FILTERED EQUATIONS AND FILTERING INTEGRATION SCHEMES
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I still consider the elimination or dampening of noise to

be the crucial problem in weather analysis and prediction.

K.H. Hinkelmann, WMO Bulletin, 34(4), 279, Oct., 1985

1. INTRODUCTION

The spectrum of atmospheric motions is vast, encompassing phenomena having
periods ranging from seconds to millennia. The motions of interest to the forecaster
have timescales of the order of a day, but the mathematical models used for numerical
prediction are quite general, and describe a broader span of dynamical features than
those of direct concern. For many purposes these higher frequency components can be
regarded as noise contaminating the motions of meteorological interest. The elimination
of this noise has been achieved by adjustment of the initial fields (a process called ini-
tialization) or by modification of the governing equations (called filtering the equations).
There is a close relationship between these two approaches: the diagnostic constraints
imposed to initialize the fields may also be used to replace prognostic components of
the prediction system, and thus the constraints may be applied throughout the forecast.
Filtered equation systems are discussed in §2 below, and their relationship to normal

mode initialization is considered.

As an alternative to modification of the equations, a numerical integration
scheme may be employed having the property that it selectively eliminates or dampens
elements of the solution which are considered to be noise, while simulating the mete-
orologically significant components accurately. A number of such filtering integration
schemes are examined in §3. Following that, §4 introduces the theory of digital filters.
Two applications of these filters are described in §5, one to initialization and one to
integration, and it is argued there that an integration scheme having a specified fre-
quency response may be constructed using filter theory. The final section (§6) attempts
to synthesize the ideas discussed in the preceeding parts, and raises some important

unsolved problems.
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1.1 Signals and Noise: the Spectrum of Atmospheric Motions

The natural oscillations of the atmosphere fall into two groups (see, for example,
Holton, 1975, §2.4). The solutions of meteorological interest have low frequencies and
are close to geostrophic balance. They are called rotational modes since their vorticity is
greater than their divergence; if divergence is ignored, these modes reduce to the Rossby-
Haurwitz waves. There are also very fast gravity-inertia wave solutions, with phase
speeds of hundreds of metres per second and large divergence. For typical conditions
of large scale atmospheric flow (when the Rossby and Froude numbers are small) the
two types of motion are clearly separated and interactions between them are weak.
The high frequency gravity-inertia waves may be locally significant in the vicinity of
steep orography, where there is strong thermal forcing or where very rapid changes are
occurring; but overall they are of minor importance and may be regarded as undesirable

noise.

Observations show that the atmospheric pressure and wind fields in regions not
too close to the equator are close to a state of geostrophic balance and the flow is quasi-
nondivergent. The bulk of the energy is contained in the slow rotational motions and the
amplitude of the high frequency components is small. The existence of this geostrophic
balance is a perennial source of interest; it is a consequence of the forcing mechanisms
and dominant modes of hydrodynamic instability and of the manner in which energy is
dispersed and dissipated in the atmosphere. The gravity-inertia waves are instruménta.l
in the process by which the balance is maintained, but the nature of the sources of
energy ensures that the low frequency components predominate in the large scale flow.
The atmospheric balance is subtle, and difficult to specify precisely. It is delicate in
that minor perturbations may disrupt it but robust in that local imbalance tends to
be rapidly removed through radiation of gravity-inertia waves in a process known as

geostrophic adjustment.

When the primitive equations are used for numerical weather prediction the
forecast usually contains spurious large amplitude high frequency oscillations. These
result from anomalously large gravity-inertia waves which occur because the balance
between the mass and velocity fields is not reflected faithfully in the numerically analysed

fields. The problem is that small errors in the initial fields of pressure and wind can
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lead to large deviations from a balanced state. As a result, high frequency oscillations
of large amplitude are engendered, and these may persist for a considerable time unless
strong dissipative processes are incorporated in the forecast model. It was the presence
of such imbalance in the initial fields which gave rise to the totally unrealistic pressure
tendency of 145 hPa/6h obtained by Lewis Fry Richardson in the first-ever objective

numerical weather forecast.

1.2 The Primitive Notion of Filtering

The concept of filtering has a réle in virtually every field of study, from topology
to theology, seismology to sociology. The process of filtering involves the selection of
those components of an assemblage having some particular property, and the removal
or elimination of those components which lack it. A filter is any device or contrivance
designed to carry out such a selection. It may be represented by a simple system
diagram, having an input with both desired and undesired components, and an output

comprising only the former:

Good/Bad/Ugly =>| Filter | — Good

We are primarily concerned with filters as used in signal processing. The selection
principle for these is generally based on the frequency of the signal components. There
are a number of ideal types, lowpass, highpass, bandpass and bandstop, corresponding
to the range of frequencies which pass through the filter and those which are rejected.
In many cases the input consists of a low-frequency (LF) signal contaminated by high-
frequency (HF) noise, and the information in the signal can be isolated by using a
lowpass filter which rejects the noise. Such a situation is typical for the applications to

meteorology discussed below.

Filter theory originated from the need to design electronic circuits with pre-
cise frequency-selective characteristics, for radio and telecommunications. These analog
filters were constructed from capacitors and inductors, and acted on continuous time
signals. More recently, discrete time signal processing has assumed prominance, and the
technique and theory of digital filtering has evolved. Digital filters may be implemented
in hardware using integrated curcuits, but are more commonly realized in software: the
input is processed by a program designed to perform the required selection and compute

the output.
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2. FILTERED EQUATIONS

2.1 A ILittle History

Richardson’s forecast came to grief through his use of unbalanced data as initial
conditions for the primitive equations. The spuriously large projection of this data
onto the high frequency gravity waves resulted in an unrealisﬁca]ly large value for the
pressure tendency, ruining the forecast. In planning for the first computer forecast,
Charney recognised that the problem encountered by Richardson could be avoided in
one of two ways. Either the initial data could be adjusted to reduce the high frequency
components, or the prognostic equations could be modified to eliminate the solutions
corresponding to the noise. The first option is referred to as initialization and the second

as filtering the equations.

In a letter to Philip Thompson dated February 12, 1947, Charney outlined his
ideas about filtering the noise. He drew an analogy between a forecasting model and
a radio receiver, and argued that the noise could be either eliminated from the input
signal or removed by a filtering system in the receiver. He described a method of
filtering the equations in a particular case, but concluded “I still don’t know what types
of approximation have to be made in more general situations”. It did not take him long
to find out. In a second letter, dated November 4 the same year, he wrote that “The
solution is so absurdlyvsimple that I hesitate to mention it ...the motion of large-scale
systems is governed by the laws of conservation of potential temperature and potential
vorticity and by the condition that the field of motion is in hydrostatic and geostrophic
balance. This is the required filter!”. [The two letiers are reproduced in an article by

Thompson in Lindzen et al., 1990.]

