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SUMMARY: Some practical problems in objective analysis for
numerical weather prediction are best solved by using nonlinear
analysis equations. They include the existence of nonlinear
prior constraints on the analysis,; and the use of observations
which are nonlinearly related to the analysis parameters, or
which have non-Gaussian erfor distributions. The behavior of
nonlinear analysis equations is demonstrated with a simple
one~dimensional shallow-water model. It is shown that
time—tendency information, and indirect observations such as
wind speed, or the movement of a tracer; can be used in the
analysis. The resulting forecasts are better than those made
from an analysis from a traditional analysis—forecast cycle.
The nonlinear method is shown to be capable of "moving" a
discontinuity similar to a front,; to fit observations definingv
its position; thus giving an analysis with more detail than
Qould be expected from the spatial resolution of the
observations. The incorporation of additional ronlinear
constraints, such as that used in initialization, is
demonstrated. The method can be used to effectively reject
observations with gross errors,; by specifying a non-Gaussian
error distribution. However this generates multiple minima
which complicate the search for the best analysis, so the
complex decision taking algorithms associated with other

methods of qQuality control are not avoided.

1. INTRODUCTION

This paper is based on work published in Lorenc (1988a).
Theoretical justifications and details of methods are given
theres and in Lorenc (1986). The iterative solution methods
used are also discussed in Lorenc (1988b). Here we concentrate

on meteorological interpretation of results.
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Most methods of objective analysis in use for meteorological
data are linear in the observed data values.-That iss each
analysed value x@[jj can be written as a linear combination of
the data values y.[il; this is usually done in terms of

deviations from background values Xm[jl and y,Lil:

%l §1=%eLjl+ » WEjsil (yalil-ynlil) (1)
i .

(1) is linear if the weights W[j;il] are independent of the
actual observed values y.s but depend only on their positions
and‘accuracies. This is true of least-squares fitting |
techniques,s; of the successive—-correction method, and of optimal
interpolation. B8Such equations are optimal if the error
distributions of both observations and of any background fields
are Gaussian,; prior constraints and relationships describing
the desired analysis are linear, and the relationships between
analysed and observed variables are linear (Lorenc 1986). Such
assumptions lead to a variational problem with a quédratic
penalty function.

Many of the problems currently of interest in meteorological.
gbjective analysis for numerical weather prediction (NWP) do
not fit these assumptions. These problems include :-

a. Four—-dimensional analysis contrained by nonlinear
prognostic equationss to use time-tendency information from
observations.

b. Use of "indirect" observations, with a nonlinear
relationship between observed parameters and those analysed.

c. Analysis of near—discontinuities, such as fronts, which
can be regarded as a strong nonlinear coupling befween spatial

scales in the atmosphere.

d. Multivariate analysis, subject to nonlinear balance
constraints. »
e. Quality control of observations, and use of data whose

error distributions are known to be non—-Gaussian.

The non—quadratic variational problem which results is inen in
section 2. It can be solved iteratively, using the methods
described in Lorenc (1988b), although practical meteorological

problems are usually so large that approximations have to be

72



made. In order to study the full nonlihear optimal equation,
we apply it to a simple one—-dimensional nonlinear shallow-water
equation model, described in sectiaon 3. The initial conditions
used are such that a hydraulic jump develops; this is about the
simplest system that simulates some of the features of
atmospheric fronts, and with it we can study all the problems
(a) to (e) listed above. This is done in section 4, referring
each example to analagous_practical problems. It is shown that
all of the examples can be solved using the optimal nonlinear
analysis equation, so that, in principle at least, the

practical problems are capable af solution.

2. NONLINEAR ANALYSIS EQUATION
It is shown in Lorenc (1988a) that the optimal analysis is

obtained by minimizing a penalty function J given by:
J = —1In(Par(K{X)=ya)) ~1In(Py (x—Xw)) (2)

£ is the generalized interpolation operator which relates
analysis variables x to aobserved variables y. Pur is the
observational and representativeness error distribution
function, and P, 1s the background error distrithion functiong
if these are Gaussian the equation reduces to the form given in
(1) of Lorenc (1988b). This was solved for this work using

conjugate—gradient and Newton descent algorithms.

