USING AN IBM MULTIPROCESSOR SYSTEM

A.L. LIM and D.B. SOLL
IBM Corporation, Data Systems Division

Kingston, New York, U.S.A.

ABSTRACT

This paper presents an overview of the evolution of IBM multiprocessor
products and current product offerings. Programming language solutions
for parallel program execution are discussed and their suitability for

the implementation of scientific and engineering applications is assessed.
A set of groundrules governing the provision of parallel programming
capabilities is proposed. Results from applying these groundrules to
real scientific application codes executing on a multiprocessor are

provided.

Open questions for future investigation are posed.

45

SECTION 1: OVERVIEW OF IBM MULTIPROCESSING

The trend in large computer systems has been driven by desires for higher
performance, increased reliability and lower cost per unit of computation.
Much has been written about advances in computing technology from the mid
1940's to today. -Figure 1 highlights some of the major accomplishments in

large system developments.

In fact, parallelism, exploited in machine design, has been a significant
contributor to these improvements. For example, even uniprocessor config-
urations may incorporate parallelism at various levels such as interleaving
of storage, signal multiplexing, pipelining of functional units and high
speed cache. Today, large, high end systems consist of multiple processor

complexes.

Multiple processor configurations may be utilized in various ways, depending
on the manner in which the processors are connected. Loosely coupled pro-
cessors, that is, processors which are connected to each other by channel-
to-channel attachments, for example, need not be identical, since there is no
sharing of storage, channels, or controls. Loosely coupled processor systems

have existed since the 1960's.

Tightly coupled processors, on the other hand, have a much greater connec-
tivity and generally share memory, channels and other functional control.
This arrangement also implies a high degree of interaction between the
processors, which can be utilized to achieve either optimal throughput or

optimal turn-around. Tightly coupled processors such as the IBM 370/168 MP

46

HISTORICAL REVIEW
FACILITY TIME
¢ FIRST ELECTRONIC COMPUTER 1944-46
¢ FIRST STORED PROGRAM 1949
+ CONTROL UNITS AND CHANNELS 1958
¢ INTERLEAVED STORAGE 1961
¢ PARALLEL/PIPELINE PROCESSORS 1961
¢ LOOSELY COUPLED SYSTEMS 1964
¢ HIGH SPEED BUFFERS (CACHE) 1969
¢ TIGHTLY COUPLED SYSTEMS 1969
FIGURE 1. HISTORICAL REVIEW
STORAGE STORAGE
EXTERNAL
DATA SYSTEM SYSTEM A TaINAL
CONTROLLER CONTROLLER CONTROLLER[| CONTROLLER
CENTRAL CENTRAL CENTRAL CENTRAL
PROCESSOR PROCESSOR PROCESSOR PROCESSOR
PROCESSOR |PROCESSOR
CONTROLLER |CONTROLLER
FIGURE 2 IBM 3084 ORGANIZATION

47

were available in 1975. Today, the IBM 3084 is a 4-way, dyadic based multi-
processor complex, as shown in Figure 2, featuring 48 to 128 Mbytes of real

storage and 48 channels.

Dividing the work between processors at, say, the JOB level, means that thé
configuration is utilized as a multiprocessor, in which throughput is the
primary consideration. Allocating the work within a single job to multiple
processors, then, indicates that the configuration is used as a parallel
processor, with job turn-around as the primary concern. In fact, the

IBM 3084 can be used in both modes of operation.

Concurrently with the development of hardware, there has been a similar
evolution of operating system architecture. Operating systems evolved
from simple batch systems to sophisticated, multi-purpose systems sup-
porting mixed interactive and batch environments with virtual storage and
multiple address space management. The IBM 3084 is supported by MVS
(Multiple Virtual Storage) and MVS/XA (Extended Architecture) opérating
systems. MVS/XA gives the user virtual and real addressing to 2 Gbytes

via 31-bit addressing, whereas MVS provides 16 Mbytes of virtual addressing.

Both MVS and MVS/XA contain integrated support for loosely and tightly
coupled multiprocessing. Their libraries include macro instructions for
multi-task management such as ATTACH and DETACH of Tasks, POST and WAIT of
Events, and ENQUEUE and DEQUEUE of Resources. Further information is con-
tained in Arnold et al (1974). A higher level user interface that is
callable from FORTRAN is available as a program offering. This facility

is called the Application Program Performance Extender, see IBM (1984).

