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ABSTRACT

The generation of effective perturbations is one of the major problems in ensemble forecasting.
Perturbing the initial conditions along the most unstable directions of the phase space of the system
ia a technique which may be most effective for determining the principal weather types consistent with
given initial data,

Numerical experiments have been performed to compute the most unstable perturbations (perturbations
growing fastest in a finite time interval) in a primitive equation model. The models used are forward
and adjoint tangent versions of the Integrated Forecasting System developed at the European Centre :
for Medium-Range Weather Forecasts and Météo France. These have been run with a honzontal
truncation T21, with 19 vertical levels, The perturbations are the singular vectors of the propagator
of the forward tangent model. A Lanczos algonthm has been used for the numerical computation of
the perturbations.

This Technical Memorandum presents some preliminary results. The computations have been done
for only one date. Although sensitivity studies require more significant data sets to be complete, we
are confident that some of the results will be confirmed by further experimentation.

Sensitivity of the calculations to different time intervals has been studied. Sensitivity to the norm used
in the definition of the adjoint of the tangent linear version of the full model and to the horizontal
diffusion coefficients have been analysed The impact of the normal mode initialization has also been
studled

Four classes of fastest growing perturbations have been found; two are characterized by a maximum
amplitude in the middle troposphere, while the other two have most amplitude close to the surface.
It is shown that the latter are damped by the boundary layer physics in the full model.

The T21L19 tangent time evolution of the perturbations has been compared to the non-linear evolution

when the perturbations are superimposed on a basic state in the T63L19 version of the ECMWF
model,

1. INTRODUCTION -

Ensemble forecast prediction (Leith, 1974) is based on the integration of the model equations from different
initial conditions. Perturbations are superimposed on a basic state to provide a fair representation of the
uncertainty of the initial state of the atmospheric flow.

Our aim is to compute the unstable sub-space for a T21L19 primitive equation model, and to study its linear
and non-linear time evolution. The model used for this study is the Integrated Forecasting S}i'stem (IFS), a
result of a eollaboration between Météo-France and ECMWEF. The model equations are described in Courtier
et al. (1991) The version of the IFS model used durmg th15 study is adiabatic, plus a horizontal diffusion

scheme.

Lacarra and Talagrand (1988) showed that "the short time evolution of the forecast error can be
approximated to a high degree of accuracy by a linear differential system". Their results were ebtained with
a rather simplified model. Rabier and Courtier (1991), applying the adjoint technique to fou:r dimensional
assimilation, studied the validity of the linear approximation of the IFS model. - They found tlhat the linear



approximation describes to a good degree of approximation the time evolution of small pexi:urbations for
about two days. In our study we will compute the fastest growing perturbations over time intervals no longer
than 36 hours. '

Moiteni and Palmer (1992) calculated in both a barotropic and a 3-level quasi-geostrophic model the fastest
growing perturbations using a linear approximation of the model equations. Mureau et al, (1992) used these
perturbations for predictability experiments with a T63L 19 version of the European Centre for Medium-Range

Weather Forecasts (ECMWF) model. ‘

In our work, the perturbations are computed using the forward and adjoint models. After this introduction,
section 2 describes the technique for calculating the unstable subspace, and the characteristics of the IFS
model. The basic state characteristics are described insub-section 2.3. In section 3 we compare the results
of experiments with optimization times of 12, 24 and 36 hours. In section 4 we study the impact of the
normal mode initialization procedure (NMI) on the pextﬁrbations computed over two time intervals, 12 and
24 hours. In sections 5 and 6 we analyse, respectively, the impact of the inner product definition and the

sensitivity to the coefficients of the horizontal diffusion scheme.

In section 7 we present the time evolution of the perturbations, when they are used to perturb the initial
conditions when a T63L19 version of the ECMWF full model is integrated. The growth is compared to the

tangent T21L19 IFS model integration. In the last section some conclusions are drawn.

Appendix A briefly describes the Lanczos method used during the experiments, while Appendix B reports
the actual configuration for an IFS-Lanczos computation inside the ECMWF IFS environment,

2. THE ADJOINT TECHNIQUE APPLIED TO THE IFS SYSTEM
In the first sub-section 2.1 we will briefly describe the adjoint technique applied to the computation of the.

fastest growing perturbations over a finite time interval. Some details of the primitive equations model used
in the computation will be given in sub-section 2.2. The definition of the adjoint of the tangent version of
the model equations depends on the inner product that characterizes the working space. Once an inner
product has been defined, it is possible to define its associated norm. Most of the expen'mer_lts' have been
performed with the norm of the state vector defined to be its total energy. The equations are linéarized

following the basic state trajectory.