Charney (1948) examined the equations using the technique of scale analysis,
and was able to simplify them in such a way that the gravity wave solutions were
completely eliminated. The resulting equations are known as the quasi-geostrophic
system. The system boils down to a single prognostic equation for the quasi-geostrophic

potential vorticity:

0 ' Jo @ [ po aI"/Po .
(E'i—V-V) [f+4+;'5§(ﬁ? Ep )]——0 (2.1)

All that is required by way of initial data to solve this equation is a knowledge of the

three-dimensional pressure field. 1
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An alternative and, perhaps, mathematically more rigourous derivation of the
quasi-geostrophic system is based on perturbation theory (Nayfeh, 1973). This method
was first used in meteorology by Kibel’ in 1940, when he expanded the equations as
power series in a small parameter € = V/fL, now known as the Rossby number. The
advantage of this method is the possibility to proceed to higher orders of approximation;
the first order gives the quasi-geostrophic system, the next leads to the balance system.
A hierarchy of successively more accurate approximations may be derived by retaining
terms of increasing degree in €. For an account of the history of filtered systems see
the article “The Emergence of Quasi-geostrophic Theory”, by Phillips in Lindzen et al.,
1990.)

2.2 Intermediate Models

Charney (1962) derived a system of equations called the balance system by keep-
ing terms to O(e?). This system should, in principle, be more accurate than the quasi-
geostrophic system. The balance system is highly implicit and difficult to solve. A
non-iterative procedure for the integration of the balance equations was presented by
Daley (1982). There is a serious flaw in the balance system: these equations have
spurious solutions (Moura, 1976) which have no physical counterparts. An alterna-
tive system, the slow equations, which is also accurate to O(€?) but is free from these

non-physical solutions, will be derived below.

Hinkelmann (1969) proposed a general method for defining initial data for the
primitive equations. He argued that the observed mass and wind fields should be ad-

justed so that
dar(V.-Vv) drti(V.-V)
g -0 and dirvt

0. (2.2)

That is, these two conditions should be used to derive diagnostic relationships which the
initial data are then required to satisfy. As an alternative, he pointed out that the two
conditions could be used to replace two prognostic equations by diagnostic relationships,
yielding a general filtered system. The casen =0 yields the quasi-geostrophic equations,
while the case n = 1 leads to the slow equations (§2.4 below). More general balance
conditions based on Hinkelmann’s idea have recently been used in connection with the

invertibility principle (§2.5 below).

Many investigators have studied systems of equations which are intermediate
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in approximation between the primitive equations and the quasi-geostrophic system.
Several such systems are reviewed by McWilliams and Gent (1980) and more recently
by Allen et al. (1990) and a discussion of the advantages and shortcomings of various

approximations may be found in these references.

2.3 Normal Mode Initialization and Filtering

Daley (1980) has used the ideas of normal mode initialization (NMI) to develop
an efficient integration method for the primitive equations. In effect, his scheme turns
a primitive equation model into a filtered model. The model equations can be written

in the form

%Xt— +iLX + N(X) =0 (2.3)

with X the state vector, L a matrix and N a nonlinear vector function. If L is di-

agonalized, the system separates into two subsystems, for the low and high frequency

components:
% +ily Y + Ny (Y,Z) = 0 (2.4)
dZ
E +ZAzz +Nz(Y, Z) =0 (2.5)

where Y and Z are the coefficients of the LF and HF components of the flow, referred to
colloquially as the slow and fast components respectively, and Ay and A z are diagonal

matrices of eigenfrequencies for the two types of modes.

Linear NMI imposes the condition Z = 0 at ¢ = 0; it has been found that this
condition does not produce a noise-free evolution, as nonlinear interractions between the
slow modes soon produce HF components. Machenhauer (1977) proposed the balance
condition Z = 0 at ¢ = 0. That is, the initial tendencies of the fast modes are required
to vanish. Assuming Machenhauer’s criterion to hold throughout the integration, Daley

replaced (4) and (5) by the system
Y +iAy Y + Ny (Y,2) =0 (2.6)

giving a prognostic equation for the slow modes and a diagnostic equation for the fast
modes. The system (6), (7) may be called the slow equations (in normal mode form).

Daley compared an integration using these equations (with At = 40 min) to a control
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forecast made with the primitive equations using a leapfrog time scheme and At = 10

min. The integration of the slow system was stable, efficient and accurate.

The Daley scheme has also been implemented in a barotropic version of the
HIRLAM Model. A 24 hour forecast with this scheme is shown in Fig. 2.1(a), and a
reference forecast based on the primitive equations integrated with a standard leapfrog
scheme in Fig. 2.1(b). The two forecasts are very similar; thé rms differences in height

and wind are only 2.67m and 0.77ms™"'.

2.4 The Slow Equations

It is possible to develop a system of equations similar i;o the system (6}, (7)
of Daley, but formulated in terms of the physical variables, rather than in normal
mode space. Temperton (1987) has devised an initialization scheme which is completely
equivalent to the normal mode method, but which operates in physical space. The
central idea is to choose a linearization and to configure the equations so that the

tendencies can be separated by inspection into slow and fast components

Using Machenhauer’s criterion, 7 = 0 at £ = 0, Temperton derived a technique which
he called implicit normal mode initialization; the same approach may be used to derive

a system of slow equations in physical space.

A general baroclinic system of equations may be separated into a number of
systems equivalent to the shallow water equations. Therefore, it is sufficient to consider

the shallow water system

(+f6=-N, (2.9)
6— f¢+V*®=—N; (2.10)
$+ &6 =—N, (211)

where N, N; and N, represent the nonlinear terms and otherwise the notation is con-
ventional. The Coriolis parameter f is variable but the g-terms are included on the
rhs. An equation expressing conservation of potential vorticity follows directly from

the vorticity and continuity equations:

% [ﬁ-g—f] =0 (2.12)
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Fig. 2.1. (A) 24 hour forecast with the Daley scheme. (B) Refer-
ence forecast based on the primitive equations integrated with a
standard leapfrog scheme. The rms differences in height and wind
are only 2.67 m and 0.77 m/s.

Fig. 2.2 (A) Reference forecast with the primitive equations. (B)
Difference between the Slow Equation forecast and the reference.
The rms differences in height and wind were 5.7 m and 1.5 m/s.
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Alternatively, elimination of § between these equations yields

2 (8¢ - 8) = ~[8N, — fNs] (213)

which is completely equivalent to (12). An equation for the tendency of geosirophic
imbalance (e = V?® — f() is easily derived from (9) and (11):

¢+ [8V? - f2] 6§ = — [V*Ns — fN] (2.14)

The system (10), (13) and (14) is equivalent to the original system (9)-(11).
Although the horizontal coordinates are not separable, two crucial properties of the
eigenmodes can immediately be deduced: [A] The slow modes are stationary, geostrophic
and nondivergent; [B] The fast modes have zero linearized potential vorticity [®¢— re].
These properties imply that the tendencies of divergence and imbalance project entirely
onto the fast modes and the tendency of potential vorticity entirely onto the slow modes.
Thus, the assumption that the gravity wave projections of tendency vanish (Z = 0)
amounts to dropping the terms § and ¢ in (10) and (14). The result of applying this

assumption is a system with one prognostic and two diagnostic equations:

p |
% [C—;i] =0 (2.15)

V2® — f¢ = —N; (2.16)

[8V? - f*] 6 = — [V’ Ny — fN] (2.17)

This system will be called the slow equations. They are equivalent to Daley’s equationé
(6)~(7), But refer to physical variables, obviating the need for transformations to and
from Hough space. Further discussion of these equations may be found in Lynch (1989),
where it is shown that the system is free from the spurious non-physical solutions of the

balance equations.