3. EXPERIMENTAL SYSTEM

In order to study the behavior of the nonlinear analysis
equations in an ideal situations; we choose a simple system
where the prediction model; its adjoint, and the background and
observational error distributions can be known exactly. A
one-dimensional finite-difference model of the shallow-water
equations is used as a strong constraint on the permitted
space— and time-values. Thus we can reduce thé analysis
problem to that of finding the initial conditions for this
model whichs, when forecast with the model equations, best fit
the observations "and other constréints. Initialized from
smooth initial conditions which are known to generate a

hydraulic jumps the model is first integrated forward to

73



generate a "truth". Background and observational error
covariances are defined, and a background andlobservations are
calculated by adding‘pseudo—random numbers consistentbwith
these. Thus all of the results fall into the class of
"identical—-twin" experiments.

The one—-dimensional shallow-water equations with rotation are
used in the flux form given by Parrett and Cullen (1984 egn.B8),
who showed that these equations are suitable for simulating a
hydraglic jump. The initial conditions, taken from their
equation @, are smooth, but for the parameters chosen develop a
hydréulic jump. - |

Cyclic boundary conditions are used in spaces with resolution
128, and the model is integrated until (non-dimensional) time
T=2.8s; which is long enough for the hydraulic jump to develop
and propagate nearly across the domain.

All variables were given the same background error
auto—correlation; shown in Fig.l. Cross correlations were
assumed to be zero. Observational errors were assumed to be
random and Gaussiany; with variance .0025 of that of the same

variable in the background.

4. RESULTS AND METEOROLOGICAL INTERPRETATION.

In this section we present and discuss optimal nonlinear
analyses obtained by minimizing (2) for the system described in
section 3. Our object is to demonstrate what is theoretically
achievable in an ideal situation. Results are discussed in 3
sub—-sections, corresponding to the 5 meteorological analysis
problems listed in the introduction. The experiments performed

are listed in Table.l and Table.2.

4a. Four—dimensional data assimilation

Four—-dimensional data assimilation can be defined to be the
use of a four—dimensional distribution of observations,
together with a constraint on the resulting four-dimensional
analysis that its‘evolution in time should satisfy known
prognostic equations,; as embodied in a forecast model (Lorenc
1986). Bince forecast models are not perfect, the latter
constraint should not be strictly enforced. Practical

implementation of such a scheme is severely limited by
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Fig.1. Horizontal correlation of error of background wb used in
experiments. Cross-correlations between variables were assumed to be

zero. All wvariables had the same auto-correlation.
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available computer resources. The storage and manipulation of
high-resolution four—-dimensional analyses requires many more
resources than running an NWP forecast model, which only
manipulates three—-dimensional fields. ’

The traditional NWP method of approximating four—-dimensional
data assimilation is the analysis—forecast cycley, in which
Dbservations are inserted using a purely three-dimensional
analysis procedure into a- ’background’ forecast from the
results of the previous analysis. This method does allow for
the imperfections of the forecast model; an estimated ‘
background error is used to calculate the observation weights
in statistical analysis methods such as 0I. However it does
not properly use time-tendency information in the observations,
since observations from different times are not analysed
together.

If the prognostic equations are applied as a strong
constraint as in section 2c; then some of the computational
difficulties can be avoided through a reduction of tﬁe cantrol -
variable. The four—-dimensional analysis is defined by a
three—-dimensional initial field plus the prognostic equations, -
and {(except for the current estimate x.) four—-dimensional
fields need not be stored and manipulated, while still
obtaining an optimal four—-dimensional use of observational
information. However this does not allow for inaccuracies in
the forecast model over the period of the observations used.

