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ABSTRACT

Part I of this study analysed the statistical structure of the mid-latitude
errors of the short-range wind forecasts used in the global data assimilation
system at ECMWF, by comparing the forecasts with verifying radiosonde data
over North America. After an analysis of the corresponding statistics for the

errors of the height forecasts, this paper studies the covariance of the

height and wind forecast errors.

The methods of Part I, based on the theory of homogeneous turbulence, ére

used to provide a spectral description of the height autocovariance function
and of the cross-covariances of height with stream function and velocity{
potential. Particular attention is paid to the question of the degree of
geostrophy of the non-divergent forecast errors. As a by-product, the
calculations provide estimates of the vertical covariance matrices for
prediction error and radiosonde observational error in the height field, where
the term observational error includes both instrumental error and errors of

representativeness.

The forecast errors for height are comparable in magnitude with the
observation errors, and there are good grounds for increasing the resolution
of the analysis system, both in the horizontal and the vertical. The height
errors have a substantial large-scale component whose vertical structure has a

very broad scale; the geostrophic wind errors are dominated by synoptic
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scales. There is a high directional correlation (0.89) between the
geostrophic wind and the stream function wind. The magnitudes of the
geostrophic and non-divergent wind errors agree to within 15% in the
troposphere. In the stratosphere the geostrophic wind errors are somewhat
smaller than the non-divergent wind errors, indicating a possible aliasing
from the large scales to synoptic scales in our calculations there. The
correlation of height and velocity potential is such as to imply convergence

in lows in the troposphere, but divergence in lows in the stratosphere.

The methods developed here and in Part I offer a powerful set of diagnostic

tools with which to improve both analysis and short-range forecast

performance.
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1. INTRODUCTION

The first part of this study (Hollingsworth and Ldnnberg 1985, hereafter:
called Part I) analysed the statistical structure of the mid-latitude errors
of the short-range wind forecasts used in the global data assimilation system
at ECMWF, by comparing the forecasts with verifying radiosonde data over North
America. This paper presents the corresponding results for the height field

errors, and for the cross-covariances of the height and wind field errors.

The analysis of the height field errors follows the general approach of
Rutherford (1972) and Hollett (1975), but we present a more complete analysis
of the vertical correlation structure of both horizontally correlated
prediction error and horizontally uncorrelated observational error.

The fact that the calculated vertical correlation structure for radiosonde
thickness error agrees with expectations gives confidence in the results.
Throughout this work the term observational error includes botﬁ inétrumental

error and sampling error or errors of representativeness.

The analysis of the cross-—correlations of the height and wind errdrs uses the
formalism introduced in Part I to examine the height—streaﬁ function
correlation and the height-velocity potential correlation separately. The
results are presented in a spectral form, which has interesting potential

applications for high resolution work.

As discussed in Part I, observational data gives point information on forecast
errors. An accurate specification of the statistical structure of the
forecast error is essential to make a good interpolation of the observational
information to a three-dimensional grid, so as to produce the analysis from
which the next forecast can start. Xnowledge of the structure of forecast

errors can justify the imposition of constraints on the analytic forms of the
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structure functions. As discussed by Daley (1983), such constraints have a
profound effect on the ability of the analysis to extract useful information

from noisy data.

Despite its importance for statistical analysis, the determination of the
statistical structure of forecast errors has received little attention in the
literature. The unpublished thesis by Hollett (1975) on the forecast errors
of the Canadian 5-level model in the fall of 1974 has provided the main
statistical basis for the specification of mid-latitude forecast errors in

the ECMWF assimilation system (Lorenc 1981).

The main features of the results from our study are that the forecast errors
for height are comparable in magnitude with the observation errors, and that
there are good grounds for increasing the resolution of the height analysis,
both in the horizontal and the vertical. The geostrophic wind errors are
dominated by synoptic scales; the height errors have a substantial large-scale
component whose vertical structure has a very broad scale. There is a high
directional correlation between the geostrophic wind and the stream function
wind. The geostrophic wind and non-divergent wind magnitudes agree to within
15% in the troposphere. The correlation of height and velocity potential is
such as to imply convergence in lows in the troposphere, but divergence in

lows in the stratosphere.

Section 2 discusses the assimilation system, and the data used for the study.
The autocorrelation structures of the height field prediction and
observational errors are discussed in Section 3. The mathematical methods for
establishing the cross-correlations of height with the stream function and
velocity potential are described in Sect.4. Sect.5 describes the results of

the height-stream function calculations, with particular emphasis on the
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degree of geostrophy of the non-divergent wind errors. The cross—correlation
of the height and divergent wind field errors is discussed in Sect. 6. We

conclude in Sect. 7 with a discussion of the results.

2. ~THE ASSIMILATION SYSTEM AND THE STATISTICAL DATA

The assimilation system is an intermittent insertion system consisting of
three main steps - the analysis step, the initialisation step, and the
forecast step. The analysis system is describediby Lorenc (1981) and is an
application of the optimal interpolation technique discussed by Gandin (1963),
Rutherford (1972) Schlatter (1975) and Bergman (1979). Similar methods are
used in sevéral operational centres (Gustavsson 1981). The notable feature of
the ECMWF implementation is that the analysis is performed for a large number
of grid-points and variables simultaneously, which requires the selection of a
large quantity of data for each analysis volume. The demands on computer
power are correspondingly large; a typical analysis requires the inversion of

several thousand matrices with orders between 100 and 200.

The initialisation scheme is an application of the non-linear normal mode
scheme proposed by Machenhauer (1977), and described by Temperton and
Williamson (1981), Williamson and Temperton (1981); it has been modified to

include diabatic effects by Wergen (1982, pers.comm.).

The data studied here are the differences between the observations and the
6-12 hour grid-point model forecasts for the period 1 January-30 March, 1983.
Only radiosonde data for 1200GMT is used; a particular station is used only

if a minimum of 60 acceptable reports were available from the station.
Acceptable means that the data was accepted as probably correct by all the
stages of the operational quality control procedure. Attention is

concentrated on the North American region between 30°N and 60°N. Later
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papers will consider the results for other regions. Further information on

the assimilation system and the data may be found in Part I.

