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Despite considerable development in numerical weather prediction techniques, substantial
forecast failures still arise in situations where atmospheric evolution is particularly sensitive to
the specification of initial state, ie when the intrinsic predictability of the flow is low.
Predictability in the initial phase of the forecast, where error growth is linear, is studied here
in terms of the largest singular value of a linearised integral evolution operator. The modes of
instability associated with these singular values are used to form a set of initial states for an
ensemble of predictions from a high-dimensional nonlinear weather prediction model. The
dispersion of this ensemble gives an a priori estimate of forecast reliability beyond the range in

which forecast errors have linear growth.

Consider a real N-dimensional dynamical system with state-vector X, whose evolution equation

is
___d:-F Xl 1

The evolution of a small perturbation 8X is determined by the linearised counterpart of (1) which can
be written as

dsX @
-L8X
dt

where L is the Jacobian of F evaluated at some time t. Integrating over some portion of trajectory for
f,<t<t;, we can write (2) in integral form
3X(t)=A(t, 1) 0 X(ty) (3)
Consider the matrix AX whose columns comprise a set of N orthogonal perturbations8X,, 1<i<sN
with amplitude e. AX defines an error ball in phase space with covariance
AX* () AX(t)=€T 4)
at t,. Here I is the identity matrix, and **’ denotes the matrix transpose (or operator adjoint). Using
(3), the error covariance at ¢, is
AX*(t)(A (1AL AX() ®
which defines an ellipsoid whose semi-axes have length proportional to the singular values of A, ie
the square roots of the eigenvalues of the symmetric operator A*(f,,fp)A(t,,f,). For more details see

Lorenz (1965) and LaCarra et al. (1988).

In conventional analysis of low-order systems, these singular values are evaluated in the limit

tl—tdwm, giving the Lyapunov exponents of 1), which characterise many of the global properties of
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the associated attractor. Positive Lyapunov exponents exist for low-dimensional models of large-scale
atmospheric motion (eg Malguzzi et al., 1990), indicating the existence of a strange attractor for
atmospheric dynamics. However, ‘the Lyapunov exponents are not useful if one is interested in local
predictability properties of the atmospheric attractor, ie the dependence of perturbation growth on
initial state. In addition any perturbation consistent with realistic uncertainties in the the initial values

of global atmospheric fields will become highly nonlinear before the limit #,~t,~o is reached.

With the anélysié éboVe, we define an index of linear inStabi]ity I,(t,.t) as equal to the matrix
2-norm of A , so that

[EXCENL2 (O]

(6)
18Xl
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is equal to the largest singular value of A (see eg (Strang, 1980)). The inverse of I,(t,,t) can be taken

as a measure of linear predictability. Because A itself is not symmetric, error growth rates inferred
from its singular values can be very much larger than those inferred from its eigenvalues (Farrell,
1990). Consequently predictability estimates made from normal-mode instability calculations can be

erroneously optimistic.

For extratropical weather systems, the time beyond which realistic initial perturbations become
nonlinear is typically a few days (see below), well before the limit of deterministic predictability
(about 2 weeks) is reached. Hence, for estimating predictability beyond the first few days of
integration, a linearised analysis of error growth is not appropriate. On the other hand, a rigorous
treatment of error growth in the nonlinear phase ‘would require finding an appropriate closure for
equations describing the evolution of the moments of the probability density function for atmospheric

error fields, a problem currently unsolved..

A’ possible procedure would be to integrate the full nbnlinear model from an ensemble of
initial states, the difference between any two members of the ensemble being consistent with
uncertainties in the initial state (Leith, 1974, Hoffman et al., 1983). However, since current numerical
weather prediction models comprise more than a million scalar equations, integration of an ensemble
with size M<N in which initial perturbations are chosen randomly is likely to suffer acutely from
sampling problems. In particular, it is unlikely that such perturbations would have sufficient projection
onto those phase-space directions which limit predictability. As a potentially viable compromise, we
mcmporate the hneansed ana1y51s above with the nonlmear ensemble integration procedure.