2.1 The adjoint technique

Let y be the state vector in the phase space of the system. The evolution equations can be formally written
in the following way:
dt 2.1)

To find the fastest growing perturbations we have to identify, in the phase space of the system, the directions
that guarantee the fastest growth of the norm of the perturbations. These directions define the unstable sub-
space of the system. For small time intervals and small initial amplitude the growth is almost linear, and the

problem can be studied in the linear apprdximation. The model equations 2.1 can be linearized around a
basic state. This gives the linearized equations for the perturbation x:

% - Agx 22)

where A, is the tangent operator that corresponds to the model operator A.

Let us identify with L-L(tu,t) the propagator computed from 2.2: since it is a linear operator, it can be
represented by a matrix. We will use the same symbol for the operator and the matrix. The perturbation x(z)
at time ¢ is given by:

x) = L x{t) ' 2.3)

Let us define an inner product on the space of the perturbations:

x:y) = <xEy> - | 2.4)
where E defines some weighting factors, where <..;..> is the usual Euclidean scalar product. We can also
define the associated norm of a generic vector:

I P = Gesx) = < %E x> ' 2.5)
The norm of the perturbation at time ¢ is given by:

Ix(2)I? = (Lx;Lx) | (2.6)
Let us define the adjoint of the operator L with respect to the inner product (..;..) 2.4:

(Lx:3) = (L ) - @
Using the definition 2.7 in 2.6, the norm of the state vector x{f) at time ¢ can be computed in the following
way: -

1@ = (L xiL %) = (L™*'L x3%,) (2.8)



The square roots of the eigenvalues of the matrix L *#-L are called the singular values of the matrix L. The
eigenvectors of the matrix L*%L are called the singular vectors of L (hereafter SVs). Since in our case the

matrix L is real, the SVs are orthogonal. Let o2 be the eigenvalues of the matrix L%, and V the matrix

with the columns defined by the eigenvectors of L"'L. The following identity holds:

L L=V-% ¥T (2.9)
where the matrix 3 is a diagonal matrix with the values 0‘2 on the diagonal. The norm of a SV v{f) at time
t is given by:

VOF =L - Lv@sv, &) = o 1 v, (i) P | 2.10)

The computation of the perturbations with the fastest growth of the norm 2.5 of the vector x{f) is so reduced

to an eigenvalue problem.

In the IFS code, the adjoint of the tangent version of the model equations has been defined with respect to

the Euclidean inner product <..;..>. Let us identify with L* the adjoint of L with respect to the Euclidean

inner product <..;..>:

< L*x;y > = < x;Ly > - (2.11)

The adjoint with respect to the inner product (..;..) 2.4 can be deduced from L* using 2.3 and 2.7 (the

operator E is self-adjoint):

(x;Ly) =< x;E *Ly>=<L* -Ex;y> =< E"+L* + Ex;Ey > = (L% x;y) (2.12)

From 2.12 we have:
L®*-E'-L*E . ‘ (2.13)
Equation 2.13 defines the adjoint "% of the linéar operator L with respect to the inner product (..;..) 2.4,

when the adjoint L* of L with respect to the Euclidean inner product <..;..> is known. Using 2.13 in 2.8,
the norm of a vector at time ¢ can be computed using the following expression:

| 2(t) P = (B - L* - E - L xix)) | (2.14)



Let us define the operator K:
K=-L* L=E'-L' E-L (2.15)

The fastest growing perturbations are the eigenvectors of tlie operaior K with the largest eigenvalues.

The method implemented to solve this eigenvalue problem is based on a Lanczos algorithm developed by
the Numerical Algorithm Group (NAG, Oxford, see Appendices A and B, and Simon for references). The
Lanczos algorithm is a very useful technique when only few of the extreme eigenvectors are needed. It can
be applied to large and sparse problems. The algorithm does not access directly the matrix elements of the
operator that define the problem, but throughout successive applications of the operator it givés an estimate
of the eigenvectors. Appendix A gives some detail about the Lanczos theory. Appendix B reports the

implementation of the Lanczos algorithm in the IFS environment.

~ The NAG-Lanczos algorithm solves only symmetric problems, and it uses as an inner product to
orthogonalize aﬁd normalize the working vectors, the Euclidean inner product <> A vector ¥ that has
unity norm in the NAG-Lanczos code is normalized in the Euclidean space E:

D% Py = < 558> = 1 S @16
while in the perturbation space 7a‘normalized vector is characterized by: R

lx?=(xx) = <x;Ex > =1 ) (2.17)
We can define a coordinate transformation: ]

F=E%x (2.18)
so that the vector ¥ is normalized with respect to the Euclidean inner product, and its corresponding vector
x defined by'the transformation 2;18 is nox.inaliz'edl with respect to the inner product 2.4, Using 2,18 in 2.14,
the norm at time ¢ of a perturbation x is given by: |

I x(5) P =(L%% + L x5, )

=<E':.L* E-Lxy;Ex,>=<E! - L*"-E-L-E%"%;E%: %>

-<E*.L' E-L-E%i;%, > = (2.19)

Starting from an initial'vector £, in the Euclidean space E, the norm at time ¢ is determined by the operator

Ky



The eigenvalue problem of the operator K, . defined in 2.20 in the Euclidean space ¥, is the analog of the

eigenvalue problem of the operator X in the berturbation space of the system.

