Booster: A High-Level Language for Portable Parallel Algorithmst

Edwin M. Paalvast, Henk J. Sips*, Leo C. Breebaart®

Institute of Applied Computer Science (ITI-TNO), Delft, The Netherlands
*Delft University of Technology, Delft, The Netherlands

abstract

The development of programming languages suitable to express parallel algorithms in is
crucial to the pace of acceptance of parallel processors for production applications. As in se-
quential programming, portability of parallel software is a strongly desirable feature. Portabil-
ity in this respect means that given an algorithm description in a parallel programming lan-
guage, it must be possible with relatively little effort, to generate efficient code for several
classes of (parallel) architectures.

In this paper, the language Booster is described. Booster is a high-level, fourth generation,
parallel programming language. The language has been designed to program parallel algo-
rithms for a wide variety of target parallel architectures. Booster has a strong separation of
concerns, featuring a.0. a clear separation of algorithm description and algorithm decomposi-
tion and -representation. Programs written in Booster are translated to imperative languages,
such as FORTRAN or C, and can be easily integrated in large applications. Parallelism can be
obtained by applying data- and/or code decomposition. Once algorithm and decomposition are
described the transformation is done automatically. |

1. Introduction

In applications in the field of technical and scientific programming the actual calculation- in-
tensive kernel is often restricted to a small part of the application. An important area of research
is to find programming languages and paradigms to describe the algorithms in these kernels. A
number of criteria can be formulated with respect to the parallel properties of such a language.
Among these are ease of programming of parallel algorithms, preservation of parallelism,
maintainability, and decomposition properties (with respect to code, data, and granularity).
Also of importance are efficiency of the generated target code and the class of applicable paral-
lel architectures (a.o. the suitability for vector- and/or parallel processing).

Ease of programming refers to the level of abstraction provided in the language. Language
constructs with a high level of abstraction can ease programming considerably, resulting in

T This research is partially funded by SPIN.

170

very maintainable programs, and also offering opportunities to preserve parallelism. However,
a price often being paid is a severe loss of execution efficiency. Also parallelism, although pre-
served, cannot always be extracted in the required form, i.e. the granularity cannot be influ-
enced and/or certain coherence information (such as vector-properties) is lost.

The class of applicable parallel architectures is another important factor. When designing
parallel applications for execution on general-purpose parallel architectures, software develop-
ment and maintenance costs must be kept to an acceptable level. Therefore, the class of parallel
target architectures must be kept as large as possible. This is also of importance because it is
not to be expected that in the near future a single architecture will emerge from the current de-
velopments. But even within a single parallel architecture, different properties of the elements
of the model of computation of that architecture can have a large impact on the performance of
a parallel program.

To meet the above demands, the Booster programming language has been developed.
Booster is a high-level, fourth-generation, parallel programming language: it offers users a
high level of abstraction in programming algorithms and a strong separation of concerns. At
the same time, it remains possible to generate efficient parallel programs

After a short review of the current status in parallel programming in Section 2, the basic
concepts of the Booster language are explained in Section 3. Section 4 shows how data repre-
sentations can be tailored to machine architectures, independently from the program implement-
ing the algorithm. The Booster language is illustrated by means of a worked out example in
Section 5. Finally, in Section 6 it is described how the translation of Booster programs takes
place and how these programs are embedded in applications.

2. Developments in Parallel Programming

The problem of parallel programming can be viewed through the different roles of those in-
volved in application design. The first role is that of the algorithm developer, whose main re-
quirements for a language and corresponding support environment are expressiveness, the
amount of feed-back on the algorithm's performance that is received, and ease of experimenta-
tion. The second role is that of the programmer, who is mainly interested in a language model
that is close to the problem model, in efficient and verbose compilers, and advanced support
tools. Third and last is the role of the software maintainer. Here the focus is on portability,
maintainability, and machine and/or target language independence. The aforementioned roles
are used to access current developments in parallel programming.

