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1. INTRODUCTION
The problem of four-dimensional assimilation of meteorological observations is usually

described as the problem of defining the initial conditions of a numerical weather forecast,
using observations distributed over some period in time. Although this description does not
really convey the full generality and significance of the underlying estimation problem, it
obviously corresponds to the daily situation to which meteorologists in weather prediction
centres are confronted, and we will use it as a useful starting point for our study of

variational assimilation.

All assimilation methods which are used (or have been used) in operational numerical
weather prediction are sequential, in that they consist of a sequence of corrections performed
on one temporal integration of the assimilating model over the assimilation period. The
method of correction which is usually considered as providing the best results is a form of
statistical linear estimation, called optimal interpolation, described in this volume by
Hollingsworth. In a sequential assimilation process, each individual observation is used once
and only once, without feedback to anterior times. It is not clear whether this is a real
weakness in the case of the definition of the initial conditions of a numerical forecast (it is
certainly one when assimilation is used for a posteriori determination of the state of the
atmospheric flow, with observations available both before and after the time at which the
state of the flow is to be estimated). But it is tempting to look for methods in which one

model solution over the assimilation period is globally adjusted to the available observations,
with propagation of the information contained in the observations both forward and
backward in time. This is the basic simple idea which underlies variational assimilation. It
turns out that, with present numerical models and computers, the only practical way to
implement variational assimilation is through an appropriate use of the so-called adjoint of the
assimilating model. The adjoint of a numerical model basically consists of the equations
which govern the temporal evolution of a small perturbation imposed on a model solution,
written in a form particularly appropriate for the computation of the sensitivities of output
parameters of the model with respect to input parameters. The use of adjoint models is an
application of the theory of optimization and optimal control, which has been developed in
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the last twenty years by mathematicians (see, e.g., Lions, 1971), and which is progressively
propagating in various fields.

This paper describes the principle of variational assimilation and deals in detail with the
question of how the adjoint of a numerical model can be used for variational assimilation. It
does not describe the numerical results which have already been obtained with variational
assimilation. Such results are described in other articles, in particular in the contributions by
Courtier and Lorenc included in this volume. On the other hand, emphasis is put here on the
theory of adjoint models.

The principle of variational assimilation is stated in precise mathematical terms in Section 2,
from which it appears that variational assimilation is a constrained minimization problem. It is
shown in Section 3 how the adjoint of a model can generally be used for numerically
determining the gradient of an output parameter of the model with respect to its input
parameters. The practical use of adjoint models in the context of variational assimilation is
described in Section 4. An important theoretical element is the close link which exists
between the method of adjoint models and a classical method for solving constrained
minimization problems, namely the method of Lagrange multipliers. This particular point is
addressed in Section 5. Finally, a number of theoretical and practical problems are discussed
in Section 6. ‘

2. VARIATIONAL ASSIMILATION. THE BASIC PRINCIPLE
2.1 Statement of the problem

The two basic ingredients of an assimilation process, whether variational or not, are a set of
observations, distributed over a time interval [t,t;], and a numerical model describing the

temporal evolution of the atmospheric flow.

We will assume that the observations have been performed at n+1 successive instants T;

(i=0,1,...,n) which, for the sake of simplicity, will be supposed to be equally distributed

over [tg, t1], i.e. T;=tg +iAt, with At=(t;-tg)/n. The vector of observations at time T; will
be denoted Z; . We stress that there is no need for the nature or the number of the individual

scalar observations making up the vector Z; to be independent of i. We will only assume,

again for the sake of simplicity, that the atmospheric parameters observed at time T; depend

onlyk on the state of the atmosphere at that time, so that we exclude observations which could

bear, e.g., on temporal integrals or averages.



The numerical model will be written in synthetic form
Xir1 = Xj+ AtG(X;)) i=0,..,n-1 (2.1

where X is an N-dimensional vector describin g the state of the model at time T;. The

N-dimensional phase space of all possible model states will be denoted E. Inner products on

E (and on other spaces when necessary) will be denoted < , >. For large scale models used
in present operational numerical weather prediction, N is typically of the order 109.

Eq. (2.1) is a discretized form of a set of partial differential equations which can be formally
written as :

dY_FY
3 = FOO

ey

where Y (t) is an infinite dimensional vector describing the state of the atmospheric flow at
time t. Passage from (2.2) to (2.1) requires the definition of both a spatial and a temporal
discretization schemes, the details of which are not important at this stage.

The specification of an initial condition X, at time T, defines a unique solution to eq. (2.1)

(we ignore here the additional problems raised by the necessity of specifying appropriate
lateral boundary conditions for limited area models, although we stress that the general
principles of variational assimilation and of adjoint models apply to limited area models as
well as to global models). ‘

The model and the observations being available, it will be possible to assimilate the
observations only if it is possible to compare them with the model fields. To this end, we will

assume that, given a model state X; at time T;, we can define a "model analogue" Zi of the
observation vector Z;, and that this model analogue can be computed as an explicit function

of Xj, viz.
Zi = Hy(X;)

where the subscript i in H; refers to the fact that the number and nature of the parameters

observed at time T; may vary with i. H;j will be called the observation operator
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corresponding to the observation vector Z;. If the model is a gridpoint model, and if the
components of Z; are point values of meteorological fields which are explicitly described in
the state vector X of the model (such as horizontal wind components or temperature, which
are usually described as such in meteorological models), H; will then consist of spatial
interpolation performed from the model gridpoints to the observation points. A sligthly more
complicated situation will occur in the case of a spectral model, where the operator H; will
contain a transformation from spectral to physical space. But still more complicated situations
could be imagined, as for instance if the observation vector contained satellite-measured
radiances, which one wanted to assimilate directly without first "inverting" them to estimates
of temperatures and humidities. The corresponding observation operator would then include
an explicit integration of the radiative transfer equation, leading from the model temperature
and humidity fields to estimates of the emitted radiances.