The mean difference between the station reports and the forecast is removed
separately for each station. The average variance of the resulting ensemble
of station time series is defined as the ensemble mean of the station.
variances. We use the notation <a,b> for the correlation of a with b,
cov<a,b> for the covariance and Ea' E. for the standard deviations so that

b

cov<a,b> = EaE <a,b>

b

Spherical geometry is used to define distances and angles.

3. THE HEIGHT FIELD

3.1 Mathematical formulation

The mathematical formalism used in Part I for the stream function and
velocity potential fields will be adopted here. We seek a representation of
- the auto-correlation data in terms of cylindrical harmonic expansions.
Positive definiteness requires that the expansions be truncated before the
first negative term in the isotropic component; and also requires that the
phase functions of the anisotropic components be continuous.  In fact we
shall only consider the isotropic component in this paper. Then the isotropic

component of the prediction error auto-covariance may be written in the form.

2 ¥ 5
cov<d,$> = E ) - 3_ (k_x/D),

n=o
‘where E¢ is the rms prediction error of height for the level in question, and

the ¢n, by definition, satisfy
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2
The normalised spectrum of the error variance is then given by ¢iJo(kn)
(Hildebrand 1962, p230) where

2
o2 =

r, dr, 2
<G.0> I O T §/I (k)

Q0 Y/
olr

The implied wavenumbers in the Bessel function expansion for the radial
dependence are determined by the requirement of vanishing radial derivative at
some large distance D (3000 km in this paper), where the slope of the
auto-correlation is close to zero. The gravest term in the expansion is a
constant term corresponding to forecast errors which are perfectly correlated
over the domain. We shall speak of this as the large—ééale component, and

we shall speak of the remaining terms as the synoptic scale components. The
equivalent total spherical wavenumber of each of the £érms in the series is

given in Table 1 of Part I.

The expansion éoefficients are determined by a least squares fit of the

series to the empirical correlation data. The extrapolation of the fitting
function to zero separation partitions the total perceived forecast error into
a horizontally correlated part which is described as prediction error, and a
horizontally uncorrelated part which is described as observational error
(Rutherford 1972). The calculation is performed for the height errors at each
level. A similar calculation is made for the thickness errors for all pairs
of levels in order to establish the vertical correlation matrices for

observational error and for each term separately in the prediction error
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expansion (see I for details). In this way we can evaluate the validity of an

assumption of separability.

(a) Partitioning of observation and prediction errors

Fig. 1 shows the data for the 500 mb <p,$> correlation, together with an
8-term fitting function. The data have been grouped in 100 km bins using the
Fisher (1921) averaging algorithm. The criterion for truncating the expansion
was that the fifst‘omitted term had a negative sign, unless the negative term
was less than 10=3 of the variance. In such a case the term was reset to a
very small positive number and the expansion was continued. This happened at
one level (500 mb) and allowed the inclusion of the 7th and 8th terms (cf
Fig.7). The area mean of the correlation in Fig.1 is clearly non-zero, so
that the constant term will be non-zero. The intercept of the fitting curve
with the ordinate gives the partition of the perceived forecast error into

prediction error and observation error.

Fig. 2a shows the vertical profiles of perceived error, prediction error and
observation error. The observation error and prediction error are of similar
magnitude throughout the atmosphere. This creates new possibilities for
monitoring the behaviour of the analysis system and the observing system

(Hollingsworth et al. 1985).
Fig. 2b shows the profile of prediction error together with the profiles of

the contributions from the constant term and the non-constant terms; we shall

speak of these as the large-scale and the synoptic-scale components.
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Fig. 1 The correlation of 500mb height forecast errors as a function of

station separation. The empirical data, averaged over 'bins' of -100km, is
shown by the squares. The figures indicate the number of station pairs in
each bin. The smooth curve (x) is obtained by a least squares fit to the
empirical data; the truncation is 8 terms in the synoptic-scale component
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The peak in the prediction errors at 300 and 250 mb is mainly due to the
synoptic-scale part of the prediction error. The ratio of the synoptic-scale
to the largejscale part of the ¢ forecast errors is larger than 1.0 in the
upper troposphere and less than 1.0 in the stratosphere, suggesting that the

forecast errors arise for different reasons in the two regions.

(b) Magnitude and correlation structure of observational thickness errors

As discussed in Part I, an important check on the estimates of the prediction
error structures is given by the structure of the corresponding results for
the observation errors. Fig. 3 shows the vertical correlation structure of
the radiosonde height errors. It shows a narrow vertical correlation
structure at low levels, and a much broader structure at high levels. This is
plausible because the observational thickness errors for standard layers are
expedtéd to be nearly uncorrelated, and so should give the structure shown in

Fig. 3 for the height error.

To check the latter argument, Fig. 4 shows the observational error correlation
structure for thickness, as derived from the height observation error
covariance matrix. The layers are defined as those between adjacént standard
levels. For most layers the correlation of observational error with adjacent
layers is rather small. The inter-layer observational error correlation for
thickness exceeds 0.4 in magnitude only for the 500/700 and 700/850 mb

layers.

The estimated observation errors for thickness show hardly any variation of
the rms thickness error in the upper troposphere, and give a value of between
6 and 9 metres for most layers. Fig. 5 shows the estimated prediction error

and observation error for standard layer virtual temperatures, derived from
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Fig. 2a: Vertical profiles of the total, or perceived, forecast error of
height, together with the contributions to this error from the the prediction
error, and the observation error. The unit is metre.

2b: Vertical profiles of the prediction error (copied from 2a) and of the
contributions of the synoptic-scale and large-scale components to the
prediction error. The sum of the squares of the components'gives the square
of the prediction error.

