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Abstract: When the equations of motion are averaged over a grid-cell volume in a
numerical weather forecast model, extra turbulence terms appear that must be
approximated or parameterized. Such parametrizations, known as closure
assumptions, can be classified by their statistical order (S) and the degree of
nonlocality (N). While no parameterization is perfectly accurate, they offer a
range of physical details and computation economies from which to choose.

1. THE CLOSURE PROBLEM

When the equatioris of motion are averaged over a grid-cell volume within a numerical weather
prediction (NWP) model, turbulence terms appear such as those for divergence of turbulent flux
(Stull, 1988): o S o o |
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where (U,V) are horizontal wind components, 8 is potential temperature, g is humidity, primed
quantities ()’ represent a local (unresolved) deviations from the grid-cell-mean (), and where

correlations such as . w'68' represent vertical fluxes

(heat flux in this case, see Fig 1). These terms

represent the resolvable effect of unresolved (subgrid)

motions or eddies. To accurately forecast mean,

winds temperature, humidity, and pollutant concen-

trations, it is necessary to properly account for these

turbulence terms. — ‘ Fig. 1. Example of subgrid turbulent motions
within single NWP grid cell, which
" causes a positive heat flux ‘w'6'.
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Attempts to write equations for these new turbulence unknowns lead to even more
unknowns — a dilemma known as the closure problem. Using heat flux for example, an infinite

number of equations result:
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In NWP models it is necessary to approximate or parameterize some of unknowns to yield a
finite set of equation. Such parameterizations are called closure assumptions..
Parameterizations do not come from first principles. Instead, they involve the creativity

and imagination of the researcher to approximate nature. Parameterizations must be:

° physicélly reasonable | |

¢ dimensionally correct

e invariant under coordinate transformations

e consistent with budgets and constraints (e.g., non-negative humidities, etc.)
While the first quality is the most important, it is also the most éubjective. As a result there tend

to be as many parameterizations as researchers.

2. A CLOSURE CLASSIFICATION

An attempt to organize closure assumptions is presented in Table 1. One measure of the closure
is the highest statistical order (S) for which a forecast equation is retained. Another measure is
the degree of nonlocalness (N) represented. This latter measure is particularly important for
convective mixed layers, where coherent structures such as thermals can trahsport air between the
sﬁrface layer and tile top of the mixed layer via an advective-like process. -

. Table 1 is. presented as a grid, and the various closures are identified by their grid
coordinates. For éxainple, the turbulence kinetic energy (TKE) closure is type S1 5Ng, because
statistically it 1s a one-and-a-half order, and it utilizes purely local approximations. Transilient
turbulence theory (T3) is closure type 51N3, because it is statistically first-order closure and is
fully nonlocal. Some grid coordinates are empty, such as S)N3, which indicate that either the
closure has not yet been invented, or I accidently missed it during my literature search. A

bibliography of many closure schemes is given by Stull (1988) is not reproduced here.
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Table 1.

- BOUNDARY-LAYER PARAMETRIZATIONS
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3. ZERO-ORDER CLOSURES

These closures do not include prognostic equations for mean variables vs height. Instead, they
either prescribe the vertical profile of mean variables dlagnostlcally, or they prescnbe a generic
profile shape for the profile but forecast the parameters in the shape equatlon In the subsections
that follow, an attempt is made to illustrate the various types of closure These discussions are

not meant to be exhaust1ve

3.1 Closure type S()No

Similarity theory gives SgNg dlagnostlc equahons for proflles of mean and turbulent quantltles
The equation form and parameter values are found ,emp1r1cally.: These equations are made
:dimensionless by variables that describe constraints or forc‘ings on the flow. The equations are
hopefully un1versa1 because it is assumed that changes in the flow are driven by changes in the
.forcmgs and constraints. Similarity theorles are usually valid for a vary narrow range ofy
‘atmospherlc condltlons For example, different smularlty relatlonshlps are glve for dlfferent'
static stabilities. -

A cla551c example is the log wind profile for neutral static stability:

M

us  k Zy

where M is mean wind speed (the desired dependent variable) and z is height (the in'dependent
variable). Two forcings are the friction velocity, u+, and roughness length, z,. An empirical
parameter is the von Karman constant, k = 0.4. The only way for the Wmd speed M to change.
with time is if the forcmgs change with time, which indeed they can do ’ ‘

For non-neutral stat1c stablhty, different empirical equations, must be used that include the
‘surface heat flux w0, as an additional forcing. The Obukhov length L, is de51gned to“
incorporate this flux, giving new dimensionless height of z/L=k-z-(g/ T) w0/ u Thus, for;