The NAG-Lanczos algorithm solves the eigenvalue problem for the operator K, ,, defined in 2.18. Note that
this operator is symmetric. Each iteration of the NAG-Lanczos algorithm is defined by the action of the

operator X, ,,. on the initial vector. The initial vector %, is defined at the beginning of each iteration (see
Appendix A for further details). Starting from X, in the Euclidean space E, the action of the operator X, LAN

implies: a coordinate transformation from the Euclidean space E to the perturbation space, followed by the
IFS tangent model integration, by its adjoint integration, and by the inverse of the coordinate transformation

back to the Euclidean space X.

2.2 The IFS model and the Lanczos algorithm
The IFS model is the result of a collaboration between Météo France and ECMWE., The model equations

are described in Courtier et al., (1991). At the time of these experiments the forward and adjoint tangent

versions of the adiabatic part with a horizontal diffusion scheme of the IFS model were available,

The first step of the Lanczos algorithm is to partially transform the matrix K, Lanmn) into a tridiagonal matrix
T(jy) with jen (see Appendix A for details):

Kw=-Q ' T-Q (2.21)
The matrix Q is defined by the Krilov sub-space generated by the operator K, ,, (see Appendix A2), that

is the sub-space generated by the g, vectors:
@Koy Kt} |
span (@, K s Klandys (2.22)

where g, is a randomly chosen starting vector. Lanczos makes successive integrations of the forward and
adjoint tangent version of the direct model to compute all the g; vectors of the Krilov sub-space and the
tridiagonal matrix T. From the g, vectors and from the matrix T it evaluates an approximationbf the

singular values and SVs of the operator L (see Theorem A4.2, in Appendix A). These eigenvectors, after
the inverse of the transformation 2.18, define the eigenvectors of the operator X defined in 2.15 (SVs of the

operator L). The square root of a singular value gives the growth rate of the norm of the corresponding SV.
The fastest growing perturbations are the SVs with the highest singular values.



During all the tangent integrations, the linearization is around a basic state trajectory in phase space. The
number of iterations determines the accuracy of the computations. As this number increases, more SVs can
be separated from all the others, indipendently from the choice of the starting vector g, of the Lanczos
algorithm procedure. This separation starts from the boundaries of the spectrum interval of the singular
values. -Generally, 20 iterations are enough to have an acceptable precision on the largest 5 singular values.
Increasing the number of iterations improves the accuracy of the following values. (The accuracy of the SVs

is less than the accuracy of the singular values, say to order e when the precision of the singular values is

of the square order €?).

After some tests we decided to run 100 iterations for each experiment. This guarantees that 25-35 singular
values are characterized by a relative error of less then 1%. Since we are interested in the definition of an

unstable sub-space with a dimension of less then 20, this number of iterations is sufficient. For each singular
value 8 computed by the algorithm, we can define the uncertainty interval p:

l[o -8] <p : (2.23)
where g is a correct singular value of L (eigenvalue of the K, ,, operator). The bound p’is a measure of

the distance between an estimated singular value and a true one. The accuracy of the first 20 values is very
high. The relative error:

p
e = —_—
£
is less than our acceptable precision e, = 0.01 for all the singular values till the 30th-35th.

23 The basic state characteristics

All the experiments have starting date 17 JanuaryA 1989, at 12UTC. The initial state is characterized by a
zonal flow throughout the éntire he_misphere. The T21L19 IFS tangent integration has been done following
the trajectory computed by the sanie model, except when explicitly mentioned. The time evolution of the
basic state suffers from the lack of the planetary boundary layer (PBL) representation: strong winds develop
in the eastern part of the Himalayan region and over honhem Africa. A test has been done to see if this can
influence the SVs structures: results from an experiment with constant basic state has been compared to
results of an experiment performed following the trajectory. Very small differences have been detected
between the two.

3. . 12H, 24H AND 36H SINGULAR VECTORS
In this part we will analyse the impact of the time interval over which the perturbations growth has been
maximized on the SVs structures, Three time intervals have been considered: 12, 24 and 36 hours. All the



experiments have been performed with the NMI prbcedure applied to 5 modes: in section 3 some
considerations on the impact of NMI on the SVs will be reported. First we will describe some of the fastest

growing 24H SVs, and then a comparison between the three unstable sub-spaces will be reported.

Fig. 1 shows the amplification factors A, of the first 100 SVs of the three experiments (singular values o,):

[ Vi(t) I

- 3.1
i " vg(tQ) " oi ( )

The 24h and 36h curves are very similar to each other: the first part of them with the highest values are
characterized by a steep derivative. The values decrease till a plateau is reached at about SV number 20.
At about SV number 80 the SVs do not grow any more (values less then 1). The 12h singular values can

not easily be separated in a group of fast growing perturbations and slowly growing perturbations.