Much effort has been placed on the extraction of parallelism from standard imperative lan-
guages like FORTRAN [Allen85, Padua80,86]. However, the clear advantage of being appli-
cable to programs already written for sequential machines is paired with a number of unwanted
features, such as the lack of appropriate high-level abstractions. The consequence is that many
existing codes must be re-written to bring them in a form which is more suited to parallel pro-

171

cessing. Another lacking feature is that data decomposition is done implicitly by code restruc-
turing and therefore the consequences, especially for distributed memory architectures, are
hard to evaluate. The same holds for the granularity issue. These facts pose problems to algo-
rithm developers who want to experiment with different parallel algorithms, rather than with
parallelizing compilers. ' |

A further improvement is to let the programmer specify the problem in terms of multiple
(concurrent) processes, where each process contains a block of sequential code with explicit
definitions of communication with other processes (examples are concurrent MODULA
[Miihl88], concurrent C [Gehani86], Occam [May86] and POOL-T [America86]). Although in
this approach more flexibility is gained, many of the flaws mentioned in the previous approach
remain. -

A different approach is to use a programming paradigm that does not obscure parallelism
and leaves parallelization to the compiler. Examples are dataflow- (e.g. ID Nouveau
[Arvind88], SISAL [Sked85]) and functional languages (Haskell [Hudak89], Miranda [Turner
85], Crystal [Chen86]). A problem regarding the execution efficienicy with those languages is
a.o. the single assignment nature, yielding to much overhead when manipulating large data
structures. Compilers for functional programs use graph rewriting techniques; by solving parts
of the graphs concurrently, parallelism can be obtained [Peyton87]. Extracting parallelism
from graphs poses many problems with respect to granularity and load balancing. If program-
mers know an optimal mapping of their program to a given machine, this cannot be expressed
in the language (an exception is ParAlf [Hudak88]).

Of a different nature are programming models like LINDA [Carriero89] and STRAND
[Foster89]. In both approaches, standard sequential programs can be "glued" together by
means of a restricted number of primitives. Although these models lead to fast implementations
and portability over a wide range of architectures, tuning of a specific algorithm is not possible
or results in re-writing of the algorithm.

Some attempts are directed towards the development of application oriented high-level paral-
lel language formalisms. By tailoring the language constructs to an application domain, more
information regarding parallelism is available at compile time. An example of this approach is
SUSPENSE [Ruppelt88], aimed at the specification of multi-grid methods for solvin g‘PDE's.

- A conclusion from the above approaches is that in current languages, the associated compil-
ers are not capable of generating efficient code autofnatically for arbitrary program-machine
combinations. This insight has led to the approach of parallelism through program annotations,
incorporating (explicit) data decomposition(s) . From these data decomposition specifications,
SPMD (Single Process Multiple Data) code [Karp87] can be generated from the progfam au-
tomatically. This approach is followed by [Callahan88, Gerndt89, Kennedy89] in FORTRAN,
by [Rogers89] in Id Nouveau, by [Koelbel87] in BLAZE, and by [Quinn89] in C*. This con-
cept is also followed in Booster [Paalvast90] ’

172

3. Booster Language concepts

Booster is a high-level, fourth generation, algorithm description language for sequential-
and parallel computers. Parallel computers may be either shared- or distributed memory sys-
tems. The basic computation engines in any machine in the aforementioned classes are as-
sumed to have the traditional von Neumann type of machine as model of computation. Each
computation engine may have vector processing facilities. Booster has been designed such that
many optimizations can be done at compile time, since this is the key factor for realizing effi-

cient code generation.

3.1 Index- and Data Domains

In a conventional programming language (such as Fortran) the array is used as the basic
data structure for storing related data elements. These elements can be accessed by use of
indices to the array. An index is a rigid pointer to a memory-location. It is not possible in these
languages to reason about or manipulate indices themselves. Only the data can be moved
around or changed, and it is precisely this which makes arrays so awkward whenever sorting
or insertion (for example) needs to take place. The use of indirect addressing (e.g. index files)
to keep a large database sorted on different keywords is an example of how useful it can be to
regard the indices to arrays as a separate, manoeuvrable collection of entities. This is particu-
larly true for parallel programming, where it is often important to identify sets of index values
that refer to data upon which computations can be executed in parallel. The importance of this
has already been recognized in a language like ACTUS [Perrott87].

