data Base for Trajectory Mcdels

Process control

Data Acquisition
General

Pre~processing

General

Decoding

Data checking and validation
Analysis

Forecast

Post-processing
Post-processing and dissemination

Dissemination
Archives
General

MARS User Guide

Metview

Status

Not issued

10/85 original version
06/86 oeiginal version
Not issued

Not issued

Not issued

01/87 original version
(needs updating)

Not i1ssued

10/91 revision 1

Not issued

06/87 criginal version

09/89 original version
01/91 original version
05/90 original version

See Research Manuals

See Research Manuals

06/87 original version
moved to M3.

Not issued

07/91 revision 9

Not issued

M1.11 - Data Monitoring' . Not issued

M2, Guide to the ECMWF Forecasting See Research Manuals
System :

M3. - The dissemination of ECMWF

"~ products

M3.0 Introduction to ECMWE's 07/91 original version
“dissemination service

M3.1 The dissemination of ECMWF 07/91 original wversion
products to Member States

M3.2 User Guide to ECMWF products in preparation; until

ready, see ECMWFE User Guide
to ECMWF products version
1.1