The slow system (15)—(17) was used to make a 24 hour forecast over a limited
area, and the results compared to a reference forecast with the primitive equations. The
reference forecast is shown in Fig. 2.2(a) and the difference between the two rums in
Fig. 2.2(b). Clearly, the two forecasts are very similar; the rms differences in height
and wind were 5.7m and 1.5ms~!. A baroclinic model based on the slow equations has

also been developed (Lynch and McDonald, 1990).
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2.5 The Invertibility Principle

Rossby based his study of planetary waves on the assumption that the absolute
vorticity { + f is conserved. From a knowledge of the absolute vorticity the wind field

V = (u,v) can be deduced by solution of a Poisson equation:
V3 = ¢ , V=kxVy

subject to suitable boundary conditions. This is the simplest example of the invertibility
principle. The absolute vorticity contains full information about the dynamics, provided
a suitable balance condition holds; in this case the balance assumption is that the flow

is nondivergent.

For divergent barotropic flow, absolute vorticity conservation is supplanted by
conservation of potential vorticity (PV), @ = (¢ + f)/®, as expressed in (12). Since
the PV involves both the mass and wind fields, it is far from obvious that this field
contains essentially all the relevant dynamical information. In terms of the primitive
equations it is not possible to disentangle PV to obtain & and V. However, if the slow
equations (15)~(17) are assumed to describe the dynamics, an equation for ® follows

from the balance equation (16) and the definition of PV:
[V~ 101 =~ (N + £°). (218)

Assuming appropriate boundary conditions can be prescribed, this Helmholtz equation
can be solved for the geopotential. The vorticity ¢ follows immediately from PV and
®. If the divergence is calculated by solving the imbalance equation (17), the wind field

may then be derived from
Vig=¢ , Vx=$
V=Vx+kxVy

provided suitable boundary conditions can be specified.

For three-dimensional frictionless, adiabatic motion of a baroclinic, hydrostatic

atmosphere conservation of potential vorticity is expressed by the equation

£l en(+)-
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where {, = k -V, x V is the vorticity in isentropic coordinates. This is the most
general form normally used in meteorology, although it has been extended to the non-

hydrostatic case by Ertel. The idea that the potential vorticity contains all the essential

dynamical information has been formalised in the invertibility principle:

If the total mass under each isentropic surface is specified, then a knowl-
edge of the global distribution of poiential vorticity on each isentropic
surface and of the potential temperature at the lower boundary is suf-
ficient to deduce, diagnostically, all the other dynamical fields, such as
winds, temperature, geopotential height, static stability and vertical ve-
locity, under a suitable balance condition.

(Hoskins, et al., 1985). The last clause is crucial: the accuracy with which the remaining
fields can be extricated from the PV depends sensitively on the definition of balance.

McIntyre and Norton (1990) have investigated the inversion of potential vorticity
for a hemispheric barotropic model, using a range of balance conditions based on the
idea of Hinkelmann as expressed in (2) above. They also considered a hierarchy of
balance requirements derived from normal mode initialization theory. Their results
show that the information contained on the PV field is remarkably complete. Using
a high-order balance assumption, the original mass and wind ﬁelds used to construct
the PV were recovered with great accuracy; even the divergence and associated vertical

velocity fields could be adequately retrieved from the potential vorticity information.

The equation of PV-conservation together with a balance assumption yields a
filtered niodel, the accuracy of which increases with the order of the balance condition.
There is, in principle, no limit to the order at which balance may be imposed. Hinkel-
mann’s hierarchy (2) may be applied for any value of n. A balance condition framed
in terms of NMI is to require d"Z/di" = 0. For n = 0 this is the condition of linear
NMI; for n = 1 it is Machenhauer’s criterion. Lorenz (1980) introduced the concept of
superbalance defined by the condition

d"Z
Jm e

= 0. (2.20)

The objective of combining such a condition with PV -conservation is to obtain a system
of equations of the highest possible accuracy, but having no high frequency components
in the solution — the ultimate filtered system. Such a system has yet to be explicitly

derived.
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3. FILTERING INTEGRATION SCHEMES

3.1 Filtering Characteristics of Simple Schemes

The frequency-selection characteristics of time integration schemes can be de-

duced by analysis of their application to the simple linear advection equation

ou  oUu

5 teg =0 (3.1)

which, for a single wave U(z,t) = u(t) exp(ikz), becomes

d
741:' +iwu =0 (3.2)

with w = kec. For example, the Euler forward scheme is

n

,u’n+1 —u .
+wu” =0

At

which can be solved immediately for u”+!:
u™t! = (1 —dwAt)u" = Au”. (3.3)

This is unstable for all frequencies, since |A| = v1 +w?A#? > 1. Higher frequencies

are amplified most by this scheme.

The Euler backward or Matsuno scheme is defined by a two step process:

u* —un 4 . . 0
wu =
At v
,un+1 — ,un
i + iwu* = 0.

Solving for u™*!, one obtains
! = (1 — WA - iwA)u" = A"

and the modulus of the amplification factor ) is

Al = /1= (A + (ALY (3.4)

which is 1 for w = 0, less than 1 for |wA¢| < 1 and greater than 1 for |wA¢| > 1 (solid
curve, Fig. 3.1). To ensure stability, At is chosen so that wA¢# is less than 1 for the

highest frequency occurring. 130
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The Courant-Friedrichs-Lewy criterion requires wAt < 1 for stability. However,
|A| is a minimum for wAt = 1/+/2, and normally At is chosen so that this equality
holds for the highest frequency occurring. In that case the damping increases monoton-
ically with frequency. It should be noted that the Euler backward scheme is a rather
blunt instrument as far as frequency selection is concerned. The amount of damping is
controled by At; there is no other parameter available to determine a cutoff frequency
separating modes to be retained from those to be removed. For wAt small, the damping

factor is given approximately by
s L ,2 A2
Arl-—-w At (3.5)

Thus, with At = 360s, motions with periods of 6 hours are damped by a factor of about
0.995 for each timestep. For a period 7 = 12h the value is 0.99875 while for 7 = 3h it is
0.98. Even the highest frequency is damped by a factor of only 0.866; ideally, it should

be close to zero.

Kurihara (1965) investigated the properties of the following scheme:

u* —u”

At]2

+iwu” =0

ok n
u m—

el +wu* = 0.

At
un+ 1 y"

At

+wu =0.

Eliminating intermediate quantities, one obtains for u"**:
utl = [(1 —w?Af?) —iwAt(1 — ;—wz At )] u* = "

and the modulus of the amplification factor A is easily found to be

1A = \/1 — (WAl + : (wAl),

This response is shown in Fig. 3.1 (dashed curve). It is more frequency-selective than
the Euler-backward scheme, but more expensive; for a nonlinear equation, an extra eval-
uation of the nonlinear terms is required. Many other variations of the Euler backward
scheme have been formulated. Regarded as filtering schemes, they tend to be inflexible
and to damp the signal along with the noise.
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3.2 Laplace and Z-transform schemes

A filtering integration scheme which has arbitrarily sharp frequency selection
properties has been formulated using the Laplace transform (LT) technique (Lynch,
1991). This scheme is capable of faithfully simulating the low frequency evolution of
the atmosphere whilst eliminating high frequency oscillations. The scheme has also been
combined with a Lagrangian treatment of advection, giving stable integrations for long

time-steps.