48

It is the purpose of this paper to report on a series of experiments in
using an IBM tightly coupled multiple processor configuration such as the
IBM 3084 as a parallel processor. Prior to this discussion, a review of

the history of programming language support for parallelism is appropriate.
SECTION 2: PROGRAMMING LANGUAGE SOLUTIONS FOR PARALLELISM

Programming language features for expressing parallel execution in programs
were actively proposed twenty years ago and actual implementations were

realized in widely used compilers. The concept of FORK and JOIN was intro-
duced in the early 1960's. One of the earliest proponents of parallel

processing was M.E. Conway. In Conway (1963), he said, '"Parallel processing
is not so mysteriousya concept as the dearth of algorithms which explicitly
use it might suggest." He proposed the following instructions to permit an

adequate specification of parallelism:

FORK A Fork to location A and the next statement.

FORK A,J as above, in addition set counter J to 2,

denoting 2 parallel tasks.

FORK A,J,N as above, except set counter at location J

to N, where N denotes N parallel tasks.

JOIN J Decrement counter at J by 1. If result is

zero jump to location J+1; else detach task.

49

JOIN J,B If counter at J equals 1, set it to zero and

jump to location J+l; else jump to locatiomn B.

A. Opler (1965), broposed extensions to high level languages such as FORTRAN
to facilitate parallel processing. The two new statements were ''DO TOGETHER"

and "HOLD" and they are used as shown in the following example:

START DO TOGETHER TASK1, TASK2, TASK3 (MEET)
TASK1 statement
statement PATH 1
statement
TASK2 statement
statement PATH 2
statement
TASK3 statement PATH 3
MEET HOLD

Fairly explicit rules for DO TOGETHER and HOLD were defined covering notions

of sharing variables and nesting.

50

J.P. Anderson (1966), proposed extensions to ALGOL60 based on the work of
Conway and Opler. He introduced three additional statements, namely,
TERMINATE to explicitly deactivate tasks, OBTAIN to have exglusive use of
selected variables, freeing them from interference by other tasks} and

RELEASE to free variables previously locked onto by an OBTAIN.

Similar constructs were proposed by Dennis and Van Horn (1966) as shown in

their example program which evaluates the product of two vectors, A and B:

Begin Real Array A(/1:n/),B(/1l:n/)
Boolean w; Real s; Integer t;

Private Integer i;

t: = n ;

For i: = 1 Step 1 Until n Do Create n processes with
FORK e; instructions at label e

Quit;

e: Begin Private Real x ;

x: = A(/1/) * B(/i/) ;

LOCK w3 For each e-process, add x
s: = s + x; to s only when no other
UNLOCK w; e-process 1is accessing s
JOIN t,r; When t tasks complete,
Quit; branch to r

End;

Endg

51

The LOCK and UNLOCK pair basically solves the 'critical section' problem by
providing protection for common data from simultaneous access and change by
two or more processes. Similar solutions were provided by Dijkstra (1965)
namely, the semaphore concept; by IBM 0S/360 with ENQUEUE and DEQUEUE macro-
instructions for resource sharing and WAIT and POST macro-instructions for

process synchronization.

Programming languages that have practical -implementations of parallel pro-
gramming constructs include Burroughs' extended ALGOL, PL/I, Concurrent
PASCAL and ADA. PL/I provides task initiation via a CALL statement of the

form:

CALL P(al,a2,...,an) TASK(taskname) EVENT(eventname) PRIORITY(N);
The call initiates a new task, whose execution is represented by the proce-
dure P. The status of the task may be interrogated via the event variable.
This task has an associated priority of N which provides explicit scheduling
of task execution when there are more tasks than processors.
The WAIT statement is the PL/I version of a JOIN. It has the form:

WAIT (E1,E2,...,En) K;
where Ei are event names and K is an integer number or null. This statement

will hold program execution at this point until any K events signal comple-

tion or until all events signal completion, if K is null.

52

In summary, programming language features for parallel processing have been
in existence for twenty years. Practical implementations have also been

available, although they are mostly for ALGOL-based languages.
SECTION 3: GROUNDRULES FOR PARALLEL PROGRAMMING

Robert E. Kahn of the Defense Advanced Research Project Agency, in his paper
"A New Generation in Computing', (see Kahn (1983)), said,
"...It is difficult to estimate how much of the existence of sequential
machines has affected the way we think about problems. It cleafly affects
the way we implement them. A given algorithm implemented on a multiprocessor
system will surely bear little fesemblance to its counterpart on a sequential
machine. And multiprocessor-based LISP systems need bear no relation to a
single processor version. Conversely, we still know very little about multi-
processor architectures, concurrent programming, or parallelism. Our under-
standingrof task decomposition strategies is limited and current languages,
both natural and computer based, are inadequate to represent concurrency.
veeever...Some problems do not lend themselves to much parallelism and
cannot make good use of a multiprocessor system. An outstanding generic
research question is how to determine the amount of performance speedup

(or parallelism) possible in an application...”

