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t.  INTRODUCTION

Numerical weather prediction igvolves the solution of large systems of
coupled partial differential equations which describe atmospheric motions.
A brief description of the ph&sical and mathematical basis of numerical
models of the atmosphere is given in the paper by Bengtsson in this volume.
For our purposes the governing equations may be written formally as

%% = D(X) + P(X) | (1
where X is any model variable .... wind, temperature, humidity etc. ...
The problem is 3-dimensional, with the dependent variable X being a
function of spatial co-ordinates x, y and z and a function of time t. The
term D represents the "dynamics" - advection, pressure forces etc - and the
term P, normally referred to as thé "physics", is a source/sink term which
for large-scale models of the atmosphere describes.physical processes such
-as the evaporation and condensation of water, solar heating, infra-red
cooling, and frictional drag at the earth's surface. For fine-scale models
of thunderstorms a aescription'of cloud physics processes is required; this
adds new variables to the problem - cloud water drop-size spectra and for
each drop-size an electrical charge spectrum. With present computing
power, severe compromises must still be made for such models. In contrast

to the "dynamics" embodied in the term D, the "physical" processes, P, are

intermittent and are often represented by on/off processes. The
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programming or implementation for these processes largely effects the
efficiency of vectorization on computers such as the CRAY-1 and the
CYBER-205, with different strategies being required for different
computers. For large-scale models such problems have been overcome by
carrying out redundant calculations. The effect on parallel processing is

discussed in the paper by Dent in this wvolume.
In the rest of this paper I shall describe the basic numerical techniques

in current use - Section 2 - and in Section 3 future requirements for

global weather forecasting models.
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2. NUMERICAL SCHEMES AND THEIR IMPLEMENTATION

Three different techniques are in general used for numerical models of the
atmosphere - finite differences, finite element and spectral. With each of
these techniques a 3-dimensional grid of points is required. At the time
of writing typical horizontal grid spacings for global models are 200 km on
15 levels (in the vertical) ranging from the earth's surface to heights of
25 km- these resolutions requiring approximately 200*100*15 = 300,000 grid
points. For the vertical representation in numerical models of the
atmosphere the finite difference technique predominates though there have
been some successful implementations of the finite element techmnique. The
next three sub-sections 2.1 to 2.3, describe each of the techniques and
their implementation. The fourth sub—section( 2.4, discusses the

implementation of time-stepping algorithms.

2.1 PFinite differences

In the early 1970s, almost all models of the atmosphere were based on
finite difference techniques, and, of the three main approaches, finite
difference methods are perhaps the most readily understood and the most
easy to implement. Model variables are defined at grid points and nowhere
else; the derivatives in D(X) being approximated by differences. The
simplést difference technique require 9 points (i, j; i:1-200, j:1-100) in
the horizontal at each of 3 levels (k; k:1-15) in the vertical. The
"physics" requires, for an efficient implementation, the presence of all
dependent variables for a particular vertical column. (15 levels of
information for a 15-level model). The memory sizes of the present
generation of supercomputers will, normally, only allow a fraction of the
model's grid point description be retained in memory at any one time. The

normal approach is to retain in memory vertical slices of the data for a
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few values of j - for our model problem data arrays for memory resident
variables would be DIMENSIONED (200(15); typical'vector lengths for vector
calculations being 200. The full description is retained on a secondary
memory = normally a high speed disc system driven by asynchronous i/o
drivers. However whereas such an approach is very efficient on CRAY
computers, indeed there is little overhead if the secondary storage is a
CRAY-SSD system, the optimal approach for the CYBER~205 is to design a
"memory-resident" model such as that developed by the British
Meteorological Office; this permits the use of very long vectors.
Obviously a "memory-resident" model limits flexibility particularly with

regard to resolution increases.

2.2 Finite element schemes

The essence of finite element schemes is to expand the model's dependent
variables in terms of a set of basis functions, each of which is a
low~order polynomial of compact support (i.e. each basis function is
non-zero only over a small sub-domain or element of the full region); a

familiar basis set being the linear-spline or "hat-functions"
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Insertion of this representation into the model's equations leads to a set

of equations of the form

3% _
m == A(X) + p(X) | (2)

where m and d are large sparse matrices and X is a vector of amplitudes.