A brief description of the LT scheme will be given here; for fuller details, see
Lynch (1991) and references therein. Consider a function f(t) with LF and HF compo-

nents

£(t) = A, explioo,t) + A, expliyt) 5 lwr| < Jwy | (3.6)

where w, represents a Rossby wave frequency and w, a gravity wave frequency. The

Laplace transform of (6) is

4 4

, fa) = s —iw, 8—iw, (3.7)

with a pole near the origin (at s = iw, ) corresponding to the LF component (Rossby
wave) and a pole far from the origin (at s = iw, ) for the HF component (Fig. 3.2). The

original function is recovered by applying the inverse LT:

(1) = L {f} = = / e f(s)ds (3.8)

21

where C is a line parallel to the imaginary axis and to the right of the origin.

The HF component of f(t) may be eliminated by replacing C by a circle C* of
radius w,, such that |w,| < w, < |w,] (Fig. 3.2):

PO =LAt = 5 § e flo)da (3.9)

The value of the integral defining f* is determined by the residue of the integrand at
the pole 8 = iw, falling within C* and corresponding to the Rossby wave. The pole
at s = iw,, arising from the HF component, falls outside C* and contributes nothing.
Thus,

F () = A, exp(iw, t) (3.10)

so that £*L acts as an ideal lowpass filter with a cutofl frequency w..
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In practice the integral (9) must be evaluated numerically. The circle C* is
approximated by a circumscribed N-gon C% and the integrand is evaluated at the
midpoints s, of C}, (Fig. 3.3). The discrete modified inverse Laplace transform is then

given by
N

Ly{f} = 2—% D e f(sa)As,. (3.11)

n=1
The numerical operator L £ is no longer an ideal lowpass filter. It can be shown that,

if the frequency response Ry (w) is defined by
Ly L{e“'} = Ry (w) - e

then Ry is given approximately by the following expression:

1

S

(3.12)

For N a multiple of 4, this is the square of the response of a Butterworth filter of order
N/2. Tt approximates a step function with a corner point at w = w.. The slope of the
response at the cutoff point, and thus the width of the transition between pass- and
stop-bands, can be made arbitrarily sharp by increasing N. Curves of Ry (w) for various

values of N are shown in Fig. 3.4.

Now consider the application of the LT technique to the simple oscillation equa-

tion (2). The Laplace transform of (2) with time-origin at ¢, = nAt, is
8l —u, +iwit =0
which is immediately soluble for 4, giving

- Un
U =

s+ iw’

Now applying L}, at time t = ¢, + At gives

u, . =L n

which is the analytical solution u,,; = u, exp(iwAt) multiplied by the response function

Ry (w). Thus, one obtains

= Ry (w) - u, exp(iwAt)

t=A1

Unp1 A Ung ’ | < w,
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w,, =0 , lw] > w.

and the scheme preserves LF components and annihilates HF constituents.

The application of the LT method to a general nonlinear system will now be
described. Let the state of the system at time ¢ be specified by X(t), which is governed
by (2.3):

dX

= +HLX +N(X) =0 (3.13)

where L is a matrix and N a nonlinear vector function. If the system is in the state X°

at time £ = 0 then the LT of this equation is
MX +N(X)=X°

where M(s) = (sI + iL) with I the identity matrix. If one considers the evolution of
the system over a short time interval (0, At), and assumes that the nonlinear term does

not vary, it follows that

X=M"1[X"-Ns

where N° = N(X°). To find the solution at time ¢ = At, the inverse LT is applied:

X(At) = £ {M~! [X° — N°/s]} ' ;

t=At

If only the slowly varying component of X is of interest, L~ may be replaced by the

modified inverse L*, which acts to filter out the HF components:

X! = X*(At) = £ {M™" [X* -~ N°/s]}

t=At

Having the solution at ¢ = At, one may proceed stepwise to extend the forecast: the

solution is advanced from nAt to (n + 1)At by

Xt = £ {M~ X" — N"/s]} 1 . (3.14)

t=At

Numerous other formulations of the timestepping algorithm are also possible.

The LT scheme was implemented in a limited area barotropic model, and com-
pared to a conventional scheme (reference model). The initial data was the same as
used for the Daley scheme described in §2.4. The 24 hour LT forecast is shown in Fig.
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3.5(a); it is very similar to the reference, which was shown in Fig. 2.1(b). Fig. 3.5(b)
shows the difference between the two forecasts (LT-Ref.). The rms height and wind
differences between the LT and reference forecasts were 3.23m and 0.65ms~'. These

are comparable to the values 2.67m and 0.77ms~! obtained for the Daley scheme.

A number of perturbation experiments were also carried out to demonstrate the
shock-proof nature of the LT scheme (see Lynch, 1991 for details of initial fields). A
height perturbation, shown in Fig. 3.6(a) was added to the mass field after one hour of
the forecast; it consists of a High and a Low pressure anomaly, both of amplitude 120m.
The wind field was adjusted by the corresponding geostrophic wind perturbation. The
time step was 1 hour for both forecasts. The absolute values of the maximum positive
(High) and negative (Low) differences between the perturbed and unperturbed forecasts
are shown in Fig. 3.6(b) ( the LT results are denoted SALT and the reference forecast by
SLSI). For both models the High weakens and the Low intensifies, which is consistent
with geostrophic adjustment theory. For cyclonic flow the geostrophic wind exceeds
the gradient wind, so, if the wind perturbation is assimilated the Low must deepen to
maintain gradient balance; by a similar argument the High must weaken. The character
of the response differs for the two models: the LT model adjusts rapidly to the inserted
data, and the evolution is smooth after HH+02; for the reference model (SLSI) the
amplitudes of the High and Low continue to oscillate for several hours. The ability of
the LT scheme to assimilate a perturbation without data shock is an attractive feature
of the scheme. If data is to be inserted hour by hour, noise from earlier insertions
may interfere with quality control and assimilation of later ones. The reference model
obviously suffers in this respect; the response of the LT scheme is greatly superior, and

the method has considerable potential for asynoptic data assimilation.

A filtering scheme based on the Z-transform (ZT), the discrete analogue of the
LT, has been devised, and the two schemes have been compared (Lynch, 1991). Both
were found to produce very similar results. The ZT is applied to a system of equations
which have already been discretised with respect to time, so it may be slightly easier to
adapt an existing model to use this scheme. Properties of the Z-transform are given in
the Appendix of Lynch (1991); this transform also plays a central réle in the analysis
of digital filters, to be discussed next.
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Fig. 3.5. (A) 24 hour forecast with the LT scheme. (B) Differ-
ence between the forecast with the LT scheme and the reference
(LT=—Ref.). The rms height and wind differences between the LT
and reference forecasts were 3.23 m and 0.65 m/s.
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Fig. 3.6 (A) Height perturbation, which was added to the mass
field after one hour of the forecast. The wind field was adjust-
ed by the corresponding geostrophic wind perturbation. (B) Abso-
lute values of the maximum positive (High) and negative (Low)
differences between the perturbed and unperturbed forecasts (the
LT results are denoted SALT and the reference forecast by SLSI).
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4. DIGITAL FILTERS

Several filtering integration schemes have been considered above. The Euler-
backward scheme is simple to apply but suffers from poor selectivity. The Laplace
and Z-transform schemes are highly selective but more complex and computationally
demanding. It is desirable to develop schemes formulated in the time domain rather
than in some transform space, which are simple to apply, numerically economical and
sufficiently selective. Schemes which are both computationally economical and highly

discriminative with respect to frequency appear to be lacking at present.