Two remarks must be made about the notion of an observation operator. Firstly, an
observation operator is defined in terms of the state vector of a particular model, and is
therefore "model dependent”, even though the observing system will have been defined and
implemented, in most cases, independently of any particular model. This is so, of course,
because assimilation has to be performed with a particular model, but this fact has
far-reaching implications on the way assimilation must be implemented. The second remark
is relative to the fact that the observation operator may itself not be very accurate, be that only
because a large proportion of meteorological observations are performed at spatial scales
which are much smaller than the scales resolved by numerical models. We will come back
briefly in Section 6 to the problém of the accuracy of observation operators, and will only
mention at this stage that the question of the accuracy of the observation operators is (as the
question of the accuracy of the observations themselves) fundamental in the implementation
of an assimilation procedure.

An observation operator having been defined at time T;, the "misfit", or "distance” between

the model state X; and the observation Z; will be defined as the scalar product

1
Ji = —2~ <Zi'Hi(Xi)’ Zi’Hi(Xi)>

(2.3)

More generally, we consider a sequence X, X1,..., X, of model states, i.e. of vectors of the

phase space E (which may or may not satisfy the model equation (2.1)). We then define the
misfit or distance between that sequence and the sequence of observations Zg, Z;, ... ,Zy as

the sum of the individual misfits



1
)= 2 §<Zi'Hi(Xi) , Z;- HiX5y >
i=0

2.4)

The principle of variational assimilation can now be stated in its generality : we shall look for
the model solution which minimizes 7, i.e. for the sequence of states X, Xy, ... ,Xp which

minimizes 7, while at the same time verifying the model equation (2.1).

The problem just stated is a constrained minimization problem : the distance 7 (2.4) is to be
minimized under the constraint defined by the model equation (2.1). It is known that there are
basically two methods for solving a constrained minimization problem : the first one is to
eliminate, or reduce, the constraint, the second one is to use Lagrange multipliers associated
with the constraint. Interestingly enough, the adjoint of the model equation (2.1), which we
will use for solving the above minimization problem, can be obtained from either of these
two methods. We will first describe these methods on an elementary example, before coming
back to the general problem of variational assimilation.

22 An elementary constrained minimization problem
Let us consider the following problem : find the minimum outer area of a right circular

cylinder with given volume V. Denoting by h the height of the cylinder, and by R the radius

of its basis, this amounts to minimizing the outer area

A = 2n R (R+h) (2.5a)

under the constraint that the volume is equal to the known quantity V, viz.

ntR2h =V R>0,h>0 (2.5b)

Elimination of the constraint is in this case absolutely straightforward. One can for instance
solve eq. (2.5b) for h, and carry the corresponding expression into (2.5a). The outer area A
is thus expressed as a function of the only variable R, and its minimum is obtained by
imposing that the derivative dA/dR be equal to zero. This leads to



1
R:(l’ﬁ

- and  h = (—)3 (2.6)

It is seen that h = 2R . The cylinder with minimum outer area is the cylinder with square

lateral cross-section.

The method of Lagrange multipliers applies as follows in the present case. One scalar

additional variable A, which is the (unique) Lagrange multiplier of the problem, is associated
with the scalar constraint (2.5b). One then defines the Lagrangian of the problem, i.e. the

following scalar function of the three variables (R,h, A)
L(R.h,A) = 2nR (R+h) - A(mR2h-V)

where the minus sign in front of A is arbitrary, but convenient. L is the sum of two terms :
the first is the function of R and h to be minimized, and the second is the product of the

Lagrange multiplier by the quantity which is constrained to be equal to zero.

A classical result states that the values (R,h) for which the area A (2.5a) is stationary under

the constraint (2.5b) are the first two coordinates of the triplets (R,h, A) for which the

Lagrangian, considered as an unconstrained function of its three arguments, is itself

stationary.These triplets are obtained by setting to O the partial derivatives of L,viz.

3_1%5 2t[2R+h-ARh] =0

(2.7a)
g—fgz TR[2-AR] =0

(2.7b)
g_;: =-[zR*-V] = 0

(2.7¢)



This system of three equations to the three unknowns (R,h, A) is easily seen to possess a

unique solution defined by (2.6) and by A =2/R.

The method of Lagrange multipliers can be readily generalized to the case of any number N¢

of scalar constraints. Let us assume the constraints to be written as
fJ(E) =0 J = 1, vee s NC

where x = (X3, ... , X)) is the vector of scalar variables with respect to which the

constrained minimization is to be performed (the problem makes sense only if N¢o < M).

N scalar Lagrange multipliers Kj must then be introduced and the Lagrangian is formed by

adding to the scalar function to be minimized the quantity

N¢
Y0

j=1
(2.8)

When writing that the Lagrangian is stationary with respect to kj, one will recover the

constraint fj(g) =0, just as eq. (2.7c) above is identical with the original constraint (2.5b).

The quantity (2.8) can often be advantageously be written as the scalar product

-<A,FXx)> ofthevector A= ( lj) (G=1,...,N¢) of the Lagrange multipliers by the
vector F(x) = (fj(_)g)) (G =1, ..., Np) of the constraints.

The relative advantages and disadvantages of reducing the constraint(s) or of introducing
Lagrange multipliers(s) depend very much on the particular minimization problem at hand,
and will not be discussed here. We will only mention that, in the case of a problem of

minimization with respect to M scalar variables constrained by N scalar constraints (in the
above example, M= 2 and N =1), reduction of the constraints leads to a system of M-N¢
algebraic equations, while introduction of Lagrange multipliers leads to a system of M+Ng

algebraic equations.

Remark. The two methods which have just been described are not the only ones for
numerically solving constrained minimization problems. Two classes of numerical
algorithms for solving such problems are the so-called penalty and augmented Lagrangian



algorithms (see, e.g. , Le Dimet and Talagrand, 1986). But these algorithms do not seem

appropriate for variational assimilation, and will not be discussed here.

23 Minimization. Numerical aspects
We now come back to the constrained minimization problem (2.1-2.4) corresponding to

variational assimilation. The dimension of the model phase space E is N, and n+1 model
states are to be determined, so that the number M of scalar quantities which respect to which
constrained minimization is to performed is equal to M=(n+1)N. As for the number of scalar

constraints, which are expressed by the model equation (2.1), it is equal to N¢ = nN. Now,

a model state X at time T, defines a unique model solution, so that the constraints can be

formally reduced by considering the distance function 7 as a function of X only. This

reduces the problem to an unconstrained minimization problem with respect to N scalar
variables. But of course an obvious difficulty is now to relate, in a practically usable form,

the variations of X¢ with the corresponding variations of 7. It would be totally impossible to

do the equivalent of what can be trivially done in the elementary example (2.5), namely to

derive analytical expressions for the partial derivatives of J with respect to the components of
X (not to mention the problem of determining the values of these components for which the

partial derivatives are equal to zero).The approach to the problem must therefore be entirely

numerical.