Figurés 2 and 3 show the streamfunction of the first 6 24h SVs, respectively at model level 11 (approximately
500 hPa) and at model level 18 (approximately 1000 hPa). As a general consideration we can say that all
are very localized: only after the first 10-15 SVs structures that cover half the Northemn Heniisphere (NH)
start to be present. None of the first 20 SVs propagates into the Southern Hemisphere (SH). ‘The first and
the third SVs are localized over the eastem Pacific, with maximum amplitudé in the middle troposphere
between 700 hPa and 500 hPa, where the mid-latitude jet has a region of maximum amplitude. They are
characterized by a barotropically and baroclinically unstable pattemns, with a westward tilt with height.
Horizontally they are characterized by a NW-SE elongated shape. The second SV has maximum amplitude
near the surface in the eastemn part of the Himalayan region. The fourth SV has maximum amplitude near
the surface, over northern Africa: it might be due to instability growth in a low level shear region. The fifth
SV presents some structures at model level 11, but it is almost all confined in the lowest model levels. The
sixth SV presents maximum amplitude in the middle troposphere, in the north-western part of the Atlantic
Ocean. It has westward tilt with height and NW-SE elongated shape. Some of these SVs are very similar.
to the SVs computed by Molteni and Palmer (1992) using a T21L3 QG model. As already shown in Molteni
and Palmer (1992), the SVs have much more localized structures than the leading normal modes of a time-

average basic state.

Some SVs are almost completely confined to the lowest model levels. They have a very strong baroclinic.
structure as can be detected from the temperature fields (not shown), with a positive perturbatiogl at one level,
a negative at the following one, then a positive again. The other SVs have more realistic struictures (in the
sense that they have a structure that is more similar to': an error field), with maximum amplitudé in the region
of the mid-latitude jet streams. The growth of the "spurious” surface structures occors probably because of
the absence of a PBL physics in the version of the IFS used.



The 24h and the 36h SVs present very similar structures, although sorted in a different order. Table 1 gives
the unstable sub-space projection matrix M(i,j) of the first 20 24h SVs on the first 20 36h SVs, and vice-versa
(remember that the Hilbert space H of the perturbations x has been defined using the inner product 2.2).
The 20 values of the first column of Table 1 (elements M(1,j) for j=1,20), are the squared scalar products
"between the first 36h SV, and the 20 24h SVs. The last value is the sum of these squared scalar products,
which represents how well the first 36h SV can be reconstructed from a linear combination of the 24h
unstable sub-space generated by the first 20 SVs. The last column of the matrix gives the samé information

for the reconstruction of the 24h SVs from a linear combination of the 36h SVs.

Looking at Table 1, the 1st 36h SV (which has maximum amplitude near the surface in the Himalayan
region) projects 82% of its norm on the 2nd 24h SV although somé differences are present. The 2nd 36h
SV (which has maximum amplitude near the surface over northem Africa) projects 89% of its norm on the
4th 24h SV. The 31rd and the 4th 36h SVs have maximum amplitude in the middle troposphere, over the
western Pacific Ocean, and project respectively on the 1st and the 3rd 24h SVs. Analogous considerations
can be made for the other SVs. It is remarkable that the unstable sub-space generated by the first 14 SVs
of one experiment can explain at least 60% of the norm of the first 14 SVs of the other experiments. This

indicates a strong parallelism between the two sub-spaces.

Table 2 gives the unstable sub-space relationship between the 12h and the 24h SVs. It clearly shows that
the two sub-spaces are characterized by a very poor parallelism: the 20 SV of one experiments can explain
60% of the norm of only 4 SVs of the other. The 12h SVs reveal the same spurious structuiesbf the 24h
and 36h SVs. Moreover, some of them are characterized by large amplitude in the upper tr}:posphere never
detected in the 24th and 36h SVs. |

Looking at the first 8 SVs of each experiment, four classes of perturbations with maximum amplitude in
different part of the atmosphere can be identified: the Pacific (P) and the Atlantic (A) structures with
- maximum amplitude in the middle troposphere, the Himalayas (H) and the Tropical-African (T) structures
with maximum amplitude near the surface. Moreover, the first 12h SVs have maximum am?litude in the
upper troposphere mainly over Europe, Asia and Africa: we will identify them as upper troposphere structures
(U). The following table summarizes this:

SV number 1 2 3 4 5 6 1 8
12thexperiment =~ P P H H U U U U
24th experiment P H P T H A A H
36th experiment H T P P H A A H




The two P-SVs and the two H-SVs are present in all the experiments. A time interval longer than 12 hours
is instead necessary to separate the A-SVs and the T-SV from the others.