Spec1ﬁca]ly, we integrate the full non]mear model from an ensemble of states which differ from the



unperturbed initial state by multiples of those eigenvectors of A*A which have the largest eigenvalues
(cf the suggestion at the end of Lorenz, 1965).

Adapting (6), we can define an index of instability I,,(,.¢,), applicable in the nonlinear phase
error growth, to be given by

18X, (e

i 4 %4 (7
SMBX ()

Ty (#,,%p) =max,

Where the index i spans the forecast ensemble of size M (here M=40), and where 3X(¢,) is the

difference in the height of the SO0hPa pressure surface between perturbed integration i and the control
(unperturbed) integration. Here, the norm is the rms value over the northern extratropics. By choosing
the instability modes as initial perturbations, we hope to minimise the chance that the dispersion of
the ensemble will underestimate the predictability of the flow, and thereby overestimate forecast
reliability.

The nonlinear model used to integrate the ensemble forecasts is the European Centre for
Medium-Range Weather Forecasts (ECMWF) numerical weather prediction model (Simmons et al.,
1989). The basic model variables are expressed in terms of series of spherical harmonic coefficients
on 19 vertical levels from the ground to the stratosphere. In the version used here, the series are
truncated at total wavenumber 63 (T63). In order to investigate the full spectrum of modes,

eigenvectors of the linearised operator A*A were calculated in a 3-level quasi-geostrophic (QG) model
truncated at total wavenumber 21. In such a QG model, winds and temperatures can be derived from
a single prognostic variable, potential vorticity (Gill, 1982). The modes were calculated so to
maximise the growth of kinetic energy, over 1/2, 1, 2 and 4 day intervals.

Four case studies of 5-day forecasts have been made from initial dates #,= 2 December 1988,

17 January 1989, 27 January 1989 and 1 March 1989. Among the control forecasts, the integration
from 27 January was by far the poorest. In particular, the development of a large amplitude pressure
ridge over the north Pacific by day 5 was substantially underestimated (see Fig.1). As a consequence,

severe weather over the west coast of north America was not well forecast.
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The rms errors in the prediction of the S00hPa height for the northern extratropics are given

in Fig.2a for the 4 control forecasts. The linear instability index I,(t,+8t,,) for the 4 initial dates, and

for 8¢=1/2, 1, 2, 4 days is shown in Fig.2b. For each forecast range, the third case (from 27 January
1989) has the largest instability index, and therefore smallest predictability, though the difference
becomes significant only beyond day 2. It can be seen that the variations in the values Of I, (£,+ 81,4y

would have given a fair a priori indication of the relative skill of the control forecasts.
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Fig.2 a) root mean square error over the northern hemisphere in the height of the S00hPa surface
between four forecasts of the T63 ECMWF model. Initial dates given by 1=2 December 1988,
2=17 January 1989, 3=27 January 1989, 4=1 March 1989. b) linear instability index computed
over 3t=1/2, 1, 2, 4 day portions of the trajectory of the control forecast. ¢) nonlinear
instability index calculated from the *'mode’ ensemble, d) nonlinear instability index calculated
from the 'non-mode’ ensemble.



For each #,, two sets of T63 ensemble forecasts were made. In the first set, the 20 fastest

growing eigenvectors of A *A, computed over 12 hour trajectories of the QG model, were interpolated
onto the T63 model grid. In order to assess the results of this *'mode’ ensemble against one in which
the initial perturbations were not dynamically constrained, we have run a second, ’'non-mode’,
ensemble in which the initial perturbations were based on 6 hour errors from previous archived
forecasts ( and are thus meteorologically balanced and representative of possible initial errors). In both

sets, |8X(#)[=10m Vi, and in every case, each perturbation was both added to, and subtracted from
the unperturbed analysis.

The nonlinear instability estimatel,, (t,+58%,,), 8t= 1/2, 1,2, 3,4 and 5 days for the mode

and non-mode ensembles is given in Fig.2c,d for the four initial dates. For the mode ensemble, the
relatively poor forecast from 27 January is picked out beyond day 4 as having the largest nonlinear
instability index. By contrast, predictability estimates from the non-mode ensemble do not show any
evidence of large error growth for case 3. The initial growth rates of the mode perturbations in the T63
model are consistent with the linear QG growth rates, and are substantially faster than the initial
growth rates of the non-mode perturbations (see Fig.2).