M_[z z)
Ux zQ'L '

‘Hogstrom (1988) has suggested an improved flux-profile relationship for this log Wind profile

‘diabatic conditions:

based on k = 0.4, and Wieringa (1992) has provided updated tables of roughness length for

various landscapes.
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~ While the similarity relationships above apply to the bottom of the surface layer, they
were not designed to fit the top of the surface layer in convective conditions. Some recent
research (Santoso and Stull, 1994) suggest that a better fit to the surface layer in convective

conditions is given by

where the mixed-layer wind speed M, is a forcing, constraint z, is the height of the top of the
surface layer, and empirical parameter A = 0.0975. AR il

Similarity relationships have been proposed for the vertical profiles of ‘U, V, M, 8, g,
catalog of similarity relationships is in a technical report (Stull; 1990).

3.2 Closure type SgN{

Bulk closures ‘prest:ribé a profile shape, but allow parameters of the shape equation to be
forecast. The simplest bulk closure is the slab model of the mixed layer (ML), which assumes
constant potential temperature, humidity, and

wind speed with height. Thus, the only parame-

z 4 (a)Day Z 4 (b) Night

ters that need to be forecast are the average ML R —/ S I »
temperature <6(f)>, the depth z,(t) of the ML, R 46
and the temperature discontinuity A8(f) across i f e "
the top of the ML (Fig 2a). . S Mt _

At night, an exponentigl equation is some- . ‘ L >g DA >0
times used as the specified profile shape(Fig 2b). . <6> ‘ée’
For this case, only the inversion strength A6 and . Fig. 2. Bulk models for the (a) convective mixed
depth h need be forecast. - - layer and the (b).stable boundary layer.

3.3 Closure type SyN» ' |
Mass flux models prescribe the fraction of area ¢ covered by updrafts within convective MLs.
(Penc and Albrecht, 1986, Randall et al, 1992). If the updraft and downdraft speeds w, and wy

are specified as a function of height, then a mass flux M, can be defined as
M, =p-0-(1-0)-(w, —wy)
This mass flux can be thought of as the amount of vertical stirring in the convective ML.
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If the states within updrafts and downdrafts are also specified as a function of height, ,
then grid-volume mean values and fluxes can be parameterized. Using heat for example,

specification of updraft and downdraft values of 8, and 6; allow:
0 =6, 0+ 6;-(1-0)

w0 =M, (6,-06,)

4. FIRST-ORDER CLOSURES

4.1  Closure type SNy _

Boussinesq (1877) suggested that turbulent ﬂuxeé can be approximated analogous to molecular

fluxes; namely, as flowing down the local gradient. For turbulence, however, he suggested that an

eddy diffusivity K should be used instead of a molecular diffusivity. Prandtl (1925) refined this

approximation by allowing K to vary with wind shear, under the assumption the stronger shears

create more-vigorous turbulence that causes greater turbulent transport. For example, for heat:
00

|6| z""K'—
v 0z

where K= 12 AM /Az|,and lis a mixing length representing the average eddy size.

K-theory is essentially a )’Small-eddy”theory, which works fine for neutral and stable .
boundary layers. For convective MLs, however, - '
K-theory has difficulties because lérge eddies
such as thernials are active in the real atmosphere.’

These difficulties appear in the observations as

oo A

countergradient fluxes (implying negative values

, , _ \ 4 (undeflned)
of K) and as fluxes in regions of zero gradient i
(implying infinite or undefined values of K, see _l, _ L/ ;
Fig 3). In mixing-length approaches, the difficulties 0 e’ ° x
appear as mixing lengths that are much larger than ~ ~  Fig. 3. Measured values of potential temper-
than the vertical grid increment across whichlocal - ature 6 and heat flux '8’ yield ‘measured”
mixing is computed (an apparent.contradiction). - values of K that are problematic within the

interior of the convective mixed layer.
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4.2  Closure type S{N;
K-theory gained widespread use and acceptance because of its success in laboratory flows and
within atmospheric surface layers. When the anomalous behavior within the convective ML was
discovered, a variety of improved parameterizations were proposed that remained within the
paradigm of local diffusion. :

One such example is the “modified gradient” approach, where the fluxes are still assumed
to flow down a local gradient, but where an artificial gradient y is added to. the true measured
gradient during convective conditions (Deardorff 1966, Holtslag and Moeng 1991). This

approach avoids the necessity of negative or infinite values of K.