It will be convenient to make at this stage a slight change of notation. The vector of initial
condition at time T, will be denoted U instead of X, and its components will be denoted uj,

G =1, ..., N). A basic quantity is the vector of the partial derivatives d7/du;, or gradien.tl

vector, of the distance function with respect to the components u;. This vector will be
denoted Vyj] .Itis directed, in the phase space E, along the direction of local fastest
variation of J. Given a point U in E at which V{;] # 0, the distance function decreases, for
small positive p, along the straight line defined by

U=U-pVy]
On the basis of this fact, and provided the local gradient V{;J can be numerically determined

at every point in E, the pointin E at which J is minimum can be determined as the limit ofa

sequence of the form



Upit = Up - ppDp p=0,1,.. 2.9)

where, for each p, Dp is a vector in E directed along the direction of the local gradient

\%%i, (Up) or (more efficiently) along a direction which is itself determined from the

successive gradients V;J(Up), V5] (Up.1), ... previously computed. As for p,, it is an

appropriately chosen scalar. Numerous descent algorithms, which all determine the point at

which 7 is minimum through a sequence of form (2.9), have been defined. We will mention

the steepest descent algorithm (in which D, = V;J(U,) for all p's), the conjugate gradient
P U)\-p P g

algorithm, and a class of algorithms known under the generic appellation of quasi-Newton
(or variable meiric) algorithms. For further information on descent algorithms, we refer the
interested reader to the book by Gill et al. (1982) and to the article by Navon and Legler

(1987). The latter discuss the use of descent algorithms in meteorological problems. The
important point here is that, once a method is available for numerically computing the local

gradient V], the point at which J is minimum can then be determined through a descent

algorithm.

The question is therefore : how to numerically determine the gradient Vi;J ? One theoretical

possibility would be to evaluate the components of VUj through finite-difference
approximations of the form AJ/Au;, where A7 is the computed variation of J resulting from

a given perturbation Au; of ;. This method has effectively been used by Hoffman (1986) for
performing vanauonal assimilation. But it requires as many expllclt computations of ] (i.e.

explicit’ 1ntegrat10ns of the model over the time interval [to,t1]) as there are components in U,
i.e. Nin our notations. Its numerical cost would obviously be totally prohibitive in most

situations.

The only possible way to numerically determine VU] at an acceptable (although still high)
cost is through use of the adjoint of the model equation (2.1). The principle of adjoint models
is based on a systematic use of the chain rule for differentiation. We will first demonstate the
principle of adjoint‘models in a very general, but conceptually very simple context, in which
its significance will appear clearly. We will then describe in detail what this general principle
leads to in the case of variational assimilation.
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3. THE ADJOINT METHOD FOR COMPUTING GRADIENTS

31 Principle
Let us consider a numerical process which, starting from an input vector U, with

components u; (G=1,...,N), leads to an output vector V, with components vy (k=1, ...,
M). The input vector can be thought of as representing, as in the preceding section, the initial
state X from Which the model (2.1) is integrated, while the output vector can be thought of
as representing, e.g., the complete sequence of model-minus-observations differences
HiX)) - Z; (i=0, ..., n). But the developments of this subsection are much more general

and only require that the output vector is a uniquely defined function of the input vector, viz.

V =K(U) ‘ (3.1

Now, a perturbation 86U = (Suj) imposed on U results in a perturbation on V which, to first

order with respect to dU, reads

N ov,
SVk=Za—uj~61.Ij (kzl,...,M)
j=1
(3.2)
or, in matrix form
0V = K'dU 3.3)

where K' is the jacobian matrix of V with respect to U, i.e. the matrix whose entries are the

partial derivatives dvi/du;. In the general case when the function K is nonlinear, K' will of

course be a function of the input vector U. Equation (3.3) will be called the linear
perturbation equation corresponding to (3.1).

We now consider a scalar function J of the output vector V. Through (3.1), ] can be

considered as well as a function of U. If one knows the gradient Vy;J of J with respectto V,
ie. the partial derivatives 07/dvy, the chain rule for differentiation leads for the gradient Vy;]

of J with respect to U, i.e. for the partial derivatives d]/du;, to the following expression
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M
ﬂ=k2_‘8‘}“‘a§j— G=1,....N)

an

(3.4)

In this expression, the summation is performed on the index k, while it is performed on the

index j in eq. (3.2). This means that, expressed in matrix form, eq. (3.4) reads
vyl = K™ VyJ (3.5)

where K'™ is the transpose of the jacobian matrix K'. It is worth comparing egs. (3.3) and

(3.5). In (3.3), the jacobian matrix K' leads from a perturbation on the input vector to the
corresponding perturbation on the output vector. In (3.5), the transpose jacobian leads from a
gradient with respect to the output vector to the corresponding gradient with respect to the

input vector. It must be noted that eq. (3.5) is valid for any differentiable function .

The principle of the transpose method (we do not call it the "adjoint method" yet) is to
determine the gradient V{;J by numerically performing the computations represented by
eq.(3.5).If ] is a "simple " enough function of the output vector V (and J will always be a

simple function of some appropriately chosen "output vector", be that J itself), Vy,/] can be
determined analytically and introduced as input of the computations represented by (3.5). The

important point is that these computations can be performed without having to explicitly

determine the complete matrix K'™. This fact , which may not seem a priori obvious,
becomes clear if one realizes that the cost of one transpose computation (3.5) must be the
same as the cost of one linear perturbation computation (3.3). The latter does not require the

explicit determination of the jacobian K', but can be performed by formally differentiating
each step of the computations represented by the basic equation (3.1), and then numerically
implementing the corresponding linear computations. For instance, if the basic process (3.1)

involves at some stage a computation of the form
r=v (x2+y2) (3.6)
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the corresponding linear perturbation computations will read

T ox dy
or, in standard matrix notation
‘ dx
dr = [_X_ X}
r T dy

As for the corresponding transpose computations, let us assume that we know the partial

3.7

derivative 07/0r of ] with respect to r (i.e. with respect to the output of the particular simple

process represented by (3.6)). The derivatives of J with respect to the inputs x and y are

given by the chain rule
g _dog _xd
0Xx oxor T or
g _ad_yd
dy yodr ror

or, in matrix form

SN
[

|

s

S
<

(3.8)
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It is seen that the matrix which appears on the right-hand side of this expression is the
transpose of the matrix appearing on the right-hand side of (3.7).