The initial structure of the fastest growing linear QG mode for the 27 January case is shown
in Fig.3a ( in terms of the perturbation to the 500hPa surface). The amplitude of the mode is largest
over the western Pacific in a region of intense atmospheric cyclogenesis. The day-5 difference between
the T63 model integration initialised with this mode, and the control integration is shown in Fig.3b,c,
for both positive and negative phase. It can be secn that by day 5 the disturbances have propagated
downstream as far as the USA, and that the evolution of the perturbations is highly nonlinear. The
perturbation shown in Fig.3b is the one with largest northern hemisphere amplitude amongst all the
ensemble members, and therefore determines the nonlinear predictability index at day 5. Remarkably,
the error in 500hPa height for the control forecast (Fig.1) is highly negatively correlated with the
difference fields in Fig.3b, indicating that the perturbed forecast is much better that the control. For
this integration, this substantial improvement is maintained when the integations are continued to day

10, well beyond the range of validity of the linear approximation to error growth.

.On the basis of the results above, ab forecaster would have been able to use either the linear
instability index, or the nonlinear instability index from the mode ensemble (but not the non-mode
ensemble) to give Waming that the control forecast from the 27 January was likely to be unreliable.
Mofeovér, using the Weather élements forecast in some of the mode ensemble integrations, a warning

of the possibility of severe weather over the west coast of the USA, mis-forecast in the control



integration, could have been issued. On the other hand, some caution is required here, as an assessment
of the statistical significance of these results will require many more cases to be studied. In practice
it appears that there may be as many as 50 or more modes with energy grthh rates as large as typical
forecast error growth rates. On this basis it may be necessary to further select subsets of these
perturbations, on the basis of their growth in the intermediate nonlinear QG model, for the construction
of the initial ensemble for the T63 model. On the other hand, with projected developments in computer
power, operational weather prediction with ensembles comprising some tens of forecasts may be

feasible in a few years.

a) 890127 00z day: 0.0 b) 890201 00z day: 5.0

cont. int.: 1 cont. int.: 5

c) 890201 00z day: 5.0

cont. int.: 5

Fig.3 Development of perturbation in the ECMWF T63 model computed as having the largest

eigenvalue of A*A. Difference in 500hPa height from control forecast trajectory from 27
January case. a) day 0, b) day 5, ¢) day 5 from perturbation with opposite sign to that in a).
Contour interval 1 dam in a), 5 dam in b) and c¢).

7



References

Farrell, B.F., 1990: Small error dynamics and the predictability of atmospheric flows. J. Atmos. Sci.,
- 47, 2409-2416.

‘Gill, A.E., 1982. Atmosphere-Ocean Dynamics. International Geophysics Series, 30. Academic Press,
‘Hoffman RN, and E. Kalnay, 1983. Lagged averaged forecasting. Tellus, 35a, 100-118.

LaCarra, J.-F. and O. Talagrand, 1988. Short-range evolution of small perturbations in a barotropic
- model. Tellus, 40A, 81-95.

Leith, C.E., 1974. Theoretical skill of Monte Carlo Forecasts. Mon.Wea.Rev., 102, 409-418.

Ldrenz, E.N., 1965. A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 3-
33. ‘

Malguzzi, P., A.Trevisan and A.Speranza, 1990. Statistics and predictability for an intermediate
dimensionality model of the baroclinic jet. Annales Geophysicae, 8, 29-36.

Strang, G., 1980. Linear Algebra and its Applications. Academic Press. New York. 414pp.
Simmons, A.J., D.M. Burridge, M.Jarraud, C.Girard and W.Wergen, 1989. The ECMWF medium-

range prediction models: Development of the numerical formulations and the impact of increased
resolution. Meteor. Atmos. Phys., 40, 28-60.