From this section the following conclusions can be drawn:

i) The fastest growing perturbations have very localized structures similar to QG perturbations (Molteni
and Paimer, 1992).
ii) Some SVs are dominated by spurious structures near the surface: this is likely due to the absence of

PBL physics. All the SVs present traces of these spurious structures near the surface.
iii) Remarkable differences exist between the 12h unstable sub-space, and the 24h and 36h sub-spaces.

These latter show instead a very strong parallelism.

4. NMI IMPACT ON THE SINGULAR VECTORS

Experiments have been performed with no initialization, and with the first 3, 5, 9 and 13 gravest vertical
modes initialized, and with NMI applied to all the vertical modes (NO-NMI, 3-NMI, 5-NMI and so on), to
study the impact of NMI on the unstable sub-space definition. The experiments have been performed over

two time intervals, 12 and 24 hours. A few experiments have also been done over 36 hours to confirm the
results.

Fig. 4 shows the amplification factor curves of the 12h experiments with NO-NMI, 5-NMI, 13-NMI and 19-
NMI experiments. The 3-NMI and 9-NMI curves have been omitted for clearness. A large difference can
be detected between the experiments with up to 9 initialized modes and the other two experiments; in the first
part of the curves. The 13-NMI and the 19-NMI SVs are characterized by stronger growth. Looking at the
structures of the corresponding 19-NMI SVs, they show maximum amplitude in the upper troposphere, with
a horizontal structure with high wave number (approximately 16). Generally speaking, all the first 20 SVs
of the 13-NMI and of the 19-NMI experiments retain this small scale pattern.

The difference in the structure of the SV is also apparent through the partition of the total.energy between
the rotational and divergent part of the kinetic energy, and the potential energy. The 5-NMI SVs have
approximately 70% of the norm projected on the potential energy, while the 19-NMI SVs with the upper
troposphere high wave number features have less than 10% projected on it, and 40-50% projected on the
rotational and divergent part of the kinetic energy. |

The analysis of the unstable sub-spaces generated by the NO-NMI and the 3-NMI, 5-NMI and 9-NMI SVs
confirm that the NMI impact is small when only the first modes are initialized. Considering for example the
NO-NMI and the 5-NMI SVs optimized over a 36h time interval, the first 15 SVs of each experiment can
explain at least 60% of the norm of the first 15 SVs of the other experiment.
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The impact of the NMI procedure can be detected also in the 24h and 36h SVs, but it is not so evident in
the amplification factor curves as it is in the 12h experiments. A longer time period integration reduces the
effect of the NMI procedure on the fastest growing perturbation structures. Considering for example the NO-
NMI and the 5-NMI SVs, the first 16 SVs of one experiment can explain at least 90% of .the norm of the

other experiment SVs.

It is worthwhile to point out one effect of the NMI procedure on the norm of the state vector. The NMI
procedure projects a state vector on the normal modes, decomposes the projection into the rotational and
gravitational part, and then imposes a zero tendency on the gravitational part. This procedure can modify
the energy of the state vector: this can increase or decrease, since the projection is made conserving the
component of the state vector along the rotational direction, and modifying its component along the
gravitational direction. We verified the existence of this effect: when only the first modes are initialized this
can induce a norm increase of the order of 1%, while initializing 13 modes can produce a norm increase of
80%.

This large difference can be related to the non-convergence of the non-linear normal mode initialization
procedure when applied to the shallower modes. Due to the divergence of the solving iterative algorithm,

a large variation of the norm of the state vector can occur.

The following conclusions can be drawn:

i) The NMI impact on the SVs is stronger when shorter optimisation time intervals are considered.

ii) Not more than 9 modes should be initialized. The unstable sub-spaces generated by the NO-NMI, '
3-NMI, 5-NMI and 9-NMI experixhents show strong similarity.

iii) The NMI procedure does not conserve the total energy: it can induce a variation in the energy norm

of the state vector. This effect, however, is very small when only the first 5 modes are initialized.

5. . IMPACT OF THE NORM DEFINITION ON THE SINGULAR VECTORS

Experiments have been performed to test the differences between the fastest growing perturbations evaluated

when the norm has been defined to be the total energy (T-experiments) or the kinetic energy (K-experiments).
In all these sensitivity studies the NMI procedure has been applied to the first 5 modes. Two optimisation

time intervals have been considered, 12 and 24 hours.

The energy norm has been defined formally by equation 2.2. Decomposing a state vector x into its

rotational, divergent, temperature and surface pressure term, the weighting factors E that define the inner

product 2.4 can be deduced from the following formula:

11



+ VAD - VA''D + R T(lnxf + % 12 ) dz (%) dn (5.1)

where {, D, T and = stand for vorticity, divergence, temperature and surface pressure, n is the vertical

coordinate, T, is a reference temperature and R, Cp are thermodynamic constants,

The first two terms are the rotational and the divergent part of the kinetic energy, the third is the surface-
pressure term, and the fourth is the potential energy term. When the norm has been defined as the kinetic
energy, the 3rd and the 4th terms have not been considered.