81



cq07d ®y3 jo Sweij yoes JO pusbsT SY3 UT POIELOTPUT
SToA®T piepuRils pPo3ldaTds JO 39S 943 JI0F ‘3YDTSY IO I0II2 TRUOTILAISS]O
SpUOSOTPEI JO UOTIBISII0D TeOTITSA oyl JFo soTTyoxd TedTIIAPA € bTg

UoplBes10) uonsielI09 uone|eloy uoNe|61I07
! 9'0 0 20~ i 8'0 0 8'0- | 20 0 8'0- L 9’0 0 8'0-
1 1 1 . . 0001
QU QHL == O | qW 008 = i
ELER nwwum-_\_
Q0%
— 00g
00¢
L £ (e le ]
0goL
QW 00E==0 A qw 00C==0 qui 0%l=s O _ GW Q0l= O _
anNasa aN3D3 aN303] anN3Ioa
\ } 009
g 00€
002
iy 0 & - o 4]0}
2inessiy 8INessid enssely eingseld

HOO HOYYT IANOS Z

82



Uo OS puer SSOUNOTYI qUWQSL-00l 9Y3 03 Sspuodssixod quggl SNUL

rqugyy/ Aq pelleqel ‘zedel quUQG8-00.L SU3 O3 UMOp

*301d =u3 JO

sweiy yore uo pusbs oyl Aq pPo3eOTPUT Sioke] ps3oa[es JO 39S Y3 I0F ‘STBAST
pIepuels jusoelpe usomldq SIskeT JO SSOUNOTYUZ SY} I0F IOIIS TLPUOTIRAISS]O
SpUOSOTPEA JO UOTIBTOIIO0D TeOTIA9A 9yj Jo soTTjoxd T[edoT3aep ¥ *HbT4

uone|el0) uoNe|ei10) uONe|810) uone|elIo)
n.hc (1] ao0-t n..O aQa0-1 D..O @ 2a0- 1 n._O n.v 2°0-
quw g/l=0 qu 008= 0 qu 09p =0 qu 04 =0
(RERER QN3 aN3DaT ANaDTT
T
\W
qQw @/Z==D G 9ZZ == D Guw Qfl== O qu gZl=n 0
(e} ELER] ﬂZMY aNasaT anNZD31 ANZDIT
> _
_ _
eineseid eingeeld einsgeld 2iNsee8ld

HOD SANOK 74

0001

009

00¢

002

ool
000t

009

0ce

01074

0ot

83



50 Pregsure '

100

200

300

600

A =DZ:-10M

o 0.5 1 1.8 2
K degrees

Fig. 5 Vertical profiles of the prediction error for the layer-mean virtual
temperature for layers between adjacent standard levels (DT pred) and the
corresponding observation error (DT Sonde). Also shown is the layer mean
virtual temperature error corresponding to a thickness error of 10m (DZ:10m).
This is the minimum detectable thickness forecast error above 500mb, because
of reporting practices. The unit is K
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the thickness errors. The prediction and observation errors have quite
comparable magnitudes, of order 1K, for most layers except near the
tropopause.. There the prediction errors are particulariy large. It is
surprising that the observational error is as large as 1K for layers in excess
of 1km thick, when the error for spot temperatures is quoted at about 1K

(WMO 1983). Heights are rounded to the nearest decametre above 500 mb in the
internationally agreed coding practice. The rounding error in height is
therefore uniformly distributed between *5m. The rounding error in thickness
then has a triangular distribution with an rms value of ~4m. This rounding
error is not négligible compared to the rms thickness error. If this error
were eliminated, then the rms observational error would be reduced by a

substantial amount.

It is hard to quarrel with the reasonableness of either the magnitude or
correlation structure of the thickness errors and height errors. We conclude

therefore that the prediction errors are also reasonably defined.

(c) The minimum detectable forecast error in thickness

——— —— ——— " (" " G o T — T ] o Tl A ol Tt B S S G S S T T D B il S e o S S G S S

Fig. 5 includes a plot of the temperature corresponding to a thickness of 10m,
which is the minimum detectable forecast error in thickness above 500 mb. The
relationship between this curve and the curves for both forecast error and
observational error is clear. It is difficult to make a good thickness
analysis near the tropopause since the minimum detectable difference between
fhe forecast and‘the observation is of the same order as the rms forecast
error, i.e. ~¥1.5 K. Attempts by an analysis centre to recalculate the
thickness from the reported temperature are bound to be inadequate. It ought

to be possible to remedy a situation where the minimum signal that can be
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reported for thickness temperature is about twice as large as the rms

instrumental error for temperature.

3.3 Vertical variation of the length scale and spectrum of the height
prediction errors

Fig. 6 shows the vertical variation.of the length scale (defined in Part I) of
the <¢,9¢> correlation for truncations of 6, 8 and 10 terms in the synoptic
scale components. The results are very similar in their general shape to the
corresponding results for the stream function shown in Part i (Fig.13). In
the calculations for Fig. 6 the effect of the large~scale component of the
height errors was excluded. The length scales are increased by 10 to 20 km in
the troposphere if the constant term is included, and by 30 to 100 km in the
stratosphere. The effect of retaining more terms in the expansion is noticed
mainly in the troposphere (at 500 mb the <¢,¢> expansion terminated at 8

terms), as was also the case for the stream function.

The scale of the ¢ errors is nearly constant in the troposphere with a value
of ~300 km, and shows an increase to about 450 km in the stratosphere. This
result implies that the assumption of separability will be more reasonable if
the troposphere and stratosphere are analysed separately, with apptopriate
correlation functions, than if they are analysed together, with the same

correlation function for ¢.

Fig. 7 shows a plot of the normalised spectra of the <¢,¢> correlation, as a
function of height. It is evident from the normalised spectra that there is
good level to level consistency between the results. There is a marked

tendency for larger scales to predominate at higher levels in the atmosphere.
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Fig. 6 Vertical profiles of the length scale of the height auto-correlation
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for truncations of 6, B, and 10 modes in the least squares procedure.
500mb the expansion was truncated at 8 terms. The unit is K.
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Fig. 7 Normalised spectra of the height auto-correlation at selected levels.
The curves have been separated for clarity, so the origin of the ordinate is
arbitrary; horizontal lines mark decades. The abscissa is equivalent
planetary wave-number.
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Fig. 8. Normalised spectra of the Laplacian of the height auto-correlation.
This gives the normalised energy spectrum of the geostrophic wind
auto—-correlation implied by the height auto-correlation, if the Coriolis
parameter is treated as constant. See Fig. 7 for remaining details.
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The spectra in Fig. 7 fall rather steeply with wavenumber. To study this more
closely we present the corresponding spectra for Vz(—<¢,¢>), Fig. 8. These
spectra correspond to the geostrophic vector wind error spectra. The
weighting by the square of the wavenumber amplifies the inevitable noise in
the determinations of the high wavenumber (and small amplitude) components.
Nevertheless there is remarkable level-to-level consistency in the geostrophic
wind spectra. At most tropospheric levels, the largest component of the
geostrophic wind spectrum is mode 2 (equivalent to planetary wavenumber 15).
In general these levels show a power law dependence of the spectrum for the

- -1
higher modes in the troposphere, corresponding to slopes between kn% and kn .
At 200, 100 and 50 mb, only a few terms of the synoptic scale expansion could
be determined. At these three levels, the first three components of the

geostrophic wind have similar magnitude.