This work combines the latter *strong constraint’ approach
for a short time-period, with the traditional analysis—-forecast
cycle approach, so that time-tendency observations within this
periad can be used optimally, while information from earlier
observations can be used without assuming that the forecast
model is perfect. Thus while it is not truly optimal in its
application of imperfect prognostic const}aints, it does match
well the operational NWP requirement of providing initial
conditions for a forecast, using the last analysis and
observations valid‘during the period since the last analysis
was made. |

Fig.2 shows the height field at time T=0 from experiments to
illustrate this. In this and most subsequent figures the

fields are plotted as solid lines, the "truth" from which
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Table 1. Experiments described in sections 4a to 4d.
Curves in Fig.2 to Fig.10 are labelled with Expt.

Observations were either equally distributed in space at

time, or equally distributed in time at one position.
Experiments used a space grid of 128 points.

each
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35 h at T=0.0
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Description

baseline aptimal nonlinear analysis.

analysis—-forecast cycle:

linear analysis at T=0

linear analysis at T=1.4, using a background
forecast from expt B. '

optimal nonlinear analysis.

linear analysis at T=1.4, using a background
forecast from the T=0 background.

optimal nonlinear analysis of observations
of wind-speed squared 5 = (UxU + V#V)/h*h.

optimal nonlinear analysis of observations
of a tracer V (with Coriolis parameter = 0).

analysis-forecast cycle:

linear analysis at T=0

linear analysis at T=1.4 using VB as background,
of a tracer V (with Coriolis parameter = 0).

optimal nonlinear analysis.

optimal nonlinear analysis, with additional
penalty on rapid variations.
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Fig.2. Height fields, plotted at time T=0.0. Curves for each
experiment are displaced. Each curve has the corresponding curve from
the “truth" shown dotted, and the observations used shown as ¥, with
the height of the x showing & times the observational error anag the
width showing the horizontal gridlength. Graduation marks on the
vertical scale are separated by one. unit of (non-dimensional) h.
Evxperiments shown are listed in table 1.
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observations were generated as dotted lines, and observed
values as asterisks whose height covers six times the
observational error standard deviation, and whose width covers
one model gridlength. ' The bottom curve in Fig.2 shows the
background fields which in practice would come from a forecast
from earlier analyses. The bottom curve in Fig.3 and Fig.4
shows a forecast from this background at T=1.4 and T=2.8, with
. the corresponding "true" field for comparison. To simulate the
current operation situations; with most observations at main
synoptic hours, we assume a uniform space-distribution of’
cbserQations at T=0 and T=1.4. For simplicity of presentafion
we only use height obsevations for the first experiments. The
curves labelled A in Fig.2 and Fig.3 show the optimal nonlinear
analysis obtained using these observations. Fig.4 shows
forecasts valid at T=2.8 which can be used to judge the extent
that the information has been assimilated into the model.
Experiments B and C together used the same observations in an
analysis—forecast cycle. The curve labelled B in these Fig.2
shows the optimal analysis using only the observations
available at T=0. With the covariances we

have assumed,; this is equivalent to a univariate 0I of the
height field at T=0, not altering the background winds.
Forecasts from this are clearly inferior to experiment A.
Experiment C used the forecast valid at T=1.4 from experiment B
as background for an analysis,; in space only, of the
observations available at this time. The error covariances
valid for the background at time T=0, were also used for the
forecast errors. Experiment C is a%so clearly inferior to
experiment A. At T=2.8 the hydraulic jump is as badly
positioned as in the background, while experiment A has both
the position and shape more nearly correct.

For some modern observing systems, observations are not at
all synoptic, but rather spread evenly in time. Satellite
temperature soundings were the first important example of thisj
an important exampie in the future will be fixed "profilers",
giving a detailed time-history of the atmospheric profilé at a
few horizontal locations. Experiment T demonstrates that our
method can make optimal use of such observations. To simulate

a single profiler we generate u- and v-momentum observations
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Fig.3. As Fig.2 for T=1.4.
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Fig.4. As Fig.2 for T=2.8.

81



equally distributed in time at a point in thelmiddle of aur
horizontal domain. Fig.5 shows the u—momentum observations,
and the time~evolutidn of the analysis at that point hade using
them. We can see clearly, near T=1.4, the passage through the
observation position of the hydraulic jump. Since it is a
propagating system it should be possible to deduce the
Horizontal structure of the jump near the profiler from this
information. Examination of curve T in Fig.2 shows that this

has indeed been done.