The essence of the transpose method is simply to systematically perform computations of the
form (3.8) for all the steps of the basic computations (3.1). Indeed, three properties of the
transpose method clearly appear on (3.8).

a) Because of their very nature, the transpose computations, which proceed from the gradient

of ] with respect to the output vector V to the gradient of ] with respect to the input vector U,
must be performed in reversed order of the basic computations (3.1). In particular, if, as
such is the case in variational asSimilation, the direct computations contain some form of
témporal integration into the future, the corresponding transpose computations will contain
some form of backward integration into the past. This particular aspect will be discussed in
more detail in the next section.

b) The numerical cost of one transpose computation is the same as the cost of one linear
perturbation computation (3.3). The equations governing fluid motions, on which numerical
models of the atmospheric circulation are built, contain both linear and quadratic terms, and
can be symbolically written as

X .o
= = LX + NX.X)

(3.9)

where LX represents the linear terms, and N(X,X) the quadratic terms. Differentiation,
analogous to (3.3), will lead to

% = L8X + N(BX,X) + N(X, 8X)

While linear terms are unaltered by differentiation, each quadratic term gives rise to two
terms. In consequence, the cost of one transpose computation will be between once and twice
the cost of one basic computation (3.1).

c) The transpose computations (3.8) require the preliminary knowledge of the partial

derivatives or/ox = x/r and or/dy = y/r. The same will be true whenever the basic

computations will be nonlinear. As already mentioned, the jacobian K' and its transpose K
will in such a case depend on the particular value of the input vector for which one wants to

determine the gradient Vy;J. This means that, before the transpose computation (3.5) can be

implemented, a direct computation (3.1) must have been performed and that all computed
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intermediary values (or at least all values used in nonlinear computations) must have been
stored in memory in order to be available for the transpose computations. The corresponding
storage requirements may of course be enormous, and that is the price to be paid for the basic
advantage of the transpose method, namely the gain in computing time, which we now
briefly discuss.

Taking into account the fact that a direct computation must necessarily be performed before

the transpose computation, the cost of the explicit determination of one gradient Vy;J will, in

the context of variational assimilation, be comprised between two and three times the cost of
one integration of the model over the assimilation period. Although that cost remains high, it
nevertheless achieves an enormous gain over the N integrations which would be necessary if

the gradient Vi;] was to be determined by explicit perturbation of the components of U.

It must also be mentioned that if the linear perturbation equation (3.3) is a necessary
theoretical step towards the definition of the transpose equation (3.5), the corresponding

numerical computation will not have to be effectively performed, at least in the context

considered here. For computing one gradient V], one integration of the basic equation

(3.1), followed by one integration of the transpose equation (3.5), is sufficient.

32 The general notion of an adjoint operator

Rather than using the notion of a transpose matrix, it is much more convenient to use the

more general notion of an adjoint operator. Let us consider two (possibly
infinite-dimensional) linear spaces E and ¥, on which inner products, denoted < , > as
before, have been defined. Given a continuous linear operator L of E into F, there exists a
unique continuous linear operator L* of ¥ into E such that, for any two vectors U and V

belonging to E and F respectively, the following equality between inner products holds

<LU,V>=<U,L*V> (3.10)

L* is called the adjoint of L. If E and F have finite dimensions N and M respectively, and
are described by coordinates along orthogonal unitary vectors (U =(y;),j=1,...,N ; V=
i, k=1,..,M;L=(p),j=1,....,N,k=1,.., M), so that inner products take the

familiar form <u,u> = Zj U u'j , €q. (3.10) reduces to a change in the order of summation
indices
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%[gtljkuj]vk = JZUJ' [zk:ljkvk]

which shows that the matrix representing L* is the transpose of the matrix representing L.

In inner product notation, the first-order variation 87 resulting from a perturbation 6V of V

can be written

8] = <Vy].,0V> (3.11)

We can note that this relationship, which generalizes the finite-dimension relationship
8] = 2,(397/0vy) dvy , characterizes the gradient, in the sense that, if the first-order
variation 8] of a scalar function ] of some vector V can be written as the inner product of

3V with some vector, then that vector is necessarily equal to Vy/J.

With this more general system of notations, the relationship (3.5) between gradients can be
established as follows. Through uses of eq. (3.3) and of the "adjointness" relationship
(3.10), (3.11) becomes

8] = <VyJ ,KB8U> = <K' VyJ,8U >

The last equality, which eXpresses 87 as the inner product of 8U by the vector K™ VyJ,

shows that the gradient Vy;] is equal to the latter vector, which is what is stated by
eq. (3.5).

Use of equations such that (3.10) or (3.11) has two distinct advantages : it avoids
cumbersome manipulation of indices, and covers the case of infinite-dimensional function
spaces, which may be very instructive to consider, even in the context of discretized models.
In addition, the general definition (3.10) of an adjoint operator is sometimes very useful,
even at the coding level, for developing the adjoint of a numerical model.
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4. APPLICATION OF ADJOINT EQUATIONS TO VARIATIONAL
ASSIMILATION

4.1 General description
We will now describe in detail what the general adjoint approach described in the previous

Section becomes in the particular situation when one wants to determine the gradient of the

distance function ] (2.4) with respect to the initial condition Xy of the model integration
(2.1). As already mentioned, the input vector U will be the vector X, of initial condition,
while the output vector V will be the vector made up of the model-minus-observations
differences Hy(X;) - Z; (i=0,1, ..., n). In order to take advantage of the form of egs. (2.1)

and (2.4), we will not strictly follow the derivation of the preceding Section. In particular,
we will make repeated use of the adjointness relationship (3.10).