Fig. 5 shows the SV’ amplification factors of two experiments run with an optimisation time iriterval of 24h.
It shows that the amplification factors in the T-experiment are almost twice as large as those in the K-

experiment.

The 24h K-SVs are characterized by patterns similar to the 24h T-SVs: the first K-SV has a structure similar
to the 5th T-exp SV. The 2nd and the 3rd K-SVs have a similar pattern. The 4th, the 5th and the 6th K-SVs
can be seen as a combination of Pacific and Atlantic T-SVs. The 7th K-exp SV is similar to the 2nd T-SV.
Generally speaking, the K-SVs show less localized structures than the T-SVs. They can be seen to be
combinations of T-SVs, although they present structures that extend iﬁto the upper troposphere. Some of
them (e.g. the Sth, the 10th and the 11th), present véry high amplitude in the upper troposphere, with
structures never detected in the T-SVs.

We analysed the norm variation due to the NMI procedure on the 24h K-experiments state vector. NMI
always produces a norm decrease of at least 4%, with a maximum decrease of not more than 6% during the
\ first iterations. This depletion was never detected in the T-exp, that were always characterized by a slight
increase (less then 1%). '

The 12h experiments confirm these results: moreover the impact of the norm definition on the SVs structures
is more evident. The first 8 K-SVs have maximum amplitude in the upper troposphere, with a pattern never
shown by the T-SVs. The NMI procedure induces higher changes in the state vector norm: it produces a
decrease of at least 4%, with a peak value of 9% at the first algorithm iteration. This NMI effect has never
been observed during the 12h T-exp, where NMI produced always a slight increase of almost 1%.

12



6. DIFFUSION COEFFICIENTS SENSITIVITY

The horizontal diffusion term in the IFS model, for a general variable y, has been defined in the following

way:

:%3;-+H>y—0 | . 6D

where vthe diffusiqn operator H, in the spectral space, is:
: | 1 n |
A - —Fl-—= : 6.2
(n) . f (N) (6.2)

where the constant N defines the truncation, and ¢ and is the characteristic damping time for wave number
N.. The function fix) is given by:
fx) =0, Vx0 <x<05

Cf) - (2 - 15 V505 sx £ 1, | | 63)

The horizontal diffusion can be applied to vorticity', divergence and temperature.

All the results reported in the previous sections have been obtained with a diffusion coefficient v = 48h
constant for all the variables. The wave number range on which horizontal diffusion operates pas been kept

equal to half the wave spectrum (11 < n < 21).

Apart from the control experiment with a damping time of 48 hours, two more experiments have been run,
with damping times of 24 and 4 hours. The SVs of these experiments have been optimized over a time
interval of 24 hours (the same as the control). We will call them D24-exp and D4-exp, while the control
D48-exp. ‘

The D24 and the D48 amplification factor curves have very similar values, while the D4 curve has values
up to 30% smaller than the control. Differences can also be detected comparing the D4-SVs and the D48-
SVs: the D4-SVs are less localized in space: from the 6th SV their structures cover almost all the NH. The
growth of the D4-SVs near the surface is reduced, although it is still present. The comparison of the unstable
sub-space of the three experiments confirm these considerations, with the D4 and the D48 sub-spaces showing

a poor parallelism.

The same conclusions can be drawn from the analysis of the impact of the horizontal diffusion coefficient

when an optimisation time interval of 12h is considered.

13



7. 24H SINGULAR VECTORS TIME EVOLUTION

The results of the experiments reported in the previous sections identify the configuration with an

optimisation time interval of 24 hours, the first 5 vertical modes initialized, and with the norm defined to be
the total energy as the one giving the most acceptable results. In this section we will study the time evolution
of two of the SVs derived from this configuration.

Fig. 6 shows the time evolution of the 1st SV: the temperature field is plotted at three vertical levels at the
starting time (t=0, left hand side), and after 24 hours t;mgent time integration using the IFS T21L.19 model.
Note that the meridional phase tilt is reversed from the initial to the finale stéte, which indicates that
barotropic energy conversion from the basic state to the perturbation changes from positive to negative within
24 hours period. Fig. 7 shows the vertical cross section of the SV total energy at the initial state, after the
application of the NMI procedure and after 24 hours. From these figures it is clear how the SV grows: in
particular Fig. 7 and the final state at model level 19 (last panel in Fig. 6), point out how the perturbation

can grow close to the surface.