3.4 Vertical correlation of height prediction error

To consider the validity of the separability assumption we examine the
vertical correlations for each mode with the 250 mb level in Fig. 9a. Each
curve corresponds to the appropriate column of the vertical correlation matrix
for that mode. 1In the stratosphere the higher horizontal modes do not occur
with sufficiently large amplitudes to allow a reliable determination of the
amplitudes; this restricts the determination of the corresponding
correlations. The correlations of the 250 mb level with other tropospheric
levels indicate that the modes with larger horizontal scales tend to have
broader correlation structure in the vertical. This is also found for other
levels, and suggests that the assumption of separability is not as well

justified for the height field as it is for the non-divergent wind field.
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Fig. 9a: Vertical correlations with 250 mb of the first five terms of the
expansion of the horizontal geopotential correlation.
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forecast errors (Mean-phi) together with the correlations for the
synoptic-scale and large-scale components.
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Fig. 11 a: Plot of the logarithm of the synoptic-scale height prediction
error vertical correlation against the difference in the logarithms of the
pressures of the levels involved in the correlation. The selection of the
pairs of levels is described in the text, as is the curve defining the
parameterisation of the correlations.
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11b: As (a) for the large-scale component of the height prediction errors.
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Fig.9b plots the average correlation with 250 mb for the synoptic components,
the correlation for the large scale mode, and the overall vertical correlation
for the height field errors. The large scale component has a much broader
vertical correlation than t.e synoptic scale component. This is quite
different from the behaviour of the large scale component in the wind field,
which showed a reversal of si§£ between the troposphere and lower
stratosphere. Because of the magnitude of the large-scale component, the
overall <¢,¢> vertical correlation is very nearly a mean of the large scale

and éynoptic scale components.

Fig.10 shows the overall vertical <$,$> correlation for a set of selected
levels. The correlations are all positive and are generally much broader than
the corresponding non-divergent wind correlations. The correlations £end to
fall off fastest near the surface, indicating a degree of non-homogeneity in

the vertical.

(a) Parameterisation of the vertical correlations

A summary of the mean vertical <¢,¢$> correlations with trppospheric levels is
given in Fig. 11(a,b). This plots the logarithm of the correlation with
tropospheric levels against * lég(p1/p2) + for values of the correlation
larger than 0.1. We excluded data from levels where the correlations wefe not
monotonically decreasing with distance, as these only occurred for la;ge

separations. 1In the plots we have separated the large-scale, Fig. 11b, from

the mean synoptic-scale, Fig. 1la, components.
Despite the fact that there is no complete vertical homogeneity for the

covariances we see that there is approximate homogeneity for the

correlations, provided the level separation is not too large. It is clear
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that the large-scale component has a much broader correlation structure than
the synoptic-scale component. There is very little scatter in the

large~scale results, and rather more scatter in the synoptic-scale results.

The shapes of the curves suggest power law relationships of the form

For theofetical reasons (existence of derivatives at zero separation) it
WOuld'be desirable to seek a rep?esentation of this form with b¢ z 2.0. We
found that such a representation led to values of the correlations which were
too large at short separations. Since this implied an underestimate in the
representation of well-defined errors in the thiékness field, we ignored the
restriction on b¢, A similar problem arose in the representation of the
thermal wind errors as discussed in Part I. In order to.have comparability of
the representations of the thickness and thermal wind errors, we made the

following empirical determination of the constants in the above representation

of the vertical correlation of ¢:

b¢ = 1.6 for both the large-scale and synoptic-scale correlations;
a¢ = 1.6 for the large-scale correlation;
a¢ = 0.8 for the synoptic~scale correlation.

Note that this representation is a homogeneous representation in the
coordinate 1ln(p), which is closely related to geometric height. The
conclusion is that the average correlations are sufficiently homogeneous in

1n(p), provided the separation of levels is not too large.
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In practical applications one works with differences of geopotential over
finite layers and so the lack of derivatives at the origin is not a serious
weakness of the representation. The practical virtue of these formulations is

that they are positive definite.

3.5 Prediction errors of thickness

(a) Thickness errors in the forecasts

The vertical distribution of the thickness errors, converted to virtual
temperature, has been seen already in Fig. 5. The results show errors of
about 1K in mid-troposphere and the stratosphere, with a peak of 1.8K at 225
mb. The rms thickness prediction errors ﬁear the tropopause have been
discussed earlier where it was noted that they are similar in magnitude to the

smallest detectable forecast error.

(b) The implicit reference level

An important practical question in the use of thickness data concerns the
definition of a reference level, when no reference level data is available.
In the simplest case the question is: Given a single thickness observation in
a column, which geopotential level in the forecast should be regérded as the
most accurate for use as a referenge level? The height-thickness covariance
matrix piovides an implicit definition of the reference level. In general ¢
is positively correlated with A¢ at lower levels, and negatively correlated
with A¢ at higher levels, so that the <¢,A¢> vertical matrix has an
anti-symmetric structure. Given an observation of thickness between two
adjacent standard levels, the implicit reference level is defined by the
level at which the appropriate <¢,A$> correlation changes sign in the

vertical. Fig. 12 is a plot of the reference level, thus defined. In the
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observation level for thickness coincide.
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lower troposphere, and above 250 mb, the reference level is close to the
observation level. For observations in the middle and upper troposphere the

reference level is close to 700 mb.

Some insight into this result is offered by Fig. 13 which shows the <Ad,Adp>
vertical correlation for a selection of levels. For most tropospheric layers
the correlation with other tropospheric layers is positive, but it is negative
with stratospheric layers. Moreover the stratospheric correlations decrease
from '1.0 more rapidly than do the tropospheric correlations. These are the
underlying reasons why the implicit reference level lies close to the
observation level in the stratosphere, but lies in the lower troposphere for

most tropospheric levels.