In Booster, these observations have resulted in a strict distinction between data- and index-
domain of a program. The data-domain consists of several possible data types, just as in con-
ventional languages. Supported in Booster are integers, reals, booleans, and records. The in-
dex-domain consists of non-negative integer values. On the index-domain ordered index sets
can be defined, and operations can be performed on these sets independent of the data-elements
that the index values in question refer to.

3.2 Shapes and Views

There are two concepts in Booster to reflect the two domains. The first is the shape,
Booster’ s equivalent of a traditional array: a finite set of elements of a certain data-type, acces-
sible through indices. Unlike arrays, shapes need not necessarily be rectangular (for conve-
nience we will, for the moment, assume that they are). Shapes serve, from the algorithm de-
signer's point of view, as the basic placeholders for the algorithm's data: input-, output-, and
intermediate values (if any) are stored within shapes. As we will see later on, this does not
necessarily mean that they are represented in memory that way, but the algorithm designer
might think so. Shapes have an associated ordered index set, through which the elements of
the shape can be accessed.

173

The second concept is that of the view. A view is a function that takes the index set of a
certain shape as input, and outputs a different index set. Through the indices in this new index
set one can still access the elements of the original shape, but it is as though we now 'view' the
shape’s data-elements through a different window, hence the name.

Views basically come in four flavours, each of which we will illustrate with a sirnple ex-
ample.

First, we need to know how to define shapes in Booster:

SHAPE A (20) OF REAL;
SHAPE B (3#10) OF REAL;

The definition of shapes is fairly standard. In the first statement, a is declared to be a vector of
20 numbers of the type real. The basic index set for this shape is the ordered set {0, I, ..., 19}
(index sets of shapes are ordered from zero on in each dimension). Next, B is declared to be a
matrix of 3 by 10 elements. The index set for this shape is the ordered set {(0,0), (0,1), (0,2),
. (2,8), (2,9)}.

3.3 Content Statements
In so-called content statements we can manipulate the data stored in shapes:

A := 2.5;
A[10] := 5;
B[1,8] := 3.1416;

In the first content statement, all elements of A are initialized to 2.5. In the second statement,
the value 5 is stored in the 70t element of a, and so on. Content statements are Booster's
equivalent of the standard assignment statement in procedural languages. Apart from standard
scalar operators, Booster supports their rnulti-dimensionallequivalents. For example, a vector a
times a vector B is written as

A := A*B;

Multi-dimensional operators are defined strictfy element-wise, that is the operator is applied to
the elements which have the same ordinal number! and all such operations are applied concur-
rently. Hence, the above statement is interpreted asA[1]:=A[11*B[1],A[2]:=A[2]*B[2],
etc. For linear algebra type of multi-dimensional operators the function construct in Booster is
to be used, as will be discussed shortly

1 The ordinal number of an element is the sequence number derived from ordering the indices lexicographically,
e.g. (0,0), (O,1), (1,0), (1,1) for a 2#2 shape. Hence, the element (1,0) has an ordinal number of 2.

174

3.4 View Statements
We can now manipulate index sets in so-called view statements. The easiest view to define
is the identity view:

VvV <- A;

v is called a view identifier and does not need to be declared. Through the statement v<-a, the
view identifier v is bound to the index set of the shape a. Note the different assignment sym-
bols for view- and content-statements; '<-' for view statements and ':=' for content state-
ments. After the view statement in the code given above, the three content statements below
will have exactly the same effect.

A[0] := A[10];
A0} := V[10];
VI[0] := V[101:

3.5 Selection Views

The first type of view is the selection view:

V <~ A[5:15};
The index expression 5:15 selects the subset or range of indices 5 through 15 of A and binds
them to the view identifier v. The identifier v can be used to access a through the index set {0,

1, ... 14}. Again, the two content statements below are semantically identical, given the view
statement that precedes them.

V[0]

I

VI[5];
Al5]

I

A[10];
Note that the element v (0] actually refers to a{51, etc: renumbering of the index sets after a
view statement causes all index sets to start from zero, just as the original index set does. a

itself is never affected by any view statement.