Fig. 8 shows the time evolution of the perturbation, when superimposed to the same initial condition in the
T63L19 version of the full ECMWF model. The temperature at model level 11 (500 hPa) has been reported
for different integration time intervals. The growth of the perturbation during the first 24 hours is very

similar to the linear growth,

The IFS SVs have very similar structures to the SVs computed using a T21L3 version of a' QG model
(Molteni and Palmer, 1992). Fig. 9 shows the growth of a perturbation computed using the QG model that
has a pattern similar to the 1st IFS SV. It is remarkable how similar the initial structures and their time
evolutions are, although they have been computed with very different models. The following télble gives the
amplification factors of the T21L19 IFS and of the T21L3 QG SVs, computed as the root mean square (RMS)
ratio between the 500 hPa geopotential height field at the considered time and at the initial time:

Amplification
12h 24h 48h 120h
IFS 2.53 4.10 5.43 14.84
QG 1.83 291 5.10 11.09

The']ZFS SV seems to be slightly fnore efficient.

Fig. 10 shows the time evolution of the 2nd SV: since it has maximum amplitude near the surface, the '

temperature field has been plotted at the lowest 3 model levels. The left hand side panels show the initial
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state at model levels 17, 18 and 19, the right hand side panels the temperature after 24 hours of tangent
T21L19 IFS time evolution. Fig. 11 shows its evolution when the integration has been performed with the
full version of the T63L19 ECMWF model: the temperature at 1000 hPa has been plotted. Note that the
contour interval in Fig. 10 is 5 times the one of the analogous Fig. 6. During the linear evolution, the
perturbation remains confined in the lowest model levels, and its growth is very remarkable. When the
perturbation has been introduced in the full T63L19 model it has been drastically dampe& in less than
24 hours.

8. CONCLUSIONS

This study shows how the adjoint technique suggested by Lorenz (1965) can be applied to the computation
of the unstable sub-space of a primitive equations model. The fastest growing perturbations are the singular
vectors (SVs) of the tangent linear version of the primitive equation model, identified by the linear operator
L. A Lanczos algorithm was applied since only a few of the extreme eigenvalues and eigenvectors were
required. The sensitivity results presented above should be considered as preliminary results, since all the

experiments were characterized by the same initial date.

The 24h and 36h experiments performed with the first five vertical modes initialized present very similar

results. The two unstable sub-spaces generated by the first 20 SVs are very similar. Four classes of |
structures can be identified in the sub-spaces: two with maximum amplitude in the middle troposphere, and
two with higher amplitude near the surface. A time interval of 12 hours seems to be too short to let a clear

identification of the fastest growing SVs.

The NMI procedure has a large impact on the SVs when more than 9 modes are initialized, and this confirms
that only the first modes should be initialized (Williamson and Temperton, 1981). The impact was more
detectable in the 12h experiments. Strong similarity was shown by the unstable sub-spaces generated by the
NO-NMI, 3-NMI, 5-NMI and 9-NMI experiments.

An increase of the horizontal diffusion coefficients of an order of magnitude has a remarkable effect on the

unstable sub-space definition. This effect is stronger if a 12 hours optimisation time period is considered.

The absence of PBL physics in the version of the IFS model used for these experiments can explain why very
strong surface perturbations can grow near the surface and do not grow in the full diabatic model where

surface drag and vertical diffusion schemes are implemented.

The timé evolution of the fastest growing IFS SV computed using the tangent linear version of the T21L19
IFS model is very similar to its T63L19 full ECMWF model evolution. Moreover, the similarity between
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the full model evolution of the 1st IFS SV and the 1st T21L3 QG SV (Mureau et al. 1992) is remarkable.
The IFS SVs with maximum amplitude near the surface are quickly damped when integrated using the
T63L19 full ECMWF model.

Generally speaking, the results seem to point out that a 24h optimisation time interval is better than a 12h
interval to separate the SVs. Moreover, when NMI is applied to the computation, only the first modes should
be initialized to avoid spurious effect to appear in the results. After the implementation of a simple PBL
physics, the next step of our study will be to compare the perturbations with forecast error patterns.
Moreover we will seek to confine the perturbation to the Northern Hemisphere. A more detailed comparison
will be done with the quasi-geostrophic model perturbations. The goal of the project is to realize ensemble

forecasts perturbing the initial condition along the unstable directions computed using the IFS model.
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APPENDIX Al: EIGENVALUE PROBLEM: THE LANCZOS METHOD

The Lanczos algorithm was first proposed in 1950. Lahczos intended his algorithm to be used to compute
a few of the extreme elgenvalues, and the correspondmg eigenvectors, of a symmetric matrix. The Lanczos
method is a techmque apphcable to large, sparse, symmetnc eigen-problems. The following notes have been
based on chapter 9 of Golub and Van Loan, "Matrix computations”, (1983). The aim is to give a basic idea
of the method.

Suppose the problem is to find the eigen-system of a symmetric matrix A(n,n): the Lanczos algorithm does
not access the elements of the matrix directly, so there is no need for conventional storage of the matrix. It
is very .useful when 6n1y a part of the spectrum is required (eigen-pairs less than n/100). The structure of
the algorithm is such that the information about the matrix extremal eigenvalues tend to emerge after few

iterations.

