Software Environments for Scientific Modelling
on Parallel Computers: Summary of the Dis-
cussion

TUOMO KAURANNE

FEuropean Centre for Medium-range Weather Forecasts, Shinfield Park, Reading,
Berkshire RG2 9AX, United Kingdom

1 Introduction

The previous three ECMWF Workshops on the Use of Multiprocessors in
Meteorology have discussed the problems presented by implementing atmo-
spheric models on parallel computers. One of the principal conclusions has
been that most of the problems posed by the hardware and by the paral-
lelization of algorithms seem surmountable, whereas the status of software
environments for parallel computers still leaves much to be desired. Pro-
gramming tools for distributed memory parallel computers are particularly
inadequate.

It was therefore deemed appropriate to lay emphasis in the fourth work-
shop on programming aspects of massively parallel, distributed memory com-
puters. It seems that this particular computer type is the most likely candi-
date to become the paradigmatic supercomputer of the late 1990’s, the same
way as the vector processor became the first specialized supercomputer in
the late 1970’s.

The public discussion that concluded the workshop dwelt also on hardware
and operability issues, in addition to various aspects of software problems on
massively parallel computers. The participants represented a very wide spec-
trum of interests, including operational weather forecasting, climatological
research, particle physics research, research in parallel algorithms, research

278



in parallel languages and parallel computer manufacturing.

2 User requirements

The meteorological users are facing a difficult dilemma. On the one hand,
there is a strong need for substantially more computing power than is avail-
able on present supercomputers. An estimate of performance requirements
in weather forecasting and climatology was presented. According to this
estimate, meteorological and climatological simulations would need a sus-
tained performance of 700 Gflop/s by 1994-1995. It represents a factor of
one hundred over fastest existing supercomputers,

On the other hand, existing model codes represent considerable capital in-
vestment for the forecasting and research centres. Model codes will generally
outlive supercomputers. Therefore, radical recoding to implement a model
on a particular supercomputer is very undesirable. An estimate put forward
in the discussion was that there must be convincing evidence of a ten-fold
gain in sustained performance from massively parallel supercomputers over
vector supercomputers before forecasting centres get interested in starting to
convert their operational codes onto novel computers.

The inevitable capitalization on forecasting systems goes beyond mere
programming concerns. ECMWF disseminates almost 3000 products a day,
straining heavily the operational and communication capacities of supercom-
puter systems. It is also difficult to predict the nature of forecasting systems -
as well as the state of the supercomputer industry - more than 10 years ahead,
making very long term plans meaningless. Radical changes in the comput-
ing environment also imply losses of economy in system maintenance and
staff allocation. The centres would ideally want to concentrate exclusively
on weather forecasting and on research, with a minimum of involvement in
computer wizardry. Since climatological models require a finer granularity of
parallelism than weather models, because of a lower spatial resolution, code
level problems posed by massively parallel computing in climatology appear
to be even more pronounced than those in forecasting.

A necessary prerequisite to bring at least some continuity into the process
of adopting massively parallel computers into atmospheric modelling would
be the executability - albeit with a low efficiency - of existing model codes on
novel computers. This would at least provide a bottom line from which to

279



start working upwards, instead of a total jump into the dark when starting
the migration effort.

3 Performance expectations

Substantial improvements in supercomputer performance are expected to be
achieved at a brisk pace. It is believed that supercomputers with 20 Gflop/s
peak performance will be available in 1991-1992, whereas the years 1993-1995
should see the emergence of supercomputers with a peak performance in the
100-200 Gflop/s range. But this kind of performance will not be achieved
on all applications. Whenever the cost of performance is a critical issue,
low communication algorithms become mandatory, since global communica-
tion bandwidth is very expensive on ultrafast supercomputers. Employing
low communication algorithms requires a "model engine” approach to super-
computing. In this approach, massively parallel computers are dedicated to
running a single or at most a few model codes.

It seems therefore that massively parallel supercomputers are initially
more likely to be employed as back end computing servers than in standalone
configurations. On the other hand, a slow front-end is a poor companion to a
powerful supercomputer; the front-end will also have to be reasonably pow-
erful, possibly in the same class as present vector supercomputers.