3.6 Permutation Views

The second type of view is the permutation view:

V[i] <- A[19-i];

Again the following statements are semantically equivalent:

175

V0] = VI[5];
A[19] := VI[5]:;
A[19] := A[1l4];

Here a new language construct is introduced, the free variable i. We will come to the exact
syntax and semantics of this construct later, but the above example should be intuitive enough:
through v we access the elements of a in reverse order. Permutation views are an efficient way
of creating high level indirect addressing.

3.7 Dimension Changing Views
Free variables can be used for even more powerful purposes, as is illustrated by the third

type of view: the dimension changing view. First an example of a dimension increasing view:
V{4#5}[i,3] <- A[(4*1)+]]1;

// Equivalent content statements:
v{0,0] := Vvi2,3];
A[0] := A[11];

Here v is a two dimensional view identifier and a a one dimensional shape. The relation be-
tween the index sets of v and a is defined by the functional relations of the free variables i and
5. In the permutation view statement given in the previous example, the domain of i and
hence the resulting index set could be deduced by the compiler from the declaration of . In
this case the compiler needs to be told how to divide the 20 elements of A over the two dimen-
sions of v. Hence, the required extra specification {4#5} in the view statement, effectively
defining the domain of v. For all practical purposes, the identifier v now becomes a two di-
mensional structure. The fact that the index set of this structure refers, via a view function, to a
one-dimensional structure is completely transparent to the ‘user’ of v.

Dimension decreasing views are relatively simple:
vV <- B[1l,_1:

Here the second row of B is selected and assigned to the view identifier v. The underscore
character stands for selecting all elements in that dimension.

3.8 Content selection views

The views presented so far, only define structural relations, i.e. independent on the contents
(values) of the elements of a shape. Some algorithms have a content sensitive behavior, hence

176

we need a construct for defining content sensitive relations. In Booster, these relations can be
expressed by content selection views. They are best explained by an example. Take the follow-
ing content statement:

A[B[O,_1>1] := 5;

B[0, 1>1 returns all indices of the first row of B which are larger than one. Those index val-
ues-are then used to assign 5 to the corresponding elements of . Also in content selection
views, the convention of element-wise operations must be obeyed. If not, an error will result.

3.9 View Functions

Related view statements can be capsulated into view functions. View functions are declared
by specifying the name of the view function, the input- and output arguments, and their re-
spective index sets. For example, take the following view function unzip, which splits the
indices of a vector in its even and odd numbered indices:

VIEW FUNCTION Unzip (E) -> (Even,0dd);
E (n);
Even (n div 2 + n mod 2);

odd (n div 2);

BEGIN
‘EVen[i] <~ A[2%i];
odd[i] <- A[2*i+1];
END;

The formal arguments E, Even, and odd denote the input and output index sets, respectively.
The use of the implicit index parameter n allows the view function to be applied to vectors of
arbitrary length. No content statements may be used in the body of a view function. Note that
renumbering compacts the selected collections of non-consecutive indices into rectangular in-
dex sets that start from zero.

Being defined, the view function unzip can now be used in other view statements, such as
in

(Ev,0d) <- Unzip{(A);

The actual input argument of Unzip is now 2, and the even and odd indices are bound to the
view identifiers Ev and od, respectively.

177

3.10 Non Rectangular Selections

We have not exhausted the expressiveness of the Booster language yet. As a final example,
we will show how to use free variables within range expressions to select non-rectangular
structures, such as triangular matrices:

SHAPE C (2*n#2*n) OF REAL;

BEGIN
INDEX bs_x = n*(i div 2); bs_y = n*(i mod 2) END;
V{4#n#n}[i,J, k] <= C[bs.x:bs_x+n-1, bs_y:bs y+n=1]1[j, kI1;

vIii,j,0:31 := v{[i,j,0:3] * 2;
END;

The shape c is declared to be a square matrix with an even number of rows and columns (see
Fig.1). The INDEX statement is a Booster macro statement: it has the effect of textual substitu-
tion, making cdmplex index expressions more readable. The view statement that follows is a
dimension increasing view, which makes v a vector of submatrices of c. The final content
statement has the effect of selecting all the lower under triangular parts of these submatrices,
and changing their values. -

Fig.l Non-rectangular selection example.