The theory of digital filters can be used to construct a time integration scheme
having a specified frequency response. Thus, if the desired amplification or damping is
given as a function of frequency, a finite differencing scheme may be designed having
a frequency response which approximates the specified transfer function to any accu-
racy required. The usual method of forming damping schemes has been an empirical
process, where a time-stepping algorithm is defined and its frequency response charac-
teristics subsequently examined. In contrast, the digital filtering approach enables one
to construct filtering time integration schemes in an efficient, systematic and objective

manner.

4.1 Definition of Digital Filters

Given a discrete function of time, {=, }, a nonrecursive digital filter is defined

by

N

Yo = Z Ay Tp_j . (4.1)

k=-N
The output y, at time nAt depends on both past and future values of z, , but not on
other output values. A recursive digital filter is defined by

N L
Yn = Z QT +Zbkyn-—k~ (4.2)
k=K k=1

The output y, at time nAt in this case depends on past and present values of the input
(for K = 0), and also on previous output values. (Occasionally, future input values are
also used (K < 0), in which case the recursive filter is non-causal). Recursive filters
are more powerful than non-recursive ones, but can also be more problematical, as the

feedback of the output can give rise to instability. The response of a nonrecursive filter
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to an impulse §(n) is zero for |n| > N, giving rise to the alternative name finite impulse
response or FIR filter. Since the response of a recursive filter to this input can persist

indefinitely, it is known as an infinite impulse response or IIR filter.

The frequency response of a recursive filter is easily found: let =, = exp(inf)
and assume an output of the form y, = H(8) exp(inf); substituting into (2), the transfer
function H(#) is

N .
E a; e~ ik? ;
H(f) = —= : (4.3)
1— 3 bpeike

k=1

-For nonrecursive filters the denominator reduces to unity. This equation gives the
response once the filter coefficients a; and b, have been specified. However, what is
really required is the opposite: to derive coefficients (and as few as possible) which will
yield the desired response function. This inverse prbblem has no unique solution, and
a great variety of techniques have been developed. Only the most elementary design

techniques will be considered here; for further information see, for example, Parks and

Burrus (1987).

Recursive filters generally have superior performance to nonrecursive filters with
the same total number of coefficients. This may be explained by noting that the transfer
function (3) can be written

| Izv: a.z"F
H@O) = =X (4.4)

L

1- E bkz"‘

k=1

where z = exp(i6). For a nonrecursive filter this is a polynomial in 1/z; for a recursive
function it is a rational function in 1 /z, and is more capable of fitting a specified
function having sudden changes or narrow features. Against this, the recursive filter
will obviously cause problems if the denominator vanishes. It can be shown that a

recursive filter is stable if the roots of the characteristic polynomial

L

2k — Zbkzl"k =0

k=1

are inside the unit circle |2| < 1.

Numerous accounts of recursive digital filters are available in publications on
digital signal processing (e.g., Strum and Kirk, 1988; Oppenheim and Schafer, 1989).
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For a review in the meteorological literature, see Raymond (1991), where another class

of filter, the implicit filter, is also discussed.

4.2 Design of Nonrecursive Filters

Consider a function of time, f(t), with low and high frequency components. To
filter out the high frequencies one may proceed as follows:

[1] calculate the Fourier transform F(w) of f(2);

[2] set the coefficients of the high frequencies to Z€ero;

[3] calculate the inverse transform.

Step [2] may be performed by multiplying F(w) by an appropriate weighting function
H.(w). Typically, H,(w) is a step function

1L, |w|< |wel;
H(w)=<¢" ! 4.5
@=1{a 3 b (4.5)
where w, is a cutoff frequency. These three steps are equivalent to a convolution of F(?)
with h(t) = sin(w.t)/wt, the inverse Fourier transform of H.(w). This follows from the

convolution theorem

F{(h» HO} = F{h} - F{f} = H.(w) - F(u) (46)

Thus, to filter f(%) one calculates

+ 00

70 = (hr D) = / B(r)f(t - )dr. @)

- 00

For simple functions f(t), this integral may be evaluated analytically. In general, some

method of approximation must be used.

Suppose now that f is known only at discrete moments ¢, = nAt, so that
the sequence { s feasfoisfors iy fo, e } is given. For example, f, could be the value
of some model variable at ‘a particular grid point at time ¢,. The shortest period
component which can be represented with a time step At is 7y = 2At, corresponding
to a maximum frequency, the so-called Nyquist frequency, wy = 7/At. The sequence

{ fa } may be regarded as the Fourier coefficients of a function F(6):

FB)= > foein,

n=-—o0
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where 8 = wAt is the digital frequency and F(6) is periodic, F(0) = F(§ 4+ 2r). High
frequency components of the sequence may be eliminated by multiplying F (8) by a

function H,;(f) defined by

1, 8<e)
H"(”)*{o, 8] > 16., (48)

where the cutoff frequency 6, = w,At is assumed to fall in the Nyquist range (—m, )
and H;(8) has peribd 2w. This function may be expanded:

> : 1 [ .
H;(8) = Z h,e~"¢ ; h, = ﬂ_/ H,(6)e'’ db. (4.9)

The values of the coefficients A, follow immediately from (8) and (9):

b, = Snnle (4.10)

nw

Let { f:} denote the low frequency part of { f,,}, from which all components with
frequency greater than 8. have been removed. Clearly,
Hy(0)-F(6) = Y fre ™.

The convolution theorem for Fourier series now implies that H,(8)-F(6) is the transform

of the convolution of {h,,} with { fa }:

fi=(hxf) = Z b fo-- (4.11)

k== o0
This enables the filtering to be performed directly on the given sequence { fa } It is the

discrete analogue of (7). In practice the summation must be truncated at some finite

value of k. Thus, an approximation to the low frequency part of { f,,} is given by

= hfas (4.12)

k=-N
Comparing (12) with (1), it is apparent that the finite approximation to the discrete

convolution is formally identical to a nonrecursive digital filter.

As is well known, truncation of a Fourier series gives rise to Gibbs oscillations.
These may be greatly reduced by means of an appropriately defined “window” function.
The response of the filter is improved if h, is multiplied by the Lanczos window

v — sin(nm/(N +1))
" nw/(N +1)
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where the cutoff period 7, = 27 /w, is 6 hours, with and without modification by
a Lanczps window.

Fig. 4.1.
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The transfer function H(#) of a filter is defined as the function by which a
pure sinusoidal oscillation is multiplied when subjected to the filler. For symmetric
coeficients, h; = h_;, it is real, implying that the phase is not altered by the filter.
Then, if f, = exp(inf), one may write f* = H(f) - f,, and H(0) is easily calculated by
sﬁbstituting Ja in (8): |

N N '
H(9) = 2 hpe it = [ho + 2th coskH] . (4.13)

k=-N k=1

The transfer functions for a windowed and unwindowed filter are shown in Fig. 4.1.
These were calculated for the cutoff period 7, = 6 hours, span T, = 2NAt = 6 hours
and timestep At = 360 s (as used in the application to initialization described below).
The parameter values are therefore N = 30 and 6, = w/30 ~ 0.1. It can be seen that the
use of the window decreases the Gibbs oscillations in the stop-band |6] > |.|. However,
it also has the effect of widening the pass-band beyond the nominal cutoff. For a fuller
discussion of windowing see e.g. Hamming (1989) or Oppenheim and Schafer (1989).