4b. Use aof "indirect" observations.

Early experiments in four—-dimensional data assimilation used
rather ad hoc modifications of the "direct insertion" method,
whereby observations were inserted into the forecast model
state at and near their valid position and time. Using this
method it is not clear how to use observations not directly
related to model variables; observations are transformed to
model variables before being inserted. If the objective
analysis is itself couched as an inverse problem, with the
transformation K from model space to observation space
explicitly considered, then prior inversion is ne longer
necessary. As long as estimates of the observed parameters can
be calculated from the model using a well-behaved
differentiable function K, the observations can be used in the
analysis.

As an example of such a systems; we simulate in experiment S
observations of wind speed without direction information. We
assume that observations are of parameter s, which_can be
calculated from the basic model parameters height h, and

momentum components U and V by:
s = (U® + V=) / h#®

This, together with the space- and time—interpolation from the
nearest model points, constitutes our generalized interpolation
operator K. It is clearly nonlinear, particularly near-the
hydraulic jump wﬁere h can become very small. However its
differential K is well defined, since h is constrained to be

always greater than zeros and an optimal analysis should exist.
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Fig.95. As Fig.2 for U at the centre of the grid, plotted againfst.

tima.
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Observations of s are distributed for experiment S5 at the same
positions as the h observations of experiment A. Fig.6 and
Fig.7 show that the aﬁalysis from experiment S fits these data
closelys more so than that from experiment A. Although the
experiment S analysis does not reproduce the detailed structure
of the jump at T=1.4 as well as experiment A (Fig.3), it does
give a better prediction of the jump’s position and structure
at T=2.B (Fig.4).

Another type of data, used in subjective analyses and
forecgsts, but not useful in conventional updating data
assimilation methods,; is tracer information. A time-series of
observations of a parameter advected by the wind field provides
information about the wind field as well as about the advected
field. We can simulate this in our simple model by setting the
Coriolis parameter to zero, uncoupling V from h and U, and
using V as a tracer. Fig.B8 and Fig.? show experiments with
this system. In experiment VA, the full adjoint technique is
used to modify h U and V to obtain the best fit to tﬁe Vv
observations. In experiments VB and VC, h and U are kept at
their background values, and an analysis—forecast cycle (as in
experiments B and C) is used to update the V field. Useful
corrections to the advecting velocity are made in experiment
VA, so that its forecast V field at T=2.8 is better than that
of experiment VC (Fig.10).

4c. Analysis of discontinuities and fronts.

For many years human analysts have had conceptual models of
fronts, and have fitted these to rather sparse data; producing
analyses with detailed structure such as sharp windshears, even
when these were not well resolved by the observations. This
process is nonlinear; the use the analyst makes of an
observation depends on what he believes tHe meteorological
situation to be, based in part on the observation value.
Attempts to formalize such conceptual models and automate this
analysis process héve not been very successful. However'we now
have high-resolution NWP models which generate naturally very
realistic lonking\frontal structures. These forecast models
might be able to replace the conceptual models in a nonlinear

analysis scheme; to produce analyses which are consistent both
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Fig.&. As Fig.2 for wind speed squared at T=0.0.
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WIND SPEED SQUARED AT T=1.4
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Fig.7. As Fiqg.2 for wind speed squared at.T=1.4.
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Fig.8. As Fig.2 {br V at T=0.0, from experiments with zero Coriolis