The analogue of the basic computation (3.1) is now made up of the integration of the model

equation (2.1), which we rewrite here

Xiy1= Xj+ At GXjp i=0,1,..,n-1 2.1)

followed by computation of the differences H;(X;) - Z; (i=0,1, ..., n). For a given
variation 8U of the model initial state at time Tq» the corresponding first-order variation of the

distance function ] is
8 =2, <Hi(Xp - Z;, H8X;> (4.1)

where, for each i, 6X is the first-order variation of X; resulting from 8U, and H'i is the
jacobian of the operator Hj, taken at point Xj. For each 1, 6X; is obtained from the initial

perturbation 8X = 8U by integrating from 7, to ; the equation obtained by formally

differentiating eq. (2.1), viz.
8Xir1 = 6X; +AtG', 8K i=0,1,..,n-1 (4.2)

where G/, is the jacobian of G, taken at point X;. Equation (4.2) is called the tangent linear

equation to (2.1), for the solution determined by the particular initial condition U under
consideration. The integration of (4.2) is to the integration of the basic equation (2.1) the
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same thing the linear perturbation computation (3.3) is to the basic computation (3.1). Except
of course when the basic equation (2.1) is itself linear, there is one tangent linear equation
(4.2) for each solution of (2.1). Also, in the same way eq. (2.1) is a discretized formi of eq.
(2.2), eq. (4.2) is a discretized form of the following equation

d oY '
o TR

(4.3)

obtained, for a given solution Y(t) of (2.2), by formally differentiating (2.2) with respect to

Y. At each time t, F', is the jacobian operator of F with respect to Y, taken at point Y(t).

Eq. (4.3) is the tangent linear equation to (2.2) for the solution Y(t).

The discretized tangent linear equation (4.2) integrates into
8X;= (I+AtG'L ) (I+AtGy) ... (I+AtG'y) 8Xy

After carrying this expression into (4.1) and making repeated use of the adjointness

relationship (3.10), one obtains

§) = <2 (I+AtGy™ .. (I+AtG*) H® (Hi(X)-Zy),8Xp> (4.4)

in which the adjoint jacobians of the observation and integration operators H and G appear

explicitly. By the general definition of a gradient, we see again that the gradient of ] with
respect to the model initial condition is equal to the first factor in the inner product of
eq. (4.4), viz.

V) = S (1+AtGYM o (1+ALG ™) HY (H(X)-Z) 4.5)
This gradient is the sum of n+1 terms, which are the respective gradients of the n+1 terms
making up the distance function (2.4). We are going to describe in some detail the exact
significance of the term of index i in (4.5), which is the gradient of the individual misfit J;

defined by eq. (2.3). To obtain this term, one first applies the adjoint H'i* of the observation

operator H; on the difference Hj(Xj) - Z;. In accordance with the general adjoint rule (3.5) for

17



gradients, the result is the gradient of the misfit J; with respect to the model state Xj at time
T;. This gradient is then multiplied by the operator I+ At G'i_l* , which leads to the gradient
of J, with respect to the model state at time 7;_;. Successive multiplications by I+ At G'i_z*,
wes T+ AL G'O* finally lead to the gradient with respect to the initial state X(. These

successive multiplications can be interpreted as a "backward integration”, from T; to T, of the

finite-difference equation
8.1 = 8% + AtGl 4" 8% (4.6)

started at time T; from 8'X; = H'* (Hi(X;) - Z;). Equation (4.6) is called the adjoint of the

tangent linear equation (4.2). Just as eq. (4.2) is a finite-difference approximation to eq.
(4.3), the adjoint equation (4.6) is a finite-difference approximation to

A8y 'k
-—— = F. &Y

4.7)

One could think, in view of the expression (4.5) for the gradient VUj, that n integrations of
the adjoint equation are necessary, starting from the times <., T,_y, ... , T; and all ending at
time T, The corresponding individual gradients obtained at time T would then have to be
added, together with the term H'O* (Hp(Xg) - Zg) corresponding to the misfit at time T, in
order to obtain the complete gradient V{;]. This is not so. Because of the linearity of the
adjoint equation (4.6), one integration is sufficient, from T to T, during which the quantity

H'* (Hi(X;) - Z;), which can be considered as a kind of "forcing term", is added at time T

to the current value of the adjoint variable 8'X. This is in agreement with the already made
remark that the numerical cost of an adjoint computation must be the same as the cost of one

(hypothetical) tangent linear integration.
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In summary, the gradient V{;] of the distance function ] with respect to the initial condition

U = Xy can be obtained, for given X, by performing the following operations

i) Starting from X, integrate the basic equation (2.1) from 1 to 7,,, and store in memory the

corresponding sequence of states X; (i =0, 1, ..., n) produced by the integration.

if) Starting from 8'X;, = H'|* (Hy(Xy) - Zy), integrate the "forced" adjoint equation

8X; = 8Xj1 + AtGY* 8%y + HY (HiX) -Zy
i=n-1,..,0 4.8)

backward in time from T, to 7. The final result 8'Xy is the gradient V{;J. The explicit

knowledge of the basic solution Xj is necessary in the adjoint integration in order to compute

the quantities G'i.1* and H',* (H;(Xy) - Z).

The exact nature of the adjoint equation (4.8) and the significance of the corresponding
backward integration may arouse some curiosity. It must be clear from the foregoing
developments that the adjoint integration is not a backward integration of either the basic

equation (2.1) or the tangent linear equation (4.2). The fields 8'X; produced at time T; by the
adjoint integration are neither physical fields at time T;, nor perturbations on physical fields at
time T;, but partial derivatives of the distance function (2.4) with respect to physical fields at

time Ti.

42 An example
In order to describe more precisely the nature and properties of the adjoint equation, we will

study in some detail the example of the one-dimensional nonlinear advective-diffusive
equation. We will place ourselves in a non-discretized setting. The theory of adjoint
equations has been developed above in the case of a discretized equation (2.1), but can be
developed as well in a non-discretized setting. This leads directly to the non-discretized
tangent linear and adjoint equations (4.3) and (4.7), but also requires the use of the
somewhat more abstract notions of inner products and gradients in infinite-dimensional
spaces. On the other hand, the simplicity of notations makes a number of properties of

adjoint equations more clearly apparent in the non-discretized case.
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The nonlinear one-dimensional advective-diffusive equation reads, in non-discretized form

2

Ju ) u du

Tt =V v>0
ox

4.9)

In this equation, u(x,t) is the scalar velocity, function of time t and of a one-dimensional
spatial coordinate x. The latter will be assumed to be periodic with period I. Eq. (4.9) is the
analogue of the basic equation (2.2), the analogue of the state vector Y(t) being now, for

given t, the one-dimensional field u(x,t), 0<x < /. The diffusion coefficient v is positive
and it is well known that integration of eq. (4.9) for increasing t constitutes a mathematically
well-posed problem, while integration for decreasing t constitutes an ill-posed problem. This
fact is of course the mathematical consequence of the irreversible character of the dissipative
effects represented by the right-hand side term in eq. (4.9).