Although Dr. Kahn was primarily addressing the world of artificial intelli-

gence, his comments are appropriate for scientific computing in general.

53

Parallel programming approaches and concepts that have existed for two dec-
ades have had little impact. Specifically, the scientific/engineering
programmer or analyst is concerned with the problem at hand, and views the
intricacies of detailed control and communication required to allow the
desired parallel execution as a burden. Furthermore, while the trend is
towards higher level descriptions of problems, these approaches are actually
proceeding towardAlow level programming techniques involving functions that

are part of operating system technology.

It would certainly be an immense task to re-solve and re-implement most of
the scientific programs that are in use today. How do we make progress
toward answering the question of how much parallelism is possible in appli-
cations? The approach proposed here is to experiment with converting
existing serial applications to run parallel on multiprocessors. For this

to be successful, some groundrules have to be established. They are:

- Control of parallelism should be accomplished through a minimal

number of new commands or statements.

- The new commands or statements should conform to or be compatible with

the current syntax and semantics of FORTRAN.

- The algorithm structure and execution flow of the application should

be preserved as much as possible.

- System parameters and multitasking control complexity should be hidden

from the end user.

54

The above groundrules were applied in constructing an experimental environ-
ment to permit parallel execution of FORTRAN application programs using
currently available hardware and software, including operating system and
compiler. Results for converting three VS FORTRAN programs for the IBM 3084

running MVS/XA are discussed below.

SECTION 4: APPLICATION CASE STUDIES

Three scientific application programs were analyzed and modified to execute
in parallel. These applications were adapted for parallelism follqwing the
groundrules described above. The modified versions of these programs were
measured on an IBM 3084 to determine the elapsed time speed-up achieved when

executed on a 4 processor. system.

APPLICATIONS MODIFIED

The first application program, TBLADE, is a turbine blade analysis application.
The application uses a finite difference algorithm to solve for the three
dimensional air flow between the blades of a rotating turbine stage. The
application requires a 38 megabyte private region to execute, and rumns for

approximately 24 hours when executed on an IBM 3084 using a single processor.

The second application program, VA3D is a fluid dynamics application from a

national laboratory using methods developed by Pulliam (1978) and Beam (1978).

55

The program simulates the subsonic or supersonic flow field around a hemi-
spherical-nosed body. It solves the Euler equations or the Navier-Stokes
equations with a thin-layer approximation using a three dimensional, implicit,
approximate-factored algorithm. This is a form of the Alternating Direction,

Implicit (ADI) technique as reported in Douglas (1964).

The third application program, BOAST, is a three phase black o0il reservoir
simulation program developed by the U.S. Department of Energy and reported
in Keplinger (1982). The program can simulate both the primary depletion
and the secondary recovery operations in a two- or three-dimensional black
oil reservoir. The solution uses the Implicit Pressure, Explicit Saturation
(IMPES) method to solve for the fluid flow in a reservoir. The pressure and
saturation equations for the oil/gas/water systems are approximated using a
finite difference method. The resulting system of linear equations are

solved using an iterative Line Successive Over-Relaxation (LSOR) technique.

REORGANIZATION EFFORT

Each of the applications described above was modified for parallel execution.
The major portion of the reorganization time was spent understanding the
original application, locating the data and functional independence, and
introducing the appropriate forks and joins in the application. Once this
was accomplished, the process of creating parallel subroutines was straight-
forward and mainly mechanical. Code sequences that could execute in parallel
were packaged as separate subroutines to be scheduled for dispatching by the

operating system.

56

The level of effort required to perform these modifications is indicated by
Table 1. For each of the three application programs considered, the size,
in lines of code, (LOC) of the original source program, the amount of code
which actually performed the operations which could be executed in parallel,
the percentage represented, and the resulting number of newly created
parallel subroutines are listed. The modifications of these three applica-
tion programs was performed without changing the original algorithm, rather,

the inherent parallelism of each application was exploited.

Application Size (LOC) Parallel LOC 7 LOC PARALLEL # Parallel
Routines
TBLADE : 3500 677 1? 13
VA3D 3800 1350 36 15

BOAST 4200 1021 24 5

Table 1: Application Code Modified for Parallelism

57

RESULTS

The results of executing the modified application programs on a 4 processor
IBM 3084 are summarized in Table 2. All of the measurement runs were per-
formed on a dedicated system with no other jobs executing concurrently with

the measurement jobs.

For each application program, both the original version and the parallel
version of the program (using 4 subtasks) were executed, and the elapsed
time for the program was measured. The speed-up ratio is the ratio between
the elapsed time for the original serial run and the elapsed time for the

4-way parallel run for each application.