3.11 Functions , ‘
Functions can be used in Booster to encapsulate both view- and content statements. Con-
sider the function Inprod, which defines the inner product of two vectors:

FUNCTION Inprod (C,D) =-> (E);
C(n), D(n), E(1) OF REAL;
BEGIN

E := REDUCE(+,C*D);
END;

178

The REDUCE operator is a built-in function for performing reduction operations. Once defined
the function can be applied, e.g.

A[0] := Inprod(A[0:19]1,B[0,_1)

Functions in Booster contain no side-effects, i.e. no values are retained between invocations.
When a function has one output argument and at most two input arguments, it can also be used
in infix notation.

3.12 Modules

The standard encapsulation facility in Booster is the module. A Boostér program consists of
a set of modules. A module has an interface definition like a function. The main difference
between a module and a function is that modules are the interface to the outer world. The inte-
gration of Booster programs in applications is always handled through the module.

3.12 Control Flow

For control flow, Booster offers several control flow constructs similar to those found in
conventional languages. Available are the standard 1F-THEN-ELSE statement for conditional
execution and wHILE/ITER statements for repetitive executions (1TER-loops execute a fixed .
number of times). Note the total absence of For-like loops.

4. Mapping data and algorithms to (parallel) machines

In programming sequential machines one is in general not concerned about the way the data
structures are represented in real memory. Only when inefficiencies are obvious, such as in
sparse matrices, the programmer will try to optimize memory access and/or occupation. How-
ever, this reluctance in dealing with these issues is often not realistic: column-wise or row-wise
traversal of a data structure can have a large impact on performance; when the real machine has
a complex memory hierarchy with caches, vector lengths of operands are of importance with
respect to performance. On the other hand, the prograxnmer who is willing to deal with this is-
sue, is often confronted with a complicated rewrite of the code. This makes experimentation
and tuning difficult. | :

In parallel programming the situation is even more complicated, because extra information
on data- and algorithm decomposition and -synchronization has to be supplied. Also in this
case, the programmer would like to consider a parallel machine as if it were a sequential one
and supply as little extra information as possible. On the other hand, maximal performance and
control is expected in return. This ambivalence is reflected in parallel language paradigms,
which, regarding to the representation problem, can be partitioned into two categories: implicit
and explicit.

179

Implicit specification methods, like functional and dataflow languages, leave the detection
of parallelism and mapping on a parallel machine to the compiler. However, as remarked be-
fore, contemporary compilers do not produce efficient translations for arbitrary program-ma-
chine combinations.

In explicit specification methods, communication and synchronization is explicitly specified
in the algorithm. This has the disadvantage that one has to program multiple threads of control,
which can be very hard to debug. Besides that, experimentation with different versions of the
same parallel algorithm, for example different granularities and decompositions, is in general
rather cumbersome. Usually comparably small changes require major restructuring of the pro-
grams communication and synchronization framework. An example is alternating between a

row- and column-wise decomposition in a matrix multiplication.

To discuss Booster's method of mapping, let us return to the concepts of shapes and views.
To the algorithm designer, shapes define the total amount of data space needed in the algo-
rithm. However, shapes need not be necessarily directly translated in equally dimensioned data
structures in the target language. In order to do so, a mechanism is needed to enforce other
mappings than the default mappings made by the compiler. In Booster this mechanism is pro-
vided by the same index manipulation construct as used in constructing algorithms, namely the
view. Hence, the relation between shapes and their actual representation on a machine (or, al-
ternatively, a language accepted by the machine) is defined by views. This principle is illus-
trated in Fig.2.