For a given solution u(x,t) of eq. (4.9), the corresponding tangent linear equation, which is
the analogue of (4.3), is obtained by formally differentiating (4.9) with respect tou

2
0 6u 0 d ou
—a{—+a—x(u5u)=v ’
ox

(4.10)

In order to define the adjoint of eq. (4.10), it is first necessary to define an inner product for
velocity fields defined on the spatial domain 0 <x < /. An obvious choice is the L2 product

I
<up,Up> = fuluzdx
0

With this definition, the adjoint of the operator /0x can be obtained easily, as seen from the

following sequence of equalities
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in which integration by parts has been used together with the periodicity condition. The
result, according to the general definition (3.10) of an adjoint, is that the adjoint of 9/0x is

-0/0x. The operator d/0x, which is equal to the opposite of its own adjoint, is antisymmetric.

Similar computations show that the operator 0%/0x2 is self-adjoint, i.e. equal to its own
adjoint, while the adjoint of the operator du —  d(u du)/dx is the operator

8'u — -u 9(8'u)/ox. Carrying these results into (4.10) and using (4.7) lead to the adjoint
equation of (4.10)

2
_aﬁ'u_uaﬁ’u_ 0 d'u

Y
ot ox axz

(4.11)

It is seen that the dissipative term has not been modified but that, because of the minus sign
in front of the time derivative, it is now dissipative for integration into the past. This fact is
easily understandable. If a quantity is dissipated in time, its value at a given time t will

become less and less sensitive, as t increases, to its value at an initial time t. The quantity

produced by the corresponding adjoint integration must therefore decrease as the backward
integration proceeds.

This fact is quite general, and provides the answer to a natural question about the effect of
irreversible processes in adjoint equations. Whenever the basic direct equations contain terms
representing irreversibilities which allow only integration into the future, the corresponding
terms in the adjoint equation will also be "irreversible", but in the special sense that they will
allow only integration into the past. No problem can therefore arise, as long as one is
concerned with the existence and the integrability of the adjoint equation, because of the
presence of irreversibilities in the basic equation.

In order to give a better understanding of how adjoint equations can be derived in practice,
we will now assume that eq. (4.9) has been discretized in both space and time according to

the scheme
u.. _u.._ 1 u ._u._ . u i _2u.._1+u._1._1
joi+1l 7™ Yj,1-1 + ’3“(uj+1,i+uj,i+ uj—l,i) J+1i7 M- v j+1,i-1 ],12 J-1.i
2 At 2 Ax Ax”,

(4.12)
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where 1 is, as before, the time index, while j and Ax are the spatial index and increment
respectively (u;; = u (jAx, iAt) ). The particular form chosen for the discretization of the

advective term conserves the total kinetic energy Zj (uj,i)2, while the temporal discretization

(leapfrog for the advective term, Euler for the dissipative term) ensures stability of the
integration. It is seen that the value uj, at point j and time i+1 depends on the values at the

three points j-1, j, j+1 and at both times i-1 and 1.

For a given solution u; ; of (4.12), the corresponding tangent linear equation reads

81]-- —‘811--_ 1 u: s Ui
Lit+l 1,i-1 = (5u- . £ Su. .+ Sy . ) jHLiT Y-l
2 At AR L A /01
1 Su., q:-0u; q: du. q:1—20u;; +du, ;.
j+1 11 J+1,i-1 joi-1 J-1,1-1
+ — (uj+1,i+ uj’i+ uj—l,i) =V 2
3 2 Ax

Ax
(4.13)

which is a finite-difference approximation of (4.10). Several possibilities are at this stage
available for explicitly determining the adjoint equation of (4.13). We will take the one which
most closely follows the general description of the adjoint method given in Section 3.

Eq. (4.13), which can be considered as "centred"” at point (j,i), defines du; ;1 as a linear
combination of the six values Suj.g .1, 8ujj.1 > 84y i1 > OUjq,i» O35 DUy . We will
look for the equation which defines the adjoint quantity S'uj,i_l. The quantity du;; q appears

in the equations defining 8u;.1 j, 8u;;, i1 OUj.1 i+1, BYji41, BUj41 141, centred at points

(j-1,i-1), (,i-1), ... respectively. Because of the "transpose” character of the adjoint
equation, each of the six adjoint quantities 8'uj.; j, 8'vj;, ... will appear in the equation
defining S'uj,i_l, each of them with the same coefficient given to 8u; ;.1 in the respective

definitions of 8uj.y ;, 8u;, ... . For instance, du; ;.1 appears in the definition of Buj_1,;

(equation (4.13) centred at point (j-1, i-1)) with the coefficient

2 At [uj,i-l e S RS Sl SO + U521 ]
3 2 Ax 2 Ax
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The quantity 8'uj_1,i will therefore appear with that same coefficient in the definition of

8'uj,i_1. Identifying all coefficients and recombining terms finally lead to

S'u;.-0'u;

j.i- Joi+1 1 ) j.1 j-1.i 2 j+1,i j-1i
— = Ujpp — " - = Uil
2 At 6 Ax 3 2 Ax
1 O'Uj_*‘l’i'a'l,]j’i S’Llj-l,i+]_26|uj,i+1+ 8'uj+1,i+1
— Uil =V
, Ax 2
Ax
(4.14)

This equation is of course a finite-difference approximation of (4.11). It can be noted in
particular that the dissipative term remains dissipative, as in (4.11), for backward integration.
It can also be noted that (4.14) is by no means a "straightforward" finite-difference
approximation to (4.11). In particular, the basic solution u appears in (4.14) through values
at time i-1, while it appeared in (4.13) through values at time i. This fact shows that some
care must be exercised when derivating the adjoint of a given direct discretized equation.
Remark. We have ignored the (minor) additional difficulty that the three-level leapfrog
time-differencing scheme (4.12) must be initialized by a two-level scheme. This means that
the adjoint of that two-level scheme will have to be implemented at the end of the adjoint
integration (4.14). For additional information on that particular point, see, e.g., Appendix C
of Talagrand and Courtier (1987).