To all intents and purposes the algebraic form of the right hand-side of
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this equation is similar to that obtained with finite difference
treatments. The main difference, computatiocnally, between finite element
and finite difference is the requirement to invert the sparse matrix m.
Apart from the purely computational cost, this inversion normally presents
considerable technical problems. This arises because, in general, the
structure of m requires the whole of the right hand side of equation 2 in
memory for the inversion. However, schemes can be designed in which m can
be written as a product of matrices each of which is relatively simple to
invert. For example with a bi-linear spline description for the horizontal
reprgsentation, m can be written as the product m * Ey' where m and m
correspond to tﬁe x-and y discretizétions respectively; both matrices being
narrow banded. The matrix Ui is normally inverted by Fourier analysis and
synthesis and the matrix E% by a L/U decomposition involving a forward
elimination step and back substitution step. In this case the inversion of
m is similar to the problem of carrying out Fourier analysis and
re-synthesis in two dimensions, for which there exists many efficient "out

of memory"” implementations.

2.3 Spectral methods

The last decade has seen the rapid development of spectral methods for the
horizontal description in large-scale models of the atmosphere. As with
finite element approach dependent variables are represented by expansions
in terms of a set of basis functions - normally orthogonal polynomials -
however the description is "global" rather than local. For global models,/
the basis functions are normally surface harmonics (Legendre functions for
the North/South representation and Fourier series for the East/West
representation). The most efficient implementation of the spectral

technique requires two related representations - the spectral description
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and a grid point description. Horizontal derivatives are first calculated
.exactly at each grid point using the spectral representation. The second
stage is to calculate D(X), usin§ the exact values for derivatives; and
P(X) at grid points. A time-stepping procedure determines new values of
the dependent variables at grid-point from which new values of the spectral
representation are calculated. The implementation of a spectral model on

the CRAY-XMP22 is discussed in the paper by Dent in this volume.

In contrast with finite difference techniques, spectral methods are very
non-local; the complete spectral representation is needed to caiéulate
values at a single grid point and each grid point value is required to
calculate individual amplitudes'in the spectral representation. With the
present memory sizes on super computers this requires, for an efficient
implementafion, at least a two=-pass structure for the calculation. For the
ECMWF spectral model the complete spectral representation is retained in
central memory and is used in the first pass to calculate primary variables
and their derivatives at grid points; these grid point values are stored on
an external i/o device in vertical slices. In the second pass these data
are re-input into memory and a new 3 dimensional spectral description is
computed - this includes all dynamical gnd physics calculations. The i/o
requirements are similar to those for finite difference and finite element
techniques. Indeed, there is a great deal of similarity between all the
implementations. Essentially, they "look like" grid_point techniques and

the same basic data structures can be used.

The spectral model that ECMWF plans to introduce into operations in the
spring of 1985 will require 16 mw of storage (storage medium CRAY-SSD) for
primary variables and a little less than the 2 mw of the CRAY-XMP22's

central memory.
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2.4 Time-stepping algorithms

The procedures outlined in the preceding three sub-sections are used to

calculate the right hand-side of equation

90X _
3¢ = D(X) + P(X)

The forecasting problem is, given initial values of X=X(t) at time t, to
determine values of X at successive times using a time-stepping procedure.

The simplest schemes are explicit, and a commonly used scheme is

X(t+At) - X(t=-At)
24t

= D(X(t)) + P(X(t-At)) _ , (3)

This scheme requires complete mode; states at two time-levels (t and t-At)
in order to calculate Vélues at the new time-level t+At. Explicit schemes
such as (3) are easy to implement énd do not impose severe programming

problems.

Despite their simplicity, explicit schemes can carry a serious disadvantage
for meteorological models. This arises because the governing equations
describe fast time-scale phenomena - gravity waves with horizontal phase
speeds of 300 ms_1v- in.additioﬁ‘to the slow time-scale weather events.