43 Closure type SlNz S
An alternatwe 1mprovement to K—theory is to spht the true grad1ent into two art1f1c1al grad1ents of
oppos1te 31gn, and assume that there is small- eddy

d1ffus1on down each of these separate gradients

(Fig 4). Thls results in two streams of turbulent “1 “ - ’

flux, one diffusing from the bottom up, and the Zit 7 split true

other from the top down (see review by Stull, | _%r;dti‘?vgt > flux

1988, plus more recent papers by Chatfield and . | ’ S?alxg?::t S : k /m

Brost 1987, and Moeng and Wyngaard 1989).

Weil (1990) discusses some of the difficulties - i e e e
of the top-down/bottom-up approach. 7 | o o ‘ o Fig. 4‘. Tvop-down/bott’omb-up approach.

4.4 Closure type 51N3 .

This class of closure marks a break from small—eddy K-theorles For tl’lJS s1tuat10n eddles of a
whole spectrum of sizes are parameterrzed as causing advect1ve-hke transport between every
possible pair of grid-cell he1ghts within the turbulent domam , ‘

The concept is illustrated in' Fig 5. P1cture a stack of gr1d cells, W1th initial potentlal
temperatures as sketched in Flg 5a. Conceptually spht each layer can into a series of air parcels
(Flg 5b). Next , turbulence rearranges the air parcels, as 1nd1cated w1th the curved arrows in F1g
5b. Some of the motions are cause be large eddies (e. g thermals) that transport air from the

surface to the top of the layer, while other eddies have med1um and small sizes.

169



STULL, R. B. BOUNDARY-LAYER PARAMETRIZATIONS

After a short period of time, the air parcels are rearranged as sketched in Fig 5c. The final

average potential temperatures in each layer are shown in Fig 5d, based on simple averages of the

air parcels ending in the various destination layers.

The net result is a change in resolved temperatures between states (5a) and (5d), caused

by unresolved eddies and parcel movement. In Fig 5a, note the middle level indicated by an arrow

atright. Across this level, there is zero local gradient,
because the temperature above and below that level
are 10°C. However, nonlocal eddies in Fig 5b moved
some 15°C up across that level, while air of only 10°C

moved down across that level. As a result, there is

a net flux across the level, in spite of the zero gradient.

Models of such nonlocal transport have been
proposed under a range of names, although they
essentially share the same physics. Direct interaction

| approximation was one of the first models, although
its apparent complexity precluded wide-spread |
application. Spectral diffusivity theory was one of
the first applications of fully nonlocal mixing to the
atmosphere, which was modeled by eddy diffusiv-
ities having different values for eddies of different

sizes. Other simpler and more practical descrip-

tions of nonlocal mixing include transilient turbulence |

theory, integral closure theory, and turbulent adjust-
ment. Orthonormal expansions approach nonlocal
mixing as an exercise in applied mathematics.
Nonlocal closures are reviewed by Stull (1992).

" The amount of mixing between various heights
is deséribed by a transilient mat‘rix,’ which indicates
for each destination height the fraction of air that |
came from varioué source heights. Fig 6 shows an |
example matrlx correspondmg to Fig 5, which is
asymmetnc for convectlve MLs. As a first-order clos-
ure, the elements in this matrix can be parametenzed

as a function of the wind and témperature profiles.

170

:h@
layer 4: 6=15°C
layer 3: 6=10°C
<_.
layer 2: 6=10°C
layer 1: 0=15°C
Y >

d
(d) 15
12
11
12
B
X
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Fig. 6; Transilient matrix, c. Each row and

each column sum to 1, to conserve mass.



STULL, R. B. BOUNDARY-LAYER PARAMETRIZATIONS

5. ONE-AND-A-HALF ORDER CLOSURE - Closure type S1 5N
As an extension of Prandtl’s mixing length hypothesis, one might suppose that eddy diffusivities
are greater when the flow is more turbulent. While Prandtl considered only mechanically-
generated (wind-shear induced) turbulence, the turbulence kinetic energy (TKE) approach can also
include buoyantly-generated turbulence and turbulence that is transported in from other locations.
Within this approach, one needs a forecast equation for TKE. Knowing the TKE as well
as the mean gradients, it is then possible to parameterize the fluxes. While this method allows K
to vary in a more realistic manner, it still assumes the flux flows down the local gradient. Hence
this approach can still be problematic in regions of zero gradient such as the interior of the ML.
The TKE equation contains many higher-order turbulence terms, which also must be
approximated. One of those terms is:the dissipation rate, €. An improved ‘1:5-order closure

carries forecast equations for both TKE and e. This latter approach is often called the k- closure.