3.6 Discussion

In considering the results of the calculations, the most basic question is
whether or no; the partition between observational and prediction error is
reasonable. We find that inter-layer correlaﬁions of the radiosonde
observational errors of thickness are small, as would be expected. This
result, together with the results on the magnitudes of the observational
errors for height and thickness (which are also very reasonable), suggest that
the separation between observationai error and prediction error is soundly

based.

The height prediction errors have a horizontal component which is essentially
constant on the largest resolvable scale. This component also has a broad
correlation structure in the vertical. Physically, this component corresponds
to errors in the mean height over the data search volume. The large-scale

component predominates in the stratosphere, but the synoptic-scale components
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predominate in the upper troposphere. The normalised spectrum of the
'synoptic—scale component shows a marked variation with height, with small
scales making a contribution to the ¢ error variance in the lower troposphere,
but not at higher levels. This result is not consonant with the assumption of

separability.

A study of the vertical correlation st;uctures of the horizontal modes shows
some variation with horizontal wavenumber in the width of the vertical
correlation. This result would not support an assumption of separability.
These results furthér suggest that if one wishes to use the assumption of
separability for the height analysis, one should analyse the troposphere and
stratosphere separately. The behaviour of the average vertical correlations
suggests that for separations of order ; scale height or less, one may model

the logarithm of the correlations by a power law in the layer separation.

The forecast thickness errors are largest at'the:tropopause, with magnitudes
of order 1.75K. Elsewhere the errors are of order 1K. The variation of
thickness forecast error with height is very similar to the variation of the
minimum detectable thickness signal with height. The latter is determined by

current WMO coding practices.

In the absence of reference level data, the Optimum Interpolation algorithm
implicitly defines the model level to be used as a reference level. 1In the
stratosphere the implicit reference level lies close to the observation level,
but for tropospheric observations the reference level is in the lower

troposphere.
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4. THE MATHEMATICAL FORMULATION OF THE HEIGHT~-WIND CORRELATIONS

4.1 Homogeneity

As discussed earlier in Part I, it is common in studies of this kind (Panchev
1971, Rutherford 1972, Julian and Thiebaux 1975) to work with correlation
functions, rather than covariance functions, because the correlation functions
tend to be more homogeneous than the covariances. All of the work presented
above has used this approach. However in considering the correlations between
heights and winds, one encounters the problem of non-homogeneity in a new

form.

Our first calculations of the <¢,y> correlation, from the height and wind
data, implied surprisingly low values (~d.65) for a typical geostrophic
coupling coefficient in mid-troposphere. Detailed study showed that the low
values arose in part because the wind error variances were definiﬁely

inhomogeneous, while the height error variances were quite homogeneous.

Fig. 14 shows a plot of the estimated 300 mb prediction error for ¢ and vector
wind, as determined by all available radiosondes between the.equator and North
Pole, grouped in 10 degree latitude bands, for the thfée mdnth period. In
plotting these curves, reasonable estimates of the observation errors (5.25
m/s for the vector wind, 12.2 m for the height) have been remo&ed frqm the
total perceived forecast errors. The vector wind error varies strongly with
latitude, while the height error is nearly independent of latitude. A similar
result is found for the North American data. Fig. 14 also includes a plot of
the vector wind error scaled by ; = f(K)/f(XO) with Ao = 25. Poleward of
latitude 25, the scaled vector wind error is almost independent of latitude,
and is therefore much more nearly homogeneous. The introduction of the
scaling was motivated by the fact.that one is seeking correlations between

f kau and -V¢.
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Fig. 14 The solid and dotted lines show the northern hemisphere meridional
profiles of the estimated: prediction error for 300mb vector wind (solid) and
300mb height (dotted). The estimates were obtained by verifying the
assimilating forecasts against all accepted radiosonde data, and subtracting
reasonable estimates of observational error. The dashed line shows the
effect of multiplying the vector wind error by Sln(@)/51n(25) The units are
m/s for wind (left) and m for height (right)
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The introduction of a stream function ¥ with the property that

~

fu = - 2! and ;v =
dy

is likely to increase the height-stream function correlations relative to the

usual definition of the stream function | as

I 11
u = ay an V—8X

It should be noted that the use of tﬁié gcaling thrdughoﬁt Pért I only
changes the definition of the total perceived forecast error, which is a
scaling parameter for all the other results. Since one is working with
correlations, the earlier results for ¥, X ( e.g. normalised spectra,

vertical correlations, length scales, etc.) apply equally well to Y¥,X.

4.2 Mathematical formulation

Given the assumption that the statistics are homogeneous, one may proceed to
the determination of the cross-correlations of the height with the stream

function and velocity potential.

Let U=fu, and V=fv, where f=f(l)/f(ko), and Ao is a reference latitude chosen
to be the mean latitude for the radiosondes. Define the correlation functions

I, J as
I(r,0) = v<¢,¥> and J(r,9) = 8<d,X>

where ¥, X are the stream function and Velodity potential for U,V, while

= 6 = 3 +1 y ’
Y EW/EZ' EX/ER and EW' EX, Ez are the rms amplitudes of Y, X, and the
synoptic scale wind component. We use r and 0 as great circle distance and

angle from local east.
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Then using the turbulence theory approach of Part I we have
cov<d,U> = - cov<¢,Wy> + cov<¢,XX>

which‘in polgr coordinates become, after division by Ez,

1

<$,U> = sine(Ir + T Je) + cosf (Jr - % Ie)
Similarly,
cov<d , V> = cov<¢,Wx> + cov<¢,xy>
becomes
<, V> = - cosb (I + 1 J,) + sinb(J_ - 1 I.)
r r O r r 8

The determinant of the right hand side is 1 and so one may solve the set of

linear equations to obtain

+ sinf<¢,U> - cosb<d,v> = -<¢,t>

H
+
|
o
H

J = % Ie = - cose<¢,U> ~ sinf<¢ , V> -<d, 4>

~ ”~

where &, t are the longitudinal and transverse velocity components

corresponding to U, V.