The earliest numerical weather forecasting models were based on sets of
equations which "filtered-out" fast time-scale phenomena. The presence of
the fast time-scales require short time-steps - small At - with explicit
schemes. - Implicit schemes can be used, and can be designed to be
unconditionally stable - ailowing the use of very large time=-steps; a

typical example being

X(t+At)22tX(t-At) =2{(X(t+At) ; X(t-At)} + Ej(X(t-At)) ; X(t+At)}

However, sincelg and P are a very complicated non-linear expression, the
determination of X(t+At) requires a prohibitively expensive inversion

procedure, which for operational weather forecasting would be impractical.
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The compromise is to treat only a linear part of D implicitly, that is,use a

semi-implicit scheme. A typical semi-implicit scheme is

X(t+At) - X(t=-At)
2At

= ${D_(X(t+At) + D (X(t-At))} + D'(X(t)) + P(X(t=-At))
2 2 2 =
where D' = D=D
2 272

Since D is a linear operator the inversion process is simple; usually 20
—o

can be reduced by simple algebraic manipulation to a Laplacian.

The application of semi-implicit techniques to spectral models results in
particularly efficient schemes, since the basis functions are normally
chosen to be the eigenfunctions of the Laplacian and in this case the
inversion process reguires only a multiplication. Because they are not
fully implicit, semi-implicit schemes are in general conditionally stable,

and typically we require

h

U
max

At < af

)

where h is a horizontal grid lehgth, Umax the maximum horizontal wind and

o a constant of order 1.

Recently, Lagrangian schemes have been developed in order to allow further
increases in the time-step. The essential features of Lagrangian schemes
are illustrated in Fig. 1 below (Fig. 1 is a space-time, x-t, diagram for a

1-dimensional problem.)
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Fig. 1 Space-time x~-t diagram for
a Lagrangian scheme

: 7

'In order to determine the values of the dependent variables at Q(x=xl

't=t+At) a ﬁdeparture" point D is require - the curve DQ being a trajectory;
values at Q ére identical-to those at D. Since D is not nérmally a grid-
point the values at D have to be determined by interpolation from
surrounding grid point values; the accuracy of this interpolation
determining the accuracy of the scheme. Iﬁ numerical ﬁeather prediction,
Lagrangién techniques are usea for the advection processes - the slow
time-scale phenomena - and when combined Qith semi-implicit treatments of

the fast time-scales allow the use of large time-steps.
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3. FUTURE DEVELOPMENTS

The schemes outlined in Section 2 will undoubtedly continue to provide the
basic numerical schemes of future forecasting models. However, the
approach to modelling the dynamics may require a different use of the basic
equations to provide a better description of dynamical processes and a more
widespread use of implicit methods. By the end of the decade we shall see
a dramatic increase in the resolution of operational global forecasting
models. It can be expected that the operétional use of a global model with
600*300 grid points on 25 levels will be justified by the research and
development currently being carried out by many researéh groﬁps. Such a
model, if based on a spectral representation, will require about 100 mw of
storage; this requirement increasing by about 20 mw for each additional
dependent variable added to the model. For such a model to be
operationally feasible for medium range forecasting - forecasting up to 10
days ahead =~ the minimum requirements is for a machine with fifty (50)
times the throughput of a CRAY-1S. Undoubtedly this power will only be
provided by significant increases in the number of processors and large

increases in central memory.

Machines with large amounts of central are being planned ~ successors to
the current CRAY and CYBER machines for example - and will, I am sure be
built. For the programmer the two most important characteristics are the
presence or absence of shared memory - that is shared between processors -
and the multi-tasking support. About 30% of the code in the present
generation of "out-of-memory" models is used to manage the i/o and the
central memory for primary and temporary variables, and it is to be hoped
that the next generation of large - memory supercomputers will have
efficient mechanisms (hardware/software) to manage shared memory and/or a

memory hierarchy. 24



Turning finally to multi-processing, I feel optimistic that parallel
processing, particularly for weather forecasting models, overheads will
reduce through algorithm re-design; the scheme described by Dent in this

volume being a good first start with a large-scale code.
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