Algorithm Level

 Views |
Shape - Booster Level
Data-
- Tepresentation (Virtual) Machine
(e.g. Level

Decomposition)

+ = view function

Fig.2. Data representation

As an example, consider a Shape A with index set n#m and the following four different map-
pings of this shape on a memory:

180

A
i

Ali, 3]
Ali,]]
Ali, 3]

Afli,]j] <- Lin mem[j*mt+i];

Mem[i, J]1;

A
|

Mem[j,1i] :

A
f

Lin mem{[i*n+3];

The first mapping just defines the default mapping of the shape to an identically structured rep-
resentation. In the second mapping, the indices are reversed, changing a row traversal in a col-
umn traversal. The last two mappings give a one-dimensional representation of the two-di-
mensional shape a; the first a row-wise storage scheme and the second a column-wise storage
scheme.

Data decomposition

Data decomposition is one of the most successful techniques to obtain parallelism. For dis-
tributed memory machines the data also has to be physically split and assigned to processing
elements. To obtain a distributed mapping of a shape, again the view concept of Booster can be
used. If, for example, a two-dimensional shape is to be decomposed in a row-wise fashion for
paralle] machine with p processors, this is described with the following dimension decreasing
view:

VIEW FUNCTION row_decompose (R,p) =-> (Q)
Q (n # n);
R(p # (n div p) # n);
BEGIN
Q[i, 3] <~ R[i div (n div p),i mod (n div p),]Jl;
END;

The principle is illustrated below in Fig. 3.

row decompose |

~«< p-l

Shape (or view) Machine level representation

Fig.3 Row-wise decomposition

181

In Booster, the mapping and representation problem is solved as follows: the programmer
has the possibility to express the mapping of the algorithm explicitly, but separate from the al-
gorithm. In this way, the flexibility and clarity of the implicit method with the efficiency of the
explicit is combined. The mapping can be described on several levels of detail, ranging from
no mapping at all, to a detailed description of data decomposition and assignment, data trans-
port, and data representation. The compiler takes both algorithm and mapping description as

‘input and produces an explicit parallel algorithm including synchronization and communication
in a parallel extension of imperative languages like FORTRAN and C or in languages like OC-
CAM and ADA. ‘ ~ ‘ '

5. Example: Block Factorization
To illustrate the programming and mapping of algorithms in Booster, a (2,2) block
factorization of a matrix A [Duff89] is taken as an example. Let - ‘

(Au AIZ]
A= ,
Ay Ap

where A1 and Apj are square submatrices. The LU factorization of of A may be written in the
form ‘ B AR

[A11A12) [Ln](UUUH]

Ay Ay) (Lo las Uy,

where L1 and Ly are lower triangular subfnatrices and Uj; and Upj are upper triaﬁgular
submatrices. Hence, the algorithm involves the solution of the following four equations:

(1) A1 =L11U1g, LU-factorization
2) L11Ui2 =Ap, - forward substitution
3) L21U11 = A2, . backward substitution -

“4) A2 - L31U12 = L2oUps LU-factorization

The corresponding Booster program is as follows:

182

MODULE Block Factorize (A) -> (A);

A (n#n) OF REAL;

FUNCTION LU-Factorize {(Aa) -> (A);
BEGIN
..... // Booster code performing the LU factorization

END;

FUNCTION matrix mult PRIORITY 7 (A,B) -> (C);
A,B,C (n#n) OF REAL;
BEGIN

Cl[i,3] := REDUCE(+,A[i, 1*B[_,31);
END;

BEGIN
// Define the four regions
INDEX h = (n div 2)-1;
All <= A[0:h,0:h];
Al2 <~ A[O:h,h+l:upb];
221 <— A[h+1l:ubp,0:h];
A22 <- A[h+1l:upb,h:upb];
All := LU_Factorize(All);
Al2[i,3]1 := A12([i,3] - A11[4i,0:i1*A121{0:1,3]1;
A21[1i,3] := (A21([i,3] - A11[0:3-1,3]1*A21[4i,0:35-11)/A111[]3,31;
A22 := LU Factorize(A22 - A21 matrix mult Al2);
END.

In the module header, the structure a is imported and need not be declared as a shape. What
follows are two function definitions. The first function, LU-Factorize is not specified here,
but can be found in [Paalvast89]. The second function is a matrix multipliéatiop definition. RE-
DUCE is the built-in reduction function. Because the function éém be used in infix notation, a
priority has to be declared. The program itself consists of four view statements, defining the
four regions in a and four content statements defining the actual operations.