Expanding the right hand sides in Fourier Bessel series, and posing

(4.1)

corresponding expansions for I and J, one can find least squares expressions

for the expansion coefficients of I, J. The problem is particularly simple

for the isotropic part of the problem, as the equations reduce to

d - - -~
3 I(xr) = =<¢,t>
d ~
l J(r) = =<$,4>

(4.2)

The physical interpretation of this result for the isotropic component is

simple and appealing. The height-stream function correlation only involves

the swirl or transverse component of the wind about a height observation
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point, while the height-velocity potential correlation only involves the

radial component.

If the basic correlations I,J are anisotropic, then the set (4.1) must be
used. As in the more complex case of the winds, one solves term by term for
the Fourier expansion of the azimuthal dependence. The cosine terms for I are

obtained with the sine terms for J, and vice-versa.

In this paper we consider only the isotropic components of the height-wind
correlation. To complete the discussion of this case we need to consider the

definition of the expansions for I and J. The height covariance is defined as

2 N 2 r
cov<d ,p> = E¢ z ¢n Jo (kn B)'
o

where E¢ is the rms height error,

N

2
Lo = 1.
o
2 ] r r r, 2

and  ¢° = £ T <0.0> I (kD) d /T (k)

Similarly the velocity covariances are defined so that

N
= Y= + k —=
cov<l, > + cov<t,t> = E_ E k(YD + x2) T (kL)
where Eu is the rms vector wind error and
N
Y k2¥? 4+ x2) = 1.
n n n
o
. . 2 2 2, . .
With Et' Ez as the rms wind component errors (Et = EZ = iEu) it is natural to

pose expressions for the mass-wind covariances in the form

cov<d,t> = E¢Et K¢ ,t>, cov<d, &> = E¢E£<¢,R> and
N
daz ~ a r
dr —<¢. > = _é I & Jo(knD)'
(4.3)
N
ag ~ a r
== - b = —% 3 or I kD)



One may then determine In’ Jn by a least squares procedure.

Fig. 15 shows the variation with radial distance of the 850 mb isotropic
component of I, together with the empirical data. The function has the
expected form of a linear growth ne *: the origin, a peak at some distance from
the origin, and a gradual decay at large distance. Fig. 16 shows the
corresponding data for the 850 mb isotropic component of J. In general the

correlation associated with I is much larger than that associated with J.

4.3 Discussion

The problem of determining the height-wind correlations has been formulated in
a simple fashion, using the turbulence theory approach in Part I. The
magnitude of the wind errors in mid-latitudes varies almost inversely with the
sine of the latitude. A scaling of the mid-latitude wind errors is introduced
which takes account of the latitudinal variation of the Coriolis parameter.
This rescaling leads to a simplification of the correlations of height and
wind, as will be shown presently. The scaling suggests that it may be
advantageous to analyse }E rather than u in mid-latitudes. Such a
modification of the usual technique would have a simpler wind law, and might
also provide the large-scale divergence field which is implicit in geostrophic

motion on a sphere (Phillips 1963).

5. THE HEIGHT~STREAM FUNCTION CORRELATION

In this section we discuss the coupling of the height and stream function

errors with a view to determining the degree of geostrophy of the forecast
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errors. The results presented in this section are for a maximum permitted
truncation of 10 modes. At'some levels, the calculations could have been
extended to even higher truncation. It was decided not to do so for the same
reasons as applied when deciding on the truncation of the expansions for the

wind.

5.1 The geostrqphy of covariance functions

Bergman (1979) and.Lorenc (1981) used correlation models of the form
<h,0> = <Y,P> = G(r/Lc) and <$,P> = uG(r/Lc)

‘where G(r)=exp(-!r25 and ¥ is a geostrophic coupling coefficient. Both

Bergman and Lorenc defined g to be close to 1.0 in mid-latitudes. Lorenc

pointed out that the covariances will be geostrophic (for p=1) provided

3’.— = Lc or Ed) =T, »
£ E V2 fE c
ou ot

where E¢, Eu' Et are the rms forecast errors.for height, vector wind and wind
component; in effect the forecast error variances must bear a geostrophic
relation to each other. If this is not satisfied then the resulting analysis

will be ageostrophic even though the correlation model is geostrophic. The

formulation 4.3 is more general than this. If we define ¢£ = ¢n/Lw, so that

N
X (wé)z = 1, and also define I; = In/Y then we may write, dropping primes:
1

— 2 r

<G> = ] ¢- I (kx I).
2 r

<t ¥ = ) ¥oI (k)
‘r

<b,¥> = ) I J (k)

For perfect geostrophy we would require all three sets of expansion

coefficients to be the same, viz:
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We would also.require a geostrophic relation between the height and velocity

magnitudes:
B
%

f E

T
ot ¢

where Lc would be the common component length scale of the three

correlations.

None of these requirements is strictly satisfied by our data.

To discuss the extent to which they are approximately satisfied we compare the
spectra and length scales of all three functions, we examine the scale

dependent geostrophic coupling coefficient [ defined by In = un¢nwn’ and we
. E¢ ‘

examine the extent to which —————E-approximates 1, where L; is based on the

ot ¢ .

height data.

5.2 Spectra and length scales

Fig. 17a presents the length scale of the <¢,¥> function corresponding to
truncations at 6, 8 and 10 modes. These results may be compared with the
corresponding results for <¢,¢> (Fig. 6) and for <¢,y> (Fig.13, Part I). To
facilitate comparison, Fig. 17b plbts all three curves corresponding to a
truncation of 6 terms. The effect of the barotropic component in the height
field is neglected, since it plays no role in the coupling of height and wind.
The three curves in Fig. 17b exhibit the same major features - a modest
decrease of scale from 700 mb to 500 mb, and a more rapid increase from 400 mb

to 250 mb. The same general features are also found at higher truncations.

The most interesting aspect of these results, from a practical point of view,

is that the length scales in the troposphere are substantially shorter than
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Fig. 17a: Vertical profile of the horizontal length scale of the
height-streamfunction correlation for truncations of 6, 8, and 10 terms in

the least squares procedure.