One of the simplest design methods for nonrecursive filters is the expansion
of the desired filtering function, H(f), as a Fourier series, and the application of a
suit‘a.ble window function to improve the transfer characteristics. That is the method
employed above. An alternative method called frequency sampling fits the desired
frequency response by making a selection of values and calculating the inverse discrete
Fourier transform to obtain the filter coefficients. A more sophisticated method uses
the Chebyshev alternation theorem to obtain a filter whose maximum error in the pass-
and stopbands is minimized. This method yields a filter meeting required specifications
with fewer coefficients that the other methods. The design of nonrecursive and recursive
filters is outlined in Hamming (1989), where several methods are described, and fuller
treatments may be found in Parks and Burrus (1987) and Oppenheim and Schafer
(1989).

4.3 Design of Recursive Filters

The design of recursive or IIR filters is more difficult than that of nonrecursive
or FIR filters. Several techniques are described in the references at the end of the last
section; only one such method will be described below. In this approach, a classical
analogue lowpass response is specified. A transformation of variables then converts this

to discrete time, and the required filter coefficients are deduced.
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4.3.1 Classical Analogue Filter Response

There are four classical filter functions which may be used as a basis for digital
filter design. They are determined by the manner in which the ideal lowpass filter
response is approximated in the pass- and stopbands. If a Taylor series approximation
truncated at N terms is applied at w = 0 and w = oo, the result is a Butterworth filter.
The Chebyshev (type I) filter uses a minimax approximation across the passband and
a Taylor series at w = co. The inverse, or type II, Chebyshev filter uses a Taylor series
expansion at w = 0 and a minimax approximation across the stopband. The elliptic

filter involves a minimax approximation in both the passband and the stopband.

It is important to choose the type of filter appropriate to the problem. All
four types are optimal in one sense or another. The Butterworth filter is the best
Taylor series approximation to the ideal lowpass filter magnitude at both w = 0 and
w = oo. The Chebyshev filter gives the smallest maximum error over the passband of
any filter having similar Taylor series accuracy at w = co. In a complimentary way, the
inverse Chebyshev filter minimizes the maximum deviation from zero in the stopband.
The elliptic filter involves four parameters (passband ripple, transition width, stopband

ripple and filter order) and for given values of any three minimizes the fourth.

The transfer function for the Butterworth filter of order N has a particularly
simple form; for cutoff frequency w, it is
|H(iw)|* = i'l(Tl/w'j?F (4.14)
As a function of s, the parameter appearing in the Laplace transform, the response of
the prototype filter (with cutoff frequency w, =1) is
. 1
14 (—s2)¥°
This function has 2N poles evenly spaced around the unit circle. To ensure stability of

the filter, the NV poles in the left half-plane are selected for H(s); H(—s) will then have

H(s)-H(-s) = |H(s)|" (4.15)

the remaining poles. There is a simple formula for the poles s, = u; + iv;:

with k = 0,1,2,...,N — 1. The Butterworth filter is called mazimally flat, since the

(4.16)

) Vg =cos[

first 2V — 1 derivatives vanish at w = 0.
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4.3.2 Conversion of Analog to Digital Filter

There are several methods of deriving a digital transfer function from one of
the classical analogue expressions. They all involve some mapping from the s-plane
to the z-plane, chosen to preserve properties such as optimality of the filter. The
matched Z-transform design procedure is conceptually the simplest (although not the
most effective). Poles and zeroes of the transfer function H(s) are mapped directly to
poles and zeroes of H(z) by a simple substitution. Consider the inverse tfa.nsform ofa

simple pole

o { s 1 a} —explat). (4.17)

If this is sampled at intervals At and the Z-transform calculated, one has:

Z{exp(anAt)} = 1 !

— ol z-1 -

(4.18)

Now assume that H(s) is rational and is split into factors (s — a). The relations (17)
and (18) suggest the substitution (s — a) — (1 — exp(aAt)/z). Allowance for a general
cutoff frequency is made by the change s — s/w.. Combining these, the transformation

from prototype analog to general digital transfer function is achieved by
(8 —a) — /(1 —g*Webtgl) (4.19)

mapping the analog pole or zero at s = « to the digital pole or zero at z = exp(—aw,.At).
This produces a transfer function H(z) which is a rational function of 1/z. The filter

coefficients can then be ascertained by comparison of H(z) with (4) above.

The matched Z-transform procedure is very easy to apply, but has the disad-
vantage that an all-pole analog filter becomes an all-pole digital filter, with no zeros
to help shape the frequency response. A more powerful technique is the bilinear trans-
formation; the theory of this procedure can be found in the literature on digital signal
processing. The definition is as follows: the mapping from the s-plane to the z-plane is

given by

8= tan(:)c 72) [i ; 1] (4.20)

where 0, = w,At is the cutoff frequency. Conversion from a prototype analog filter to
a digital filter with cutoff frequency 8. is implemented by the substitution of (20) into
the transfer function H(s) to obtain a function of 2.
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5. APPLICATION OF DIGITAL FILTERS

To illustrate the potential usefulness of digital filtering, two applications will
be described. The first is the use of a nonrecursive filter to construct an initialization
scheme. Only the simplest design procedure will be considered; it is possible to increase
the efficiency of the scheme significantly by using an optimal filter design. The second
application is the combination of a recursive filter with a time-stepping algorithm to
remove high frequency components of the solution. The classical Robert-Asselin fil-
ter, defined empirically, is examined and compared to some alternative recursive filters

designed using the methods of §4.3.

5.1 Inmitialization using a Nonrecursive Filter

An initialization scheme using a nonrecursive digital filter has been developed
by Lynch and Huang (1991) for the HIRLAM model. The value chosen for the cutoff
frequency corresponded to a period 7. = 6 hours. With the time step A¢ = 6 minutes
used in the model, this corresponds to a (digital) cutoff frequency 8, = 7/30. The
coeflicients were derived by Fourier expansion of a step-function, truncated at N = 30,

with application of a Lanczos window, and are given by

h - [sin(m/(N +1)) (sin(noc) ) _

nr/(N +1)
The frequency response was depicted in Fig. 4.1. The central lobe of the coefficient

function spans a period of six hours, from £ = —3 hours to # = +3 hours. The summation
in (4.1) was calculated over this range, with the coefficients normalized to have unit sum
over the span. Thus, the application of the technique involved computation equivalent

to sixty time steps, or a six hour adiabatic integration.