Application Serial Parallel Speedup Percent Scope of
Time (Min) Time (Min) Ratio Parallel Run
TBLADE 80.39 31.84 2.52 81 200 Time Steps
VA3D 70.18 21.24 3.30 93 200 Time Steps
BOAST 50.23 15.50 3.24 92 3000 Simulated
Days

Table 2: Application Measurement Results

58

The percentage of parallelism for each application was calculated from the
serial and parallel elapsed times using the following simple model:
Time serial/Time parallel = 1/((1-P) + (f/N))
or
P = (N/N-1) * (1 - Time parallel/Time serial)
where P is the effective parallelism and N is the number of processors

being used.

This simple model provides a rough estimate of the amount of work that was
done with some degree of parallelism and takes into account the overhead

that was introduced.
SECTION 5: CONCLUDING REMARKS

The results as shown in Table 2 are significant with respect to performance
improvement for the applications concerned. More importantly, they were
achieved with little investment in program modification. In fact, between

1 and 2 person months were spent in each case with program behavior analysis

time included.

Other experiments with parallelism for scientific applications have been
conducted within IBM. An example is the work of Blaine and Wang (1976) on
the IBM 370/168, at the IBM Palo Alto Scientific Center. Another effort is

by Meck (1984) on the IBM 308X.

59

The experiences above provide considerable motivation to further investigate
the issues in advancing the state of the art in the exploitation of parallel-

ism. Some questions deserving exploration are:

- Should general purpose scientific processing be limited to low levels
of parallelism or conversely, are highly parallel machines inherently

application specific?

~ How is the effective cost for running a program in parallel to be

determined?

- Is automatic detection of parallelism possible and can efficient

tools be constructed?

- What extensions should be made to FORTRAN to facilitate parallel

algorithm construction?

- How do we complement the efforts to exploit parallelism and

vectorization?

Though it is premature to conclude that our groundrules are valid, the
results do provide evidence of their effectiveness. Much remains to be
done to advance the exploitation of parallel or multiprocessing systems

by scientific applications.

60

ACKNOWLEDGEMENT

The authors wish to acknowledge the contributions of J.M. Gdaniec and
R.J. Sahulka for making the above experimental work possible.
REFERENCES

Anderson, J.P. (1966), "Program Structures for Parallel Processing',

Comm. A.C.M., Vol.8, No. 12, December 1965.

Arnold, J.S., Casey, D.P., and McKinstry, R.H. (1974), "Design of
Tightly Coupled Multiprocessing Programming', IBM System Journal,

No. 1, 1974.
Beam, R.M. and Warming, R.F. (1978), "An Implicit Factored Scheme for
the Compressible Navier-Stokes Equations.', AIAA Journal, Vol. 16,

.No. 4, April 1978.

Blain, R.A. and Wang, H.H. (1976), Private Communication, IBM Palo Alto

Scientific Center, California 94304.

Conway, M.E. (1963), "A Multiprocessor System Design.", Proceedings

Fall Joint Computer Conference 24, Spartan Books, Baltimore, 1963.

Dennis, J.B. and Van Horn, E.C. (1966), "Programming Semantics for

Multiprogrammed Computations.'", Comm. A.C.M., Vol.9, No. 3, March 1966.

61

Dijkstra, E.W. (1965), "Solution of a Problem in Concurrent Programming

Control.", Comm. A.C.M., Vol. 8, No. 9, September 1965.

Douglas, J. and Gunn, J. (1964), "A General Formulation of Alternating

Direction Methods.", Numerical Mathematics, Vol. 6, No. 5, 1964.

IBM Documentation (1984), "Application Program Performance Extender,

5798-DNL".

Keplinger and Associates (1982), '"BOAST: A Three Dimensional Three Phase

Black 0il Applied Simulation Tool (Vers. 1.1).", DOE/BC/10033-3.

Kahn, R.E. (1983), "A New Generation in Computing", IEEE Spectrum,

Vol. 20, No. 11, November 1983.
Meck, D.L. (1984), "Parallelism in Executing Fortran Programs on the
308X: Systems Considerations and Application Examples', IBM Kingston,

NY, Laboratory Technical Report, TR-21.942.

Opler, A. (1965), "Procedure-Oriented Language Statements to Facilitate

Parallel Processing.', Comm. A.C.M., Vol.8, No. 5, May 1965.

Pulliam, T.H. and Steger, J.L. (1978), "On Implicit Finite-Difference

Simulations of Three Dimensional Flow.'", AIAA paper 78-10, January 1978.

62