Decomposition of the algorithm:
Lets first consider the dependence graph of the above algorithm.

183

This dependence graph shows that the second and third step of the algorithm can be executed
in parallel. This influences the decomposition of the submatrices: A1 and A2 are decomposed
row-wise in p segments and mapped onto all p processors. A12 and Ap; can be executed in
parallel and are decomposed in (p/2) segments and each mapped onto the half of the proces-
sors. The decomposition is illustrated in Fig.4.

An - - -~ - :

A1z

Y. % B S, - A22

Fig 4. Depiction of the decomposition on matrix A.

The associated annotation module is written down as

ANNOTATION MODULE Block_Factorize;
IMPORT All, AZ21, Al2, A22 (n#n).FRDM,Block_Factorize;

Proc (p#n#n) FROM Some Processor_ Model;

VIEW FUNCTION column_decompose (R) -> (Q)
Q (n # n);
R (g # (n div q) # n);
BEGIN
Qfi,j] <= R[i mod (n div q),1 div (n div q),3];
END;

184

BEGIN
INDEX h = (p div 2)-1;
All <- row_decompose (Proc{0:p-1, , 1);
A21 <~ row_.decompose(Proc[O:h,_,_ﬁ]);
. A2l <- column__deco;mpose(Proc[h+l,_,__]);
A22 <- rdw_decompose(Proc[O:pfl,_,;]);
END; kl

The view function row_decompose was already introduced in Section 4.

6. Translating Booster to Conventional Languages.

Booster programs are not translated into machine language programs for the intended
(parallel) target computers. Instead, code in a conventional, procedural high level language is
generated. The current target languages are parallel dialects of Fortran and C.

The reason for choosing high-level languages is that the development of efficient compilers for
generating machine code is a very laborious task and requires detailed understanding of that
machine. Compilers for actual parallel machines are in general best provided by the manufac-
turers of that machine.

Having a powerful language is one thing; having optimized code is another thing. The same
holds for decomposition: a given decomposition must result in individual programs for the
processing elements and the appropriate communication and synchronization primitives as de-
fined by the programming model of the target machine. -

The optimization on Booster programs is done by compile-time reductions of views in con-
tent expressions, together with classical dependence analysis between content expressions. To
this purposeb a calculus with associated rewrite rules has been developed to perform these
compile-time optlmlzatlons [Gemund§9].

Since Booster programs are translated in procedural languages, the Booster language kernel
has been kept small. Input/output operations ‘have been omitted and must be done in the lan-
guage or environment Booster is to be embedded in.

7. References

[Allen85] IR Allen, K. Kennedy, "A parallel programming environment," JEEE
Software, July 1985.

[America86] P. Afnericé, "Definition of the programming language ;POOL-T," Internal |
report No. 0091 of Esprit project 415-A, Philips Research Laboratories,
Eindhoven, The Netherlands, 1986.

[Arvind88] Arvind, K Ekanadham, "Future scientific programnﬁng on pérallel machines,"

Journal on Parallel and Distributed Computing, Vol.5, no.5, October 1988.

185

[Callahan88]

[Carriero89]

[Chen86]

[Duff89]

[Foster89]
[Gehani86]
[Gemund89]

[Gerndt89]

[Hudak88]
[Hudak89]
[Karp87]

[Kennedy89]
{Koelbel87]

[May86]

{Miih188]
[Paalvast89]

[Paalvast90]

D. Callahan, K. Kennedy, "Compiling Programs for Distributed-Memory
Multiprocessors,” The Journal of Supercomputing, Vol. 2, No. 2, October
1988, pp. 151-169.

N. Carriero, D. Gelernter, "How to write parallel programs: a guide to the
perpiexed," ACM Computing Surveys, Vol. 21, no.3, Sepetember 1989.

M.C. Chen, "Very-High-Level parallel programming in Crystal," Proceedings
of the First Conference on Hypercube Multiprocessors, Knoxville, Tennessee,
August 26-27, 1985, pp. 39 - 47.

Duff 1.S., Erisman A.M., Reid J.K., Direct Methods Jor Sparse Matrices,
Oxford Science Publications, 1989.