The uninitialized fields of surface pressure, temperature, humidity and winds

were first integrated forward for three hours, and running sums of the form

F0)=Shofo + > by, (5.1)

where f, = f(nAt), were calculated for each field at each gridpoint and on each model
level. These were stored at the end of the three hour forecast. The original fields were

then used to make a three hour ‘hindcast’, during which running sums of the form

fg(O) = —;-hOfO + Z h—n fn (5.2)

n=-1
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Fig. 5.2. The initial pressure field chosen by Richardson for his
barotropic forecast. The initial winds were in geostrophic bal-
ance wih the pressure.
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Fig. 5.3. Time evolution of (A) zonal wind and (B) meridional
wind at a particular gridpoint for a forecast starting from
Richardson's data. Solid curves are for the original data, dashed
curves for data initialized by a digital filter.
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were accumulated for each field, and stored as before. The two sums were then combined

to form the required summations:

£(0) = ££(0) + £5(0). (5.3)

These fields correspond to the application of the digital filter (4.1) to the original data,
and will be referred to as the filtered data.

Fig. 5.1 shows the evolution of (a) the areally averaged surface pressure tendency
and (b) the surface pressure at a grid-point in the Alps, for a 24 hour forecast starting
from uninitialized data (solid curve) and from the digitally filtered fields (dashed curve).
For comparison, the result of applying a normal mode initialization is also shown (dotted
curve). It is clear that the filtering of the initial fields results in removal of the spuriously
large tendencies which are found in the uninitialized run. The difference between the two

forecasts was remarkably small: the rms surface pressure difference was only 0.07 hPa.

For further details, see Lynch and Huang (1991).

As a diversion, the digital filtering method was used to initialize the idealized
pressure and wind fields which Lewis Fry Richardson (1922) used for his introductory
example, in which he integrated the linear shallow water equations. The initial pressure
field is depicted in Fig. 5.2; the wind was derived using the geostrophié relationship.
Remarkably, the fields chosen by Richardson on considerations of smoothness closely
resemble a natural oscillation of the atmosphere: 85% of the energy in these fields is

accounted for by a single eigenmode, the so-called five-day wave.

A global barotropic model similar to Richardson’s was used to make a five day
integration using the idealized data (Lynch, 1992). The variation of the zonal and
meridional winds at a point in the English Channel is shown in Fig. 5.3(a) and (b).
Superimposed on the predominant variation with a period of five days, higher frequency
oscillations can be seen. For the chosen parameter values, the Kelvin wave has a period
of 34 hours; this can be seen in the variation of u. The gravest eastward-travelling
gravity wave period is 13.5 hours; it can be seen clearly in Fig. 5.3(b) since v ~ 0 for
the Kelvin wave. To eliminate this “noise”, while preserving the Kelvin wave, a cutoff
frequency corresponding to a period of 24 hours was chosen and the data initialized
with a digital filter. The dashed curves in Fig. 5.3 show the result: the high frequency
variation is absent from the initialized forecast.
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5.2 Recursive Filters For Use in Time Integration Schemes

Suppose the oscillation equation (3.2) is integrated using a leapfrog timestepping

scheme:
n—1

+iwu” = 0. (5.4)

u"t! — oy

2At

Seeking a solution u” = u°A", one immediately finds
A+ 2{wAtA -1 =0.
If [wAt]| < 1 the roots are unimodular (|A| = 1). For |wAt| < 1 they are:
Ay = (1 —iwAt+ ;—sztz) =Y exp(—iQAt);

Ao~ —(1+iwAt+ %-szt2) ~ — exp(iwAt).

The first root (A, ) represents the physical solution; the second ()_) is spurious, and
represents a computational mode having no counterpart in the original equation (3.2).

The leapfrog scheme is neutral (for |wAt| < 1), so the computé.tional mode is undamped.

Robert (1966) introduced a time filter for use in conjunction with the leapfrog
scheme. An analysis of the filter was later carried out by Asselin (1972). The filter is
defined by the following operation (overbars denote output values):

E,rzun + _21_e(un+1 — 0" 4+ ur-1 )
or, in notation more consistent with that used above (z for input, y for output),
¥" = (aoz” +a_ z"*!) + by ! (5.5)

where a; = (1 —€), e, = ¢/2 and b, = €/2. The response function H(z)is

1—¢)+(e/2)z
1-—(e/2)z-1

H(z) = ( (5.6)

(this follows from (4.4) above). It has a pole at z = ¢/2 and zeros at z = 0 and
z=2~—(2/¢). For e = £, H(—1) = 0 and the highest frequency component (§ = 7 and
7 = 2At) is completely removed. The filter is stable if the pole falls within the unit

circle, i.e. if |¢] < 2.
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Next, two alternative recursive filters will be defined, based on the second order

Butterworth analog filter. From (4.15), this has a squared amplitude response

1 1 1
H(s)|" = = . 5.7
e =155 L2+\/§s+1] [32—~\/§3+1] -6
The first term has two poles in the left half-plane so, to ensure stability of the filter,
H(s) is defined in terms of these:

His) = L? +\;§s+1] N [(3“31)1(3 “‘32)] (5:8)

where s, = (-1 + z)/\/i and s, = (-1 — 1,)/\/5 If the matched Z-transform approach
is used, H(s) is converted to H(z) by means of (4.19), resulting in

22

H(z) = [z — exp(5:0.)][z — exp(s20. )]

(5.9)

with 8, = w.At. This has two poles within the unit circle, and a double zero at the

origin. It corresponds to a filter of the form
yn.-i-l — a0$n+1 + (blyn + bzyn—l )

(the coeflicients are found by compai‘isbn with (4.4)) which is different to the Robert-

Asselin filter (5) but requires the same amount of storage.

Alternatively, if the bilinear transformation (4.20) is applied to (5.8), the result-

ing transfer function is

pa(z +1)°
(z = 1) + v2p.(2* = 1) + p2 (2 + 1)

where p, = tan(d,./2). Since there is a (double) zero at z = —1, the highest frequency

H(z) = (5.10)

is completely annihilated, which is a desirable feature for a lowpass filter. The transfer

function corresponds to a filter of the form
g+ = (22" +a2” + a2 ) + (B + by )

which requires the storage of more values than before.

The final filter to be considered is obtained by a simple frequency transformation

applied to the elementary two-point average

y™tt =2 (e 4 2"). (5.11)
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Fig. 5.4. Frequency response (magnitude of transfer function) for
four recursive digital filters. (A) Robert-Asselin filter. (B)
Second order Butterworth, digitized by the matched Z-transform
method. (C) Second order Butterworth, digitized by the bilinear
transformation. (D) Simple two-time averaging filter, with fre-
quency transformation. (Details of the design techniques are
given in the text).
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The transfer function of this nonrecursive filter is

z+1

H(Z) = 22

(5.12)

(this follows from (4.4) above) which has a magnitude

1+ cosf
| R(8) = \/———2——

The cutoff is at § = 7/2, where the gain is R = 0.707. This cutoff may be changed to
an arbitrary value 6, by the following transformatlon (see Strum and Kirk, 1988, p.690)

z—a _ sin(w/4—6./2)
T az ’ &= sin(w/4 + 6. /2) (5:13)
'The transfer function now assumes the form
, (1-a)(z+1)
H(z) = . 14
Since this has a zero at z = —1, the highest frequency is still removed; however, the

: t'ra,.nsfo_rmation has changed a nonrecursive filter to a recursive one: (14) has a pole at

z = a. The form of the filter is
¥ = (ao2" +arz”) + (biy")

whigh is different in form but comparable in complexity to the Robert-Asselin filter.