Let us now assume that an observation, denoted vy o has been performed on the u-field at

point (k,i), and that one wants to determine the gradient, with respect to the initial conditions
of (4.12), of the elementary misfit

1 2

] = 5 (ug,i - ki)

According to what has been explained in the previous subsection, one will have to integrate
the adjoint equation (4.14), starting from the "final" conditions 8'u; ;.1 = 0 for all s,

8'uj; = Oforj#k, and 8uy; =0)/0ugj=uy;- vy ;. If observations v ; are available at

several points in space and time, then, as already explained, one integration of (4.14) will
have to performed, in the course of which, at each point (k,i) in the space-time domain, the

quantity uy ;- Uy ; will have to be added to the currently computed quantity S'uk,i. And, if
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the available observations bear, not on the quantities uy ; themselves, but on quantities Z
which are functions of the uy ;'s, then, as also explained in the previous subsection, it will be

first necessary to apply on the model—minus-obéervations differences Z -Z the adjoint of the

corresponding observation operators. This will lead to the partial derivatives 07/duy ;, which
will then have to be fed into the adjoint integration (4.14). The adjoints of the observation
operators will have to be defined, from the equations defining those operators, through the
same logic which, starting from the basic equation (4.12), has led to the corresponding

adjoint equation (4.14). As a simple example, let us assume that an observation, which we
will denote z, has been performed on the u-field at time i, and spatial location  (k+Q)Ax,

0 <o < 1. We can take as the corresponding "observation operator” linear interpolation

between the gridpoints k and k+1. This gives for the "model analogue" z of the observation z
z = (1-0)ug;+0uy,); (4.15)

The corresponding misfit term is defined by 2] = (z - z )2, and the quantities to be
introduced in the adjoint integration at points (k, 1) and (k+1, i) are respectively

0)/0ug;=(1-0) (z-z)and 0)/ougy =z -2).

In thié example, the observation operator (4.15) is so simple (in particular, it is linear with
respect to the model variables) that applying its adjoint through the chain rule for
differentiation is absolutely elementary. A much less simple example is treated in Courtier
and Talagrand (1987). The model variables are there the spectral components of the vorticity
field, while the observations are point values of the geopotential. The corresponding

observation operator is the nonlinear balance equation.

5. . ADJOINT EQUATIONS AND LAGRANGE MULTIPLIERS

As explained in Section 2, variational assimilation can be considered as a constrained

minimization problem, in which the distance function (2.4)

n

)= 2

i=0

< Zi' Hi(Xi) s Zi' Hi(Xi) >

0o =

must be minimized under the constraint that the sequence of model states (X;)

(i=0,1, ..., n) satisfy the dynamical equation (2.1)
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Xi1 = X;+ At GX 3 i=0,1,..,01 @.1)

It has been mentioned that the adjoint equation can be obtained either (as has been done in
Section 4) by reducing the constraint (2.1) so as to keep the initial state X as the only

independent variable, or by using the general method of Lagrange multipliers. It is the latter
approach that we will describe now.

Eq. (2.1) expresses n vector constraints, each of dimension N. It is therefore convenient to

define the Lagrange multipliers as making up n vectors A; (i = 1, ..., n), each of dimension

N. The corresponding Lagrangian, which is a function of the n+1 model states X

(i=0,1,..., n) and of the n vector Lagrange multipliers A, (i = 1, ..., n) therefore reads

n

1

L =235 <HiX{)-Z, Hi(X;)-2; >
i=0

n :
- Z < Ai s Xi - Xi-l - At G(Xi-l) >
i=1
The constrained minimum is obtained by imposing that L be stationary with respect to all -
Xj's and Ai's. The condition of stationarity with respect to the Ai's restores the model

equation (2.1). As for the condition of stationarity with respect to the X;'s, let us first

consider the case 0 <1i < n. The first -order variation 6L of L resulting from a variation 6X;

of X; (i given) is equal to

8L=<H1(Xi)-Zi, H'i5X1> -<Ai,8Xi>+<Ai+1,(I+AtG'i) SXi>

which, after using the adjointness relationship (3.10) and reordering terms, becomes
8L =<- A+ A, +AG Ay +HY (Hi(X) -2y , 8>
L will be stationary with respect to X if and only if 8L is O for any 8X;, i.e. if and only if
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A= Ay +ALGY AL +HY (HX) - Z) (5.1)

In a similar way, stationarity with respect to X leads to the condition

A A Gof A +HY* (HyXp) -Zg) =0

which can be written
if Ay is now defined by extending (5.1) to i = 0. As for the condition for stationarity with

respect to A, it leads to

A= H* (HXp-Zpy) (5.2)

The condition for stationarity of L with respect to all the Xj's 1=0,1, ..., n) is therefore
that the sequence A; defined by (5.2) and by (5.1) fori=n-1, ..., 0 lead to Ay = 0. Now,
egs. (5.2) and (5.1) are identical with the "forced" adjoint equation (4.8), A, simply replacing
8'X;. The condition for stationarity is therefore that the adjoint solution take the value O at
time T This should certainly not be surprising since we already know that the value taken by
the adjoint solution at time T is the gradient of the distance function with respect to the

model state at T;. This gradient must of necessity be equal to 0 at the minimum. The

additional information here is that the adjoint solution coincides at the minimum with the

Lagrange multipliers.

Lagrange multipliers have been used by several authors in order to derive the adjoint
equations in the context of variational assimilation (Thacker and Long, 1988, O'Brien, pers.
com.). Lagrange multipliers can be used for instance for deriving eq. (4.14). The fact that the
Lagrange multipliers coincide with the adjoint solution at the minimum has interesting
consequences, which will not however, for lack of place, be discussed here. On the other
hand, it is not obvious from the Lagrange multiplier approach that the value taken by the
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adjoint solution at time T is always the gradient of the distance function with respect to the

model initial condition, whether the distance function is at its minimum or not. The proof of

this fact basically requires the development given here in Sections 3 and 4.