parameter, so that V was a simple tracer.
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with the observations and with the model’s dynamics. Given a
background with a front somewhat misplaceds a human analyst
will move it to fit aQailable observations, while keeping
basically the same structure. A linear analysis scheme like
(1) cannot do this, as illustrated in Fig.3 curve E, which
shows a linear, space-only, analysis of the observations at
T¥1.4 using the background shown in the bottom curve. The
linear analysis has put a jump near the correct position,
however its structure is incorrect, and '"shadows" remain of
jumps in incorrect positions in the background field. This can
be compared with the nonlinear analysis shown in curve D, which
used the same observations, but did a space- and time—analysis
using as background the bottom curve in Fig.2. The nonlinear
method has moved the hydraulic jump at T=1.4 to fit the data,
while keeping its structure. Indeed this analysis is better
than that from the analysis-forecast cycle (€C); which used,
linearly, twice as many observations. The beneficial nonlinear
use of observations in experiment D comes from the uée of the
nonlinear forecast model to link T=0 with T=1.4. We still
assume that errors at T=0 are large-scale and there is no
coupling of scales. The method only gives an improvement in
the analysis at T=1.4 insaofar as the small scales at that time
are determined by the larger scales at T=0. This is true for
our chosen example; it is also probably true to a large extent
for atmospheric fronts, whose position and structure depend on

the larger_.scale forcing.

4d. Balance constraints, initialization.

We could incorporate a geostrophic balance constraint on the
deviations of the analysis from the background. Such a
constraint is linear; and only constrains the total analysis
field if the background is itself balancea. It is sometimes
desirable to incorporate a nonlinear constraint on the total
analysis into the Qnalysis process. BSuch a constraint can be
justified if we have prior knowledge that the atmosphere is
usually slowly varying. NWP models, if integrated for a
sufficiently long‘time, also have this propérty. However since
we are only using the model as a strong constraint over a short

time—-period,; for which the model will also allaow rapidly
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varying gravity-wave modess we must use other means to enforce
the constraint. The simplest way is to add a‘penalty term
which penalizes rapid.variations. In order to have tHe same
effect as nonlinear initialization, we implement this penalty
on the time derivatives calculated by the NWP model during its
first timestep at T=0. Experiment TIN incorporated such a
pénalty, with other details identical to experiment T. In
current operational schemes a nonlinear initialization is often
applied after the analysis is complete. This can significantly
decrease the closeness of fit to the observations. We see in
Fig.5 that experiment TIN has fitted the observations as
closely as experiment T, while causing a slight reduction (not
easily visible on the scale of Fig.3) in the initial rapid
variation in U. Errors relative to the "true" field still
exist in the large scale h field (Fig.3), since this is defined
neither by the observations nor by the constraint, but the
spurious jumps introduced by the background,; and not altered
except in position in experiment T, have been reduced by the
initialization constraint. This causes the forecast structure

at T=2.8 to be better (Fig.4).

4e. Non—-Gaussian observational errors and quality control.
Unfortunately the observations available for routine NWP
occasionally deviate by a large amount from the true value,
because of gross error,; either humans or in the instrument or
communication system. Many more such errors occur than would
be expected from the Gaussian distribution which describes the
majority of errors. Traditionally such data are searched for
and eliminated during a preliminary quality control step.
Purser (1984) suggested that an alternative approach would be
to consider the non-Gaussian error distribution directly in the
analysis. A simple model for the distribution of graoss errors
has been put forward and tested by Lorenc and Hammon (1988).
They postulated that there was a small probability of a gross
error event occurring, and if it did occur the observed value
had no useful information, but was equally likely to be ény
value within a rénge of plausible values. Fig.ll shows the
penalty function for a single observation of this type by

In(l+g))s with the equivalent guadratic penalty function for a
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Fig.1l1. Solid line: quadratic (L2) penalty function for a single
observation, plotted against the normalized deviation
dylil/sqrt(0Clil). Dashed line: the equivalent penalty function
derived assuming that the observation has a 3% chance of being useless
because af a gross error.
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pure Gaussian distribution for comparison. Near the observed
value the functions are identical. However férther away the
new function asymptotésrto a plateau value, rather than
continuing to increase. This has very important consequences
for the total penalty function, since it makes the existence of
multiple local minima much more likely. Our iterative
minimization algorithms are designed to find any minimum,
rather than the smallest, so they are therefore much less
likely to find the most likely analysis.