6. SECOND-ORDER CLOSURES
6.1 Closure type SpN
Second-order closure carries forecast equations for not only all the mean variables (8, U, V, 7),
but also for all the second order terms (vﬁ, F, ’672, F', ue, ww, vw', W, uyq,
0’6", v'q, w0, wyq, 87). Some also include forecast equations for dissipation rate.

Third and higher-order correlations and pressure-correlation terms must be

parameterized. Most such parameterizations utilize down-gradient local diffusion, for example:

ow'6'
oz

wwo =-K; -

These approaches have the greater burden of more prognos’uc equatlons and varlables, but they
give forecasts of some useful hlgher order turbulence statistics wh1ch mlght not be ava1lable from
lower—order closures , | | |
V1rtually all of these hlgher—order local closures are based on the prermse that forecasts of
mean variables (8, U, V, ) are improved as the closure approximations are pushed to hlgher
and higher orders. This premise has for the most part been confirmed via the forecasts that have
been produced One reason for such success is that more physics is included when more
equatlons are retained. This also 1mp11es that as the higher orders make lesser contrlbuhons to the

mean flow
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6.2 Closure type S;N»
Randall et al (1992) proposed a mass flux parameterization that utilized second-order closure to

determine updraft and downdraft characteristics. For example, updraft area and mass flux can

be found in terms of vertical velocity skewness S, and vertical velocity variance w'?:

Thus, if prognostic equations are carried for vertical velocity variance (a second-order term) and
vertical-velocity skewness (a third-order term), then the updraft area and mass flux can be found.

. As it turns out, Randall et al (1992) did not use the model in this higher-order mode.
Instead used LES to “measure” higher-order statistics, and then held fixed the resulting o and M,

values in a closure type of SoN».

7. THIRD-ORDER CLOSURE - Closure type S3Nj
This type of closure is similar to second-order closure, except that forecast equations for third-
order terms are retained. Fourth-order terms as parameterized as local diffusion down the local

gradient of the third and second-order terms. For example:

ow'w'@e'.
oz

www o =-K,-

w? we
oz ' oz

or www =ﬁ1t(

Higher-order statistics are more difficult to measure in the real atmosphere, and the resulting
signal-to-noise ratio is very poor. As a result, we have little knowledge of the actual behavior of
this very-high order terms, and thus have little basis upon which to guide and validate our
parameterizations. Never-the-less, the inclusion of additional physics in the third-order
equations ensures an improved forecast regardless of any crude parameterizaﬁohé that might be

rhade in the fourth-order terms.

8. RECOMMENDATIONS
Generally, those closures toward the upper left of Table 1 are more economical, while those
toward the bottom or right provide more detail. Within the limitations of the closure, the

accuracy of the upper left closure can be just as great as those toward the bottom or right.
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By economical, we mean that fewer equations must be solved, allowing quicker computer
execution times. However, most of the economical closures are designed for special subsets of
boundary-layer behavior, such as for the convective mixed layer. This means that additional
code must be incorporated into the NWP model to switch between the special closures, such as to
decide when to use unstable-mixed-layer parametrizations vs stable-boundary-layer parametri-
zations. Also, there are many real situations (such as strong surface heating WITH strong winds)
which do not fall into any special-case categories.

Detail means that additional flow information is available.  For example, increasing
values of S or N give more information about higher-order turbulence statistics, induding: mixing
lengths and nonlocal transport distances, fluxes (local or noﬁlocal), variances or nonlocal
transport velocities, skewness or asymmetry, spectra (local Fourier specfra or nonlocal transport
spectra). Also, these more-sophisticated closures can mimic a wider fange of arbitrary boundary-
layer situations. . - _

Parameterization beauty is in the eye of the beholder. Each type of closure has urﬁque
strengths and weaknesses. Hence, there can be no recommendation of a ”best”.closure. As
computer power increases, it will be more affordable and perhaps beneficial to utilize the more

sophisticated and generally-applicable closures.

9. THE FUTURE

While it might seem esoteric to forecast the future of weather-forecast models, it is often wise to
plan ahead. My personal opinion is that the quality of weather forecasts will improve when the
grid size becomes sufficiently small. The reason is that parameterizations will not be needed for
many meteorological phenomena such as thermals, clouds, and the effects vof surface
heterogeneities. Fewer parameterizations will allow fewer errors, because the physics and
dynamics will be calculated deterministically rather than arbitrarily approximated.

Limited-domain large-eddy simulation (LES) models have already demonstrated such
potential. They have been used to “foretell” many atmospheric characteristics that have later
been verified with atmospheric observations.

For global NWP models to take advantage of this approach