The main steps of the Lanczos procedure can be summarized in the following way:

i) it computes a partial tranformation of the matrix A(n,n), that is to find two matrices Q(ny) (unitary
matrix) and T{jj) such that:
Q' -A-Q=T (Al.1)

where the matrix T is tridiagonal.

a, B, 00
B, a, P; O
0 B, o, .
o0 .. . 0O (Al2)
By O -
0 By oy B
0 0 B ¢
and
Q - [a19-4] " (A13)

where the vectors ¢, of Al.3 are column vectors, and where j<n.

ii) it computes the eigehvalues of Tjj), finding its diagonal decomposition:

T=8"'D:S§ ' (Al4)
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where the matrix D is diagonal

D - diag [6,0,,...6) (ALS)

iii) the eigenvalues of D are an estimate of the eigenvalues of A, and an estimate of its eigenvectors is
given by:
Y-Q-S§

Y = YypYard)] (AL6)

where y, is the eigenvector corresponding to the i-th eigenvalue. More correctly, the eigen couples

[Ol,y,] are the Ritz pairs of the matrix 4 for the sub-space P (Qj) = span (ql,qz,..,qj).
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APPENDIX A2: - 'THE LANCZOS THEORY

In this section the theory of the Lanczos algorithm and a review of the essential mathematical theorems on

which it is based, will be summarized.

Hypothesis A2.1: suppose
A € R ‘ (A2.1)

is large, sparse and symmetric, and that few of its largest and/or smaller eigenvalues are desired.

Definition A2.1: the Rayleigh quotient is defined by the following expression

L )
) = .’fr___x_ (A2.2)
x'x
where x is a column vector.
Definition A2.2: the eigenvalues of a matrix A4 will be identified by
AA4) <. s AJ(A) < . < A4) (A2.3)
The following relation holds between the eigenvalues of A and the Rayleigh quotient:
A (A) < r(x) < A (4) | (A24)

The relation A2.4 is very useful and can be used for the evaluation of the eigenvalues. Suppose that
) e B e
is a sequence of orthogonal vectors, and define:

Q) AQ)
) - max, 22229

M, - 1,(Q/4-Q) - . - max, /(Q,7) < A,A) (A28

my =3 (Q 4 Q) =min, ... = min r(Q *y) 2 A,4) - (A2.6b)
where

Q, - gy | (Aa2.7)

The Lanczos procedure can be derived by considering how to generate the vectors defined by A2.5 so that
the scalars defined by A2.6 are increasingly better estimates of the extreme eigenvalues of A defined by
A2.3. '
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This request, that the scalars A2.6 would be increasingly better estimates of the eigenvalues A2.3 of A, forces
the choice of the vector

4 o e : (A2.8)
computed at step j+1. It must be chosen in the direction of the gradient of the Rayleigh quotient A2.2:
v, r(x) (A2.9)

Since the following relations hold

V, rix) € span {Axx}

V., r(x) € span {ql,...,qm} ’ (A2.10)
to satisfy A2.10 we must have

span (@G} = span {Gp.4 © g, A" - g} = X(4,4,.) (A2.11)
where-

X(A,q,.J) _ (A2.12)

is the Krilov sub-space generated by the matrix 4.

Equation A2.11 answers the question of the choice of the vectors A2.5 from a theoretical point of view.

These vectors A2.5 are the columns of the Krilov matrix

= 104 - Gy ]

Practically, since the matrix A is supposed to be sparse, the necessity is to write a procedure numerically not
too expehsive, that evalﬁates the vectors A2.5. This algorithm can be built up writing expﬁcitiy the relation
Al.1, where the matrix Q is the one defined by A2.7. First, is section 3, we will prove that for every matrix
defined as in Hypothesis A2.1, it is always possible to find a decomposition Al.1. Then, in section 4, we

will deduce the algorithm that computés the decomposition matrices.
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APPENDIX A3: THE SCHUR DECOMPOSITION

The following theorems deal with matrix decomposition.

Theorem A3.1 (Schur decomposition): if

AeCtn

then there exists a unitary matrix

Q € Can
such that
Q'"'A'Q=T =D+ N (A3.1)

whére D is strictly diagonal, and N is strictly upper triangular. The decomposition A3.1 is also called Schur

decomposition.

Definition A3.1: a matrix A is normal if
A-AfP = At A (A3.2)
Corollary A3.1: a matrix A(n,n) is normal if and only if there exists a unitary matrix Q(n,n) such that

Q' A-Q= D = diag (Agsen &) (A3.3)

Theorem A3.2 (Jordan decomposition): if

A e CcHn

then there exists a non-singular matrix
XecCc™s
such that

X AX = diag (T

where the matrices J, are in the Jordan form

J
A4, 100 0
04, 10 0
00Aa10 . 0
0 . . .0 (A3.4)
0. .02, 1 0
0 0 A, 1
0 0 A
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