L. Foster, S. Taylor, Strand: New Concepts in Parallel Programming, Prentice
Hall, 1989.

N.H. Gehani, W.D. Roome, "Concurrent C," Software-Practice and
Experience, Volume 16(9), September 1986, pp. 821 - 844.

A. van Gemund, "A view language and calculus,” Report no. 89 ITI B 45,
Institute of Applied Computer Science, Delft, 1989,

M. Gerndt, "Array distribution in SUPERB," Proceedings of the Third
International Conference on Supercomputing, Crete, Greece, June 1989,
pp. 164-174.

P. Hudak, "Exploring parafunctional programming: separating the What from
the How," IEEE Software, January 1988.

P. Hudak, "Conception, evolution, and application of functional programming
languages," ACM Computing Surveys, Vol. 21, no.3, September 1989.

“AH. Karp, "Programming for parallelism," /EEE Computer, May 1987, pp.

43-57.

K. Kennedy, H.P. Zima, "Virtual Shaped Memory for Distributed-Memory
Machines," Proceedings of the Fourth Hypercube Conference, Monterey,
California, March 1989, 6 pp.

C. Koelbel, P. Mehrotra, J. Van Rosendale, "Semi-automatic domain 7
decomposition in BLAZE," Proceedings of the 1987 International Conference
on Parallel Processing, August 17-21, 1987, pp. 521 - 524. ‘

D. May, D. Pountain, "A tutorial introduction to OCCAM programming,”
INMOS OCCAM tutorial, 1986.

H. Miihlenbein, Th. Schieder, S. Streitz, "Network programming with
Muppet," Journal of Parallel and Distributed Computing, Vol. 5, (5), October
1988.

E.M. Paalvast, H.J. Sips, "A High-Level Language for the Description of
Parallel Algorithms," Proceedings of Parallel Computing ‘89, August 1989,
Leiden, The Netherlands, North-Holland publ. co. ’

E.M. Paalvast, A.J. van Gemund, H.I. Sips, "A method for parallel program

generation with an application to the Booster Language”, Proceedings 1990
ACM International Conference on Supercomputers, June 1990, Amsterdam.

186

[Padua80] D. Padua, D. Kuck, D. Lawrie, "High-Speed multiprocessors and compilation
techniques," IEEE Trans. on Comput., Vol C-29 (9) , September 1980, pp.
763 - 776.

[Padua86] D. A. Padua, M. J. Wolfe, "Advanced compiler optimizations for
supercomputers,” Communications of the ACM, Vol 29 (12), December,
1986, pp. 1184 - 1201.

[Perrott87] R.H. Perrott, R.W. Little, P.S. Dhillon, "The design and implementation of a
Pascal-based language for array processor architectures," Journal of Parallel
and Distributed Computing, June 1987.

[Peyton87] S.L. Peyton-Jones, "The implementation of functional programming
languages," Prentice-Hall international, Series in Computer Science, 1987.

[Quinn89] . M.J. Quinn, P.J. Hatcher, "Data parallel programming on multicomputers,"
Report no. PLC-89-18, Dept. of Computer Science, University of New
Hampshire, March 1989.

[Rogers89] A. Rogers, K. Pingali, "Process decomposition through locality of reference,"
ACM Sigplan '89 Conference on Programming Language Désign and
Implementation, June 1989, Portland Oregon.

[Ruppelt88] Th. Ruppelt, G. Wirtz, "From Mathematical Specifications to Parallel
Programs on a Message-Based System," Proceedings of the International
Conference on Supercomputing, 1988, St. Malo, France.

[Sked85] S. Skedzielewski, J. McGraw, S. Allen, R. Oldehoeft, J. Glauert, "SISAL :
Streams and Iteration in a Single Assignment Language," Report Lawrence
Livermore National Laboratory , M - 146, March 1985.

[Turner85] D.A. Turner, "Miranda: A non-strict functional lan guage with polymorphic

types," Lecture Notes in Computer Science, Springer Verlag, Vol. 201, 1985,
pp.-1-16. 2 , : .

187