It was also suggested that general purpose massively parallel computers
and, in particular, very competent general purpose parallc! compilers would
be feasible in the long term. This prospect was not unanimously accepted.
There was general agreement, though, that 700 Gflop/s by 1995 would not
be feasible without massively parallel computing.

4 Benchmarks

Some other fields in computational fluid dynamics - such as aerospace engi-
neering - have some widely recognized benchmark codes. This is not the case
in meteorological supercomputing, despite a definite need for such.
Massively parallel computer manufacturers find it unfair that the very
next step from Linpack-type simple benchmarks up is often a full model
code presented as a mandatory requirement in supercomputer acquisitions.

280



On the other hand, accepting supercomputers on the basis of any single
simplified meteorological benchmark would imply many problems for opera-
tional forecasting centres. Among these problems are the differing opinions
among the forecasting centres about what kernels are important. The rep-
resentativeness of simple codes is heavily dependent on architecture: novel
architectures create novel bottlenecks. Benchmarking methodologies vary.
And, finally, it is virtually impossible to base supercomputer purchase in
an operational environment on simplified benchmarks alone; there has to be
guaranteed performance levels for the operational model. -

It is difficult for operational users to invest in novel hardware. Some cen-
tres, especially those with a research mission, can upgrade their computing
facilities in a piecemeal fashion. The very big centres like CERN even inte-
grate hardware components to construct their own supercomputers, as does
one meteorological research centre (Wisconsin). For most meteorological re-
search institutions, however, constructing their own computers would move
a great deal of limited staff resources out of focus and consequently such en-
deavours are difficult to finance. Big research centres can have several teams
out simultaneously with a mission to plan for future local computing envi-
ronments. The time scopes of these teams may vary between two and twenty
years. Forecasting centres can afford to have at most two teams, both with
a temporal focus not exceeding five years.

Nevertheless, it was felt that a basis for collaboration between users and
vendors could be found in the benchmarking field. If experimental hardware
procurement is a problem, computer manufacturers can provide important
users with access to hardware. Users, on the other hand, would contribute
a man-power investment towards making a set of relevant benchmarks run
on novel computers. These benchmarks would be agreed between major
meteorological research centres and would most likely be at the shallow water
equations level. This still means quite a lot of work for somebody, but it
seems that there may be some funds available to commence work on this.

5 Interconnection topologies

Recently, some prominent massively parallel computer manufacturers have
moved away from hypercube-like rich interconnection topologies, adopting
simple mesh-like interconnection topologies and relying upon efficient hard-

281



ware routing devices and novel routing algorithms to provide communica-
tion speed and flexibility. It is sometimes difficult to map physical low-
dimensional structures onto hypercubes. The large number of links needed
is also expensive to realize in high-dimensional hypercubes.

From the user’s point of view, it would be best not having to be con-
cerned about the underlying physical interconnection structure at all. The
big question is, whether this can be done without risking excessive commu-
nication delays in some applications. If the interconnection network does
offer a sufficiently high global communication bandwidth - say, one like the
memory access bandwidth on vector supercomputers - the underlying phys-
ical topology can be hidden from the user. This is, in principle, the case
with hypercubes. If not, the user can often reduce communication overheads
significantly by mapping his algorithmic structure onto the underlying in-
terconnection topology in a way that maximizes locality of communication.
If the underlying data flow graph is not a mesh, however, there is no way
it can be mapped onto a mesh-like topology preserving locality of commu-
nication. Hence, every message has to cross several links and consume a
corresponding multiple of communication bandwidth. Providing this on a
mesh is essentially as expensive as on a hypercube.

6 What can be hidden from the user?

There are a number of things that cannot be hidden from the user. These
include SIMD processing. The most that one would want to hide is the
parallel nature of computing; in particular, the distributed storage of data
structures. This amounts to implementing a virtual shared memory. In the
minimum, it would be desirable to hide the access latency to a remote data
object under computation.

Implementing a complete virtual shared memory is more or less the same
as implementing a real shared memory on a large, distributed set of memory
chips. The problems encountered in this would be very similar to those
encountered in present highly banked memory architectures. It is relatively
easy to implement the functionality of a shared memory on a physically
distributed memory, but making it efficient seems difficult. The overhead
associated with virtual shared memory may be just a factor of two to four,
as was the case with the Myrias parallel computer, but it may just as well be

282



a factor of one thousand. On the other hand, users may just refuse to accept
computers without at least a shared memory emulation.