The magnitude of the i'esponse for each of the four filters (6), (9), (10) and (14)
is shown in Fig. 5.4. The Robert-Asselin filter (6), shown in Fig. 5.4(a), attenuates
high frequencies more than low, and the degree of damping increases as ¢ increases in
thé range [0,%]. If the highest frequency is to be completely removed, € = 2 must be
chosen and substantial damping of lower frequencies endured. To a first approximation
~ the damping of thjs filter increases linearly with frequency (which is a far cry from the
ideal step-function). The Butterworth filters (9) and (10), shown in Fig. 5.4(b) and (c),
tend to have flatter response curves for the lowest frequencies, which is desirable, and
their decrease (rp]l—oﬁ') is steeper than that of the Robert-Asselin filter. However, for
nominal cutoff frequency §, > w/4 they amplify some frequencies (assuming response
normalized by H(0) = 1); this is generally unacceptable, so that §. must be chosen to
avoid it. The bilinear transform filter (Fig. 5.4(c)) ensures complete removal of the
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highest frequency. Finally, Fig. 5.4(d) shows the response of the frequency transformed
time-average filter (14). If the main aim is to eliminate the computational mode, which
has a period T = 2At, this would seem to be an attractive filter: the highest frequency
is completely removed, while a choice of 8, close to 7 ensures that damping of lower

frequencies is negligible.

The choice of a filter must be governed by the specific requirements of the ap-
plication. It is not possible to rank filters in an order of suitability to cover all circum-
stances. The purpose of the above comparison was to indicate the rich variety of options
available to the modeller. The Robert-Asselin filter has proved immensely popular, and
has been widely used for over 20 years. However, it is not the last word; perhaps some of
the alternatives considered above might merit further investigation. It is worth noting
that, with the larger timesteps made possible by semi-Lagrangian advection schemes,
the cutoff between signal and noise occurs at a higher digital frequency (because, for w,
fixed, 8. oc At). Thus, a filter with a sharp cutoff at a high frequency would appear to
'be needed; the filter depicted in Fig. 5.4(d) fulfils this requirement.

It was noted in §3.2 that the Laplace transform integration scheme had damp-
ing characteristics similar to a Butterworth filter. Using tﬁé design methods described
above, it is possible to construct a recursive filter with a transfer function approaching
a specified ideal (to any degree of approximation, provided the order of the filter is arbi-
trarily large). Thus, it should be feasible to construct an integration scheme, operating
in the time domain, with properties similar to the LT scheme. This might provide a

means of achieving the desired filtering in a computationally more economical way.

In the foregoing, only the amplitudes of the transfer functions have been dis-
cussed. Since these functions are cdmplex, there is also a phase change induced by
the filters. Space prohibits further discussion here; however, it is essential that the
phase characteristics of a filter be studied before it is considered for use. Ideally, the
phase-error should be as small as possible for the low frequency components which are
metedrologically important. The error in the high frequency stopband is unimportant.
It is salutary to recall that phase-errors are amongst the most prevalent and pernicious

problems faced by the forecaster.
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6. CONCLUSION

6.1 General Remarks

Two approaches to filtering have been considered: modification of the governing
equations to eliminate HF solutions and numerical integration schemes which selectively
dampen these components. The use of filtered equations has the attraction that a
solution completely free from gravity-wave noise is guaranteed; damping integration
schemes keep such noise under control but do not remove it entirely. This difference
would favour filtering the equations. However, no filtered system has yet been shown to
leave the rotational motions unscathed, whereas integration schemes can be designed to
have negligible attenuation at low frequencies. There are arguments for both approaches,

and it is not possible to make a conclusive choice at this stage.

The very notion of eliminating what is called “noise” is open to debate. There
is no doubt as to the presence of high frequency motions in the atmosphere, and some
evidence suggests that they may have a function in the development of meso-scale
systems. If the feedback from HF components to the meteorologically significant motion
is found to be important in certain circumstances, the application of filtering may
be injudicious. Thus, removal of gravity waves cannot be unequivocally justified; the

problem becomes all the more acute as model resolution increases.

There has been active investigation recently of the existence of a slow manifold.
The state of the atmosphere, or of a model, can be represented by a point in a phase-
space, X. The slow manifold, S, is a hypothetical invariant subset of X, of lower
dimension than the full space, in which the solution evolves without any high frequency
components (Leith, 1980). Invariance implies that a flow which starts in S remains
therein for all time. The concept of a slow manifold is very useful as a descriptive tool
in understanding the process of initialization. To what extent it has a more fundamental

role, is a subject of continuing investigation, and several problems remain to be solved.

Under what circumstances does a slow manifold exist? How can the governing
equations be reduced on such a manifold? Is the manifold stable to perturbations? Is
it truly invariant? It appears now to be very doubtful if such an invariant subspace
exists in the atmosphere. There is evidence that nonlinear interactions between the
slow modes inevitably result in the generation of freely propagating gravity waves. This
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phenomenon, called spontaneous emission, has been discussed recently by Meclntyre and
Norton (1991). Lorenz and Krishnamurthy (1987) considered a simple nonlinear system,
and concluded that no slow manifold exists. Jacobs (1991) presents a proof that there
is a slow manifold for this model. Such disagreement serves to demonstrate the complex
nature of the problem, even for a relatively simple system of five 0.d.es. The problem

for the full primitive equations is wide open.

6.2 Digital Filtering and Superbalance

When the model equations are separated into slow and fast components, the

latter are governed by equation (2.5) above:

dZ
If |Z| < |AzZ| a formal solution can be obtained by an iterative process (Picard):

Z™ =4A; [Ny + 20 V)

and is expressible as an infinite series:

NN p o1, BN
S(t) = (ZAZI)Z("'AZI) dtsz .
s=0

The general solution can then be written in the form.
Z(t) = A exp(—iAzt) + S(t). (6.2)
The first-order balance condition Z = O at t = 0 (Machenhauer, 1977) yields the solution
Z(t) = —iA;* S(0) exp(—iAzt) + S(2)

in which the coefficient of the HF component is small but nonzero. Applying the digital
filtering initialization (DFI) technique to (2) annihilates the first rhs term and gives

Z(0) = S(0) | o (6.3)
which implies A = 0. The solution is then given by

Z(t) = S(t) o (6.4)
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which has no HF component. Taking the s-th time derivative of (1) yields

¢Ny _ [, 47, d"Z
at M T derr |

Substituting this into (3) with the summation truncated at p — 1 terms gives

a0 =) [ 605 (0 57) + Sy ()|

This can be simplified to a single term and, when the summation is carried out to its

infinite limit, it becomes

lim (iA5') 22

p— oo dtr =0

which is just the superbalance condition (Lorenz, 1980).

Despite the superlative appellation, the superbalance condition may not yield
a solution free from HF components. Even if the initial conditions (6.3) were used
(and this would require an infinite amount of calculation), spontaneous emission would
presuniai)ly" still be expected. There is one sure way to get a slowly evolving function:
let X(t) be the solution starting from the original conditions X(0), and X*(¢) the result
of convolution of this solution with the filtering function. X* is obviously slow but,
alas, it is not generally a solution of the governing equations. Now let X (t) be the
solution starting from the superbalance conditions (6.3). It would be nice to know the
co;mection between X* and Xs. For a linear system they are equal, but in general it
does not seem that much can be said, even if X is assumed to be slow. The question

needs further examination.
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