6. DISCUSSION AND CONCLUSION

Variational assimilation of meteorological observations, with explicit use of the adjoint of the

assimilating model, has been studied and used in the last few years by a number of authors
(see, e.g., Lewis and Derber, 1985, Courtier, 1987, Derber, 1987, Talagrand and Courtier,
1987, Courtier and Talagrand, 1987, Lorenc, 1988, and also the contributions by Lorenc
and Courtier in this volume). It has also been studied and used for the problem of
assimilation of oceanographical observations, which will in the coming years become a
problem of primary importance ( see, e.g., Schroter and Wunsch, 1986, Wunsch, 1987,
Thacker and Long, 1988). We also mention again the work of Hoffman (1986), who has
performed experiments of variational assimilation, but without using the adjoint model.

All experiments of variational assimilation have so far been performed on relatively simple,
small dimension models (N of the order of at most a few thousands), such as barotropic or
quasi-geostrophic models. The results obtained so far show that variational assimilation is
numerically successful, in the sense that the minimization process does converge to a
minimum of the distance function. As for the meteorological quality of the results,
minimization of a distance function which contains only misfit terms between model values
and observations stricto sensu leads to a model solution which contains an unrealistic amount
of noise, in the form of small scale and/or gravity wave motions. This difficulty can be
satisfactorily solved By adding to the distance function one or several terms which measure
the amount of noise. The presence of such terms, called penalty terms in the general theory of
optimization, imposes that the minimizing solution must contain only a small amount of
noise. The results obtained by several authors with penalty terms are meteorologically
realistic and seem by all standards to be as good as one can expect from the relatively simple
models used so far. Lorenc (1988), who has performed variational asssimilation experiments
with a one-dimensional model containing a hydraulic jump ( a "front") has found that the
jump was reconstructed by variational assimilation with a much better accuracy than by
optimal interpolation. This is so because the model equation (2.1) is imposed in variational
assimilation as a constraint which must be exactly satisfied by the fields produced by the

assimilation.

The necessity of adding appropriate penalty terms to the distance function directly points to a
basic question. How to exactly define the distance function to be minimized? The numerical

results obtained so far suggest that the choices made in the definition of the distance function
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have been reasonable, but it is nonetheless necessary to try and identify rational grounds on
which to define the distance function. This is a vast problem, for the solution of which one
theoretical result can be extremely useful. This result is the basic equivalence between
statistical linear estimation and one particular form of variational estimation. Statistical linear
estimation, of which optimal interpolation is one example, takes as estimate of a given
quantity x the linear combination of the observations which best fits x in the mean square
statistical sense. In the case of a system whose temporal evolution is governed by a linear
equation, statistical linear estimation extends to the temporal dimension under the form of
Kalman filtering (see, e.g., Ghil et al., 1981). Kalman filtering is a sequential estimation
process, whose output at the end of the assimilation is the best linear combination of all the
available observations. Still in the case of linear dynamics, the forecast produced from the
result of a Kalman assimilation will be the best statistical estimate of the future evolution of
the system. The general equivalence between statistical and variational estimation is that
statistical estimation produces the same result as the minimization of a distance function
defined as the sum of model-minus-observations squared differences, weighted by the
inverse of the statistical variances of the corresponding observational errors. The distance
function defined by (2.4) is an example of such a sum of squared differences provided that
the variances of the observational errors are included in the definition of the inner products
appearing in (2.4). Indeed, all authors who have made experiments on variational
assimilation have weighted the various terms making up the distance function which
coefficients reflecting the estimated accuracy of the observations. The question of whether the
linear approximation for the temporal evolution of the forecast error is legitimate, although of
great interest, will not be discussed here (see Lacarra and Talagrand, 1988, and Lorenc,
1988, for various aspects of this question). But we will stress the fact that the general
equivalence between statistical and variational estimation provides a systematic approach for
the definition of the distance function. All observations must be introduced in a
model-minus-observation squared difference weighted by the inverse variance of the
corresponding observational error. If observational errors associated with different
observations are statistically correlated, it is then the inverse of the variance-covariance matrix
of observational errors which must be used in the definition of the distance function. This
simple logic applies, not only to observations stricto sensu, but more generally to all the
available information, provided this information is available in numerical form and with an
estimate of the corresponding uncertainty. We will take as an example the penalty terms
which must be introduced in order to ensure that the minimizing solution is free of unrealistic
noise. Such terms, which measure the quadratic norm of the noise, can be described as
quadratic misfits to fictitious "observations" that the amount of noise is equal to zero (see also
Thacker, 1988). In this sense, variational assimilation provides a systematic and logical
approach for using all the available information in a consistent way, each particular piece of

information being weighted with its own intrinsic accuracy. The generality and consistency
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of this approach have far-reaching implications. It may happen for instance that the
observation operators H in eq. (2.3) are themselves not very accurate. The corresponding
uncertainty can be introduced in the definition of the distance function by noting from (2.3)
that what really matters is not the accuracy with which the observation Z fits the the real value
of the corresponding meteorological parameter, but the accuracy with which Z fits the model
value H(X). The error on the observation operators must therefore be included in the weight
given in the distance function to the square of the difference H(X) - Z. And there will be
situations where the error on the observation operator will be much larger than the error on
the observation itself.

Variational assimilation thus provides a very systematic and general approach for treating in a
logical and consistent way all the available information. At the same time, it points out to
what the problem of assimilation intrinsically is. It is the problem of estimating as accurately
as possible, using all the available information, the state of the atmospheric flow at a givén
time (or at a succession of given times). Seen in this perspective, the problem of assimilation

takes a new significance which will certainly be useful for future developments.

If variational assimilation possesses a number of attractive qualities, there nevertheles remain
problems, both theoretical (how to introduce the fact that the model, which has here been
implicitly assumed to be perfect, will in fact never be perfect?) and practical (the numerical
cost of variational assimilation is at present too high for operational use). Also, a systematic
comparison between variational asiimilation and squential statistical linear estimation remains
to be done. All these problems, which will not be discussed here, are the subjects of active

research.
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