An acceptable trade-off might be to limit the scope of a shared memory
to a few large data structures. This would greatly reduce the combinatorial
complexity of managing memory references. Page traffic could then be con-
ducted at a higher level with longer messages, making more efficient use of
the communication bandwidth available. This would call for standard prim-
itives to be used in referring to distributed data structures, like imposing
their storage to follow a given pattern; or accessing a remote part of a data
structure while overlapping the access latency with computation. The golden
rule would be to allow the largest possible degree of generality that can be
efficiently implemented.

It is important to realize that implementations of message passing com-
munications exist today on almost all parallel computers with a distributed
memory. There are also some emerging standards in how to code message
passing primitives into Fortran programs, whereas the users still have to wait
some years before most major parallel supercomputers implement a virtual
shared memory.

At a lower level, Unix is the operating system adopted as the user interface
on all parallel computers. However, it is not possible to use Unix as such
to code the run-time environment of a parallel computer. Most parallel
computers therefore implement proprietory run-time environments that aim
at being as small and light-weight as possible. This lack of standardization
frequently causes problems for the users. It would be desirable to adopt some
standard system calls also at the level of the run-time environment.

7 Programming environments

Programming environments on parallel computers fall into a hierarchy of
increasingly ambitious and novel approaches. At the lower end, there are
subroutine libraries and macro preprocessors for languages like Fortran. At
their simplest, these provide only standard macro calls to communicate be-
tween processors. Sometimes macro packages come equipped with more am-
bitious functionality, like representing all the communication patterns typical
of certain algorithm types.

Macro packages and associated Fortran preprocessors are available today,

283



but there is no real portability between systems yet. Therefore, one might
argue, one should proceed directly to the second level in the programming hi-
erarchy; that of Fortran extensions. This is the way adopted by most parallel
computer manufacturers, since it allows to incorporate the parallelism into
the compiler; the place where it properly belongs from the computer point of
view. Moreover, compiler technology is gradually becoming independent of
hardware development, rendering more portability to extended programming
languages. From the user’s point of view, however, nonstandard language ex-
tensions may even be dangerous, if similar constructs are used with different
semantics.

On the highest level we find novel parallel languages. In Wisconsin, all
meteorological models are maintained at a level of a Model Description Lan-
guage. Novel languages are often very compact, allowing an abstract descrip-
tion of numerical algorithms. Their maintenance is made easier by writing the
compilers themselves in high-level, object-oriented programming languages
like C++, and by the use of powerful editing tools on workstations. Since
most computer science graduates nowadays are educated in the object ori-
ented paradigm, there is an adequate supply of programmers as well.

Apart from Wisconsin, however, there was a common feeling among the
participants that developing and maintaining special-purpose meteorological
programming languages is not feasible for most operational forecasting or
research centres. There are also a number of parallel progra. ..ining languages
available, that are maintained by commercial software house:. But even these
imply a radical change to the present programming practice. The difficulty
of accepting non-standard programming tools is even more pronounced in
the frequent case where several programmers and even several programming
teams have to collaborate on a single, massive code.

8 Conclusions

In conclusion, it seems that there is still some discrepancy between the users’
requirements and what can be provided on massively parallel computers in
the field of software environments. Moreover, it is not known what kind
of programming support is feasible and what is not, both from the manu-
facturer’s and from the user’s points of view. And, finally, there seems to
be some lack of understanding between computer manufacturers and users,

284



and between different user communities, concerning the most important con-
straints under which each of the groups operates. These appear to be very
different even from user group to a user group.

Therefore, workshops like the present one that bring together represen-
tatives from all relevant communities and keep them together in close col-
laboration for several days provide an important service in promoting wider
acceptance of parallel computers. We hope a concensus on how the users’
needs could satisfactorily be met without sacrifacing too much performance
begins to emerge from the joint efforts to be put into benchmarking paral-
lel computers by both meteorological users and massively parallel computer
manufacturers. Such a collaboration will be initiated as a result of the present
discussions.

285