17b: A comparison of the length scales of the height-height (ILphi),
height-streamfunction (Li), and streamfunction-streamfunction (Lpsi) length
scales, when the least squares procedure uses 6 terms in the synoptic scale

components.
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the length scales used to produce the analyses (Lc=600 km). This implies that
the resolution of the analysis system can be increased significantly, even if
one uses only 6 terms in the correlation functions. The inclusion of even
higher terms has negligible effect in the stratosphere, but it has significant

effects in shortening the scales of the correlations in the troposphere.

The ¥ length scale is somewhat longer than the ¢ scale in the troposphere at
all truncations. In the lower troposphere the <¢,Y> correlation has a scale
which. is as short as the scale of the ¢ correlation. However in the upper
troposphere the scale of the cross~-correlation is intermediate between the
scales of the other two correlations. At and above 100 mb the ¢ and ¥
correlations have very similar length scales, with the scale of the

cross—-correlation being somewhat shorter.

The spectrum of the Laplacian of the <¢,¥> correlation is shown, as a
function of height, in Fig. 18, and may be compared with Fig. 8 and Fig. 14 of
Part I for the Lapiacians of the <¢,¢> and <Y,P> correlations. These plots
give the spectra of an equivalent wind field. We have seen already that the
spectrum of the Laplacian of the height correlation is flatter than that of
the stream function. Fig. 18 indicates that the spectrum of the Laplacian of
the <¢,¥Y> correlation is intermediate in steepness between the other two,
particularly in the upper troposphere. This indicates, as we have seen, that
the scale of the cross=—correlation is intermediate between the scales of the

<$,$> correlation and <Y ,)> correlation..

5.3 The geostrophic coupling coefficient

For each term in the expansion (4.3) one may define a geostrophic coupling
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Fig. 18 As Fig. 8 for the Laplacian of the height-streamfunction correlation.
The gives the normalised spectrum of the wind field implied by the
height/streamfunction correlation, and is based on both height and wind data.
It may be interpreted as a hybrid of the geostrophic wind spectrum in Fig 8
based purely on height data, and the non-divergent wind spectrum in Fig 14 of
Part I based purely on wind data.
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coefficient un by

un - o ¥
Fig. 19 shows a plot of un as a function of height and mode number, together
with the average W. The average value of U increases from 0.8 at 850 mb to
1.05 at 400 mb. It then decreases to 0.83 at 300 mb, and varies between that
value and 0.91 from 250 mb to 100 mb. The vertical éverage value is 0.89.

For most modes U reaches its maximum value in the mid to upper troposphere.

The vélues of un become noiser with increasing n, probably because of noise in
the height field calculations. Recall that the Laplacian of the stream
function was determined directly from the wind data, and so the high
wavenumber amplitudes of the wn are more reliable than the corresponding
amplitudes of the ¢n. However only 6 of the 63 values plotted in Fig.19
exceed 1.1. Since it is natural to interpret un as the correlation between
the directions of the geostrophic wind and the'non—divergent wind, the results

are rather reasonable, given the difficulties of the calculation.

It is hard to discern a clear pattern in the variation of un with wavenumber,

even if the values are averaged over several levels. If the values exceeding

1 are treated as being precisely 1, then there is some suggestion that modes 4
and 5 (planetary wave numbers 29 and 35) are the most geostrophic, with mode

1 (planetary wave number 9) being the least geostrophic. The low vaiues of u

for this mode near the lower boundary are striking (.61 and .64 at 850 and 700
‘mb). If tangent plane geometry is used instead of spherical geometry to

calculate angles, then these values are as low at 0.4.
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5.4 Height and velocity variances

The second important facet of the geostrophy of the covariances concerns the

relative magnitudes of the geostrophic and non-divergent wind errors.

The ratio, @, of the geostrophic wind to the -stream function wind is given by

The results of two calculations of o are shown in Fig. 20; one where the
largg—scale contributions to L;’ E¢ and Et are completely excluded and one
where they are included. 1If the synoptic scale components only are included,
then O lies between .70 and 1.15 for the levels between 700 and 200 mb. If
the effects of the large~scale modes are included, then o lies between 0.94
and 1.35 for the same levels. The reason for presentipg both calculations is
to examine the possibility of aliasing, in that large scale components of the

height field might be associated with synoptic scale components of the wind

field, because of our truncation procedures (Julian and Thiebaux 1975).

From 700 to 300 mb @ is 1 * 0.15.  To within this accuracy the synoptic scale
non-divergent wind errors are geostrophic. = If we believe that the
non-divergent wind forecast errors above 200 mb are also geostrophic then Fig.
20 suggests that theré may indeed be an aliasing problem arising from the fact
that we have chosen to work with a radius of 3000 km. 'Even if all thé
large-scale height errors represent an alias from fields having associated
geostrophic winds, there is still a 15% imbalance at 100 mb. One may
speculate that part of this imbalance occurs because the analysis system used
the same horizontal scale for its Gaussian structure function in both

troposphere and stratosphere. There would then be a tendency to introduce too
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Fig. 20 Vertical profiles of the ratio of the geostrophic wind amplitude
(derived purely from the height-height covariance) to the non-divergent wind
amplitude (derived purely from the wind data). The cases shown are i) when
only the synoptic-scale components are included in the calculation of the
geostrophic wind amplitude (Synop) and ii) when both large-scale and
synoptic-scale components are included in the calculation of height variance
and length scale which together define the geostrophic wind amplitude (All).
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much wind variance on shorter scales in the analysis of the stratosphere,

which could lead to the sort of imbalances seen there.

5.5 The vertical correlation structure of <¢,¥>

One may calculate the vertical correlations of the <¢,¥> function in the same
way as the vertical correlations of the <¢,¢$> and <¢,¢y> functions. One might
expect that the vertical correlation of the <¢,¥> correlation should lie
between the rather broad curve of the <¢,¢> vertical correlation, and the much
sharper curve of the <{,Y> vertical correlation. This proves not to be the
case because the effective U for thermal winds over thick layers is smaller
than that for thin layers. This has the effect of broadening the vertical
correlations of <¢,¥>. A detailed discussion would add little to our main

results and so is omitted.

5.6 Discussion

The results on the geostrophic coupling- of height and wind show that there is
a high directional correlation between the stream function wind errors and
the geostrophic’wind errors in the troposphere; ‘The magnitudes of the
geostrophic winds and the non-divergent winds agree to within *15% in the

troposphere.