Experiments illustrating this are shown in Fig.l12 and
Fig.lé, and listed in Table.2. Particularly when using a'
non—Gaussian observational error probability distribution, the
minimum located by the iterative solution method depends
greatly on the first guess used to start the iteration. Thus
experiment AR fitted very few of the data, finding a local
minimum near to its first guesss which was the background.

This can be compared with experiment AGA,; which found a lower
minimum near the analysis of experiment A, fitting all the
data. When one of the data values was arbitrarily increased by
0.5s to simulate a gross ervrors then starting from experiment A
as firet guess the datum was rejected while others were fitted
(experiment ARGA in Fig.13). This is the result we might hope
for from an ideal scheme. However the analysis (not shown)
starting from the background field, fitted as few data as
experiment AR. Meoreover the '"bad" datum we generated was not
completely implausible; experiment AG fitted 1t by moving the
nearby peak in the background field. Starting with this
analysis as first guess,; experiment ARGAG continued to fit the
"bad" datums; rejecting its neighbours instead. Thé minimum
found in experiment AQGGA was lowest of those shown, but a more
complex search algorithm would be necessary to be sure it was
the absolute minimum. It is clear that sﬁmply using a
non—Gaussian penalty function does not relieve us from the need
for complex logic and decision taking algorithms associated

with traditional qﬁality cantrol methods.
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Table 2. Experiments described in sections 4e.
Curves in Fig.12 & Fig.13 are labelled with Expt.
’ 35 h observations were equally distributed in space
at T=0.0 and at T=1.4, as in experiment A.
Experiments used a space grid of 128 points.

Expt.d Por erroneous datai First-guess

A 4§ Gaussian 0 background

A non-Gaussian 0 background

ARA 7§ non-Gaussian 0 analysis from A
AG Gaussian 1 at T=1.4 background

ARGA non—-Gaussian 1 at T=1.4 analysis from A
ARGAG] non-Gaussian 1 at T=1.4 analysis from AG
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Fig.12. As Fig.2 feor quality control experiments listed in Table.?2.

Non-Gaussian error distributions =2 0 in label. A gross error => G in

1abel. Analysis used as first guess indicated at end of label.:
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Fig.13. As Fig.3 for quality control experiments liéted in Table.2Z.

Non—~Gaussian error distributions => @ in label. A gross error => G in
label. Analysis used as first guess indicated at end of label.
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6. DISCUSSION

.We have presented examples of the solutioﬁ of analysis
equations which are nonlinear in the data values. Tﬁat is, the
weights given to observations depend on the analysed fields,
not just on their positions and accuracy.

We demonstrated that:-

a. The nonlinear analysis method is able to use time—-tendency
information from observations better than the analysis—forecast
cycle method which is normally used for data assimilatidnf It
could also convert a time-sequence of data from a single
observation location into useful information about the spatial

structure of the field.

b. The data used in the analysis do not have to be
transformed to the analysed parameters; it is only necessary to
have a known method for calculation the observed parameters
fram those analysed. Thus observations of wind speéd, without
direction information, can be used, as can information about

the advection of a tracer.

c. If the forecast model generates realistic structures for
features like fronts, then the nonlinear method is capable of
"moving" such a feature in the first-guess to fit the available
data, even if the data do not resolve all the details of the
feature. The resulting analysis is thus more detailed than a
scale analysis of the abservational distribution alone would

lead one to expect.

d. An additional constraint, that the nonlinear evolution of
the analysed field should be slow, can be incorporated as part
of the analysis process. This improves the evolution of the
subsequent forecast from the analysis, without greatly reducing

the fit of the analysis to the observations.

e. Observations which are more likely to have large errors
than would be expected from a normal distribution of
instrumental errors, can be allowed for by specifying an

appropriate non-Gaussian error distribution. If we make the

97



reasonable assumption that observations with such grosé errors
contain no useful information, tﬁen a limit is placed on the
penalty function beihg minimized. This generates "piateau"
regionss and greatly increases the difficulties in finding the
best analysis if we do not have an accurate first-guess. Thus
the complex logic required for a comprehensive qual&ty control
is not avoided. However, given a reasonable first-guess; the

method does effectively ignore erroneous data.
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