In the stratosphere the directional correlation of.the geostrophic and
non-divergent winds is also good, but there is an imbalance in the magnitudes
of the two wind fields which may be partly explained as an aliasing problem.
The use of inappropriate structure functions in the assimilation system

may. also contribute to the problem.
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6. THE HEIGHT-VELOCITY POTENTIAL CORRELATION

The substantial divergent component of the forecast wind error (see Part 1)

is mainly a large scale phenomenon, domiﬂated by horizontal mode 1 (planetary
wave 9). The same is true of the height-velocity potential carrelation, and
so we coﬁfine discussion of the <¢,x> correlation to this mode. Fig. 21 shows
the vertical profile of the height-velocity potential correlation Vv for.

1

horizontal mode 1. Below 250 mb v1 has peak values of ofder -0.25 while above
150 mb it is positive and of order 0.25. 1In discussing this correlation it is
helpful to recall the sign convention that if <¢,x> is negative, then <¢,sz>

is positive, so that high geopotential tends to occur with divergent winds and

vice-versa. We recall that the <¥,¥x> correlation (Fig.20, Part I) for this

mode is small and of uncertain sign.

The available evidence suggests that the divergent component of the forecast
errors above the tropopause occurs because of the lack of a aiﬁrnal cycle in
the forecast model. The magnitude of the error (~2m/s), its large horizontal
scale, its vertical auto-correlation structure and the cross—correlation with
¢ (Fig. 21) aré éll consistent with the view that the stratospheric divergent

wind error is a large scale forced motion.

There is less confidence in speculation about the origin of the divergent wind
errors in the troposphere. Fig. 16 shows a clear and consistent signal of
convergence in lows and divergence in highs in the 850 mb error fields. Fig.
21 shows that similar horizontal correlations are found ét most tropospheric
levels. Fig. 19 of Part I showed that the X field'auto—correlations show a
phase reversal in the vertical within the troposphere. All of these results

suggest that the forecast errors in the X field in the troposphere are
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Fig. 21 The vertical profile of the height/velocity-potential correlation for

the gravest (first synoptic~scale) term in the expansion. A negative sign
implies that low geopotential is associated with convergence.
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probably associated with the synoptic scale baroclinic disturbances. The use
of fu rather than u as the analysis variable might well have an effect on the

amplitude of this divergence field.

7. SUMMARY AND CONCLUSIONS

The méthods developed in this paper and in Part I provide a comprehensive
description of the covariance structure of the forecast and observation
errors, for both height and wind. The determination of the structure of the
height field errors follows earlier work. The decomposition of the wind field
errors into divergeﬁt and non-divergent components, the determination of the
auto-correlations of these components and of each with the height field, is

newe.

The main features of the results are that the forecast errors are comparable
in magnitude with the observation errors, and that there are good grounds for
increasing the resolution of our analysis system, both horizontally and

vertically, in areas where data is available.

The tropospheric forecast errors in the height field are dominated by the
baroclinically unstable wavelengths, as was found already for the wipd field
in Part I. The forecast errors in geopotential also contain an effectively
barctropic component of large horizontal scale, which is uncorrelated with the
wind field. The synoptic scale forecast errors may be resolved into a
spectrum of horizontal modes, each of which has a somewhat different vertical
correlation structure. Separability is therefore not as accurate an
approximation for the height forecast errors as for the non-divergent wind.
The horizontal scale of the height field errors is significantly shorter than

that in operational use at the time the forecasts were produced.
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The <¢,¥> correlation showed a good agreement between the directions of the
geostrophic and non-divergent wind errors. In the troposphere a
representativg value for the overall correlation of the ¢ and ¥ fields is 0.89
with variations in the value depending on which mode or which level is
examined. The gravest horizontal mode showed a markedly lower correlation

than higher modes near the lower boundary.

Comparison of the magnitudes of the geostrophic and non-divergent wind errors
showed agreement to within 15% at most levels in the troposphere. In the
stratosphere the geéstrophic wind errors were 15% less than the non-divergent
wind errors even if allowance is made for aliasing of large scale height
fields. A window of 3000 km is apparently inadequate to resolve all the
scales of forecast error in the stratospheric height field which have

associated geostrophic wind-fields.

The <¢,X> correlation is weak (~=-.25 in the troposgphere), and shows the
expected relationship between low pressure, cyclonic vorticity and
convergence, in the troposphere. The correlation reverses sign above 150 mb,
where it is suggestive of forced motion. The suggestion is that the absence

of a diurnal cycle in the forecast model is readily detectable in the

verifying observations.

The results in Part I and the present paper suggest many areas for improvement
in our analysis system - better specification of observational error, bgtter
horizontal and vertical resolution, changes in the data selection area,
modification of the analysed wind variable in mid-latitudes, scale dependent
constraints on non-divergence and geostrophy, separation of the analysis of

the troposphere and stratosphere etc. The methods also provide powerful
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diagnostic tools to examine dynamical balance in the assimilation. Many other
aspects of the new statistical formulation have only been adverted to in
passing, such as the questions of anisotropy and non-separability. We have
not dwelt at length on these matters as it is likely that they are sensitive
to the parameters currently used in the analysis. The upgrading of an 0O/I
system ought to be an iterative learning process, where at each stage one

makes the most profitable improvements and then re—-derives the statistics.

The methods presented here and in Part I can be extended in a variety of
directions. Current studies are concerned with the forecast errors in other
regions including in the tropics. The methods can also be adapted to provide
spectral estimates of analysis accuracy. This problem is more difficult than
the estimation of forecast accuracy because the analysis errors are correlated

with the observation errors, unlike the forecast errors.

The indications that in data rich areas the accuracy of the 6-12 hour forecast
is frequently comparable with that of the observations offers considerable
potential for monitoring the performance of both the observational system and
the analysis system (Hollingsworth et al. 1985). The fact that the coding
practices for the exchange of data lead to rounding efrors which are not
negligible compared to the forecast errors hust cause some concern;
improvements in this area would be welcome. Systematic exploitation of these

methods is likely to lead to all-round improvements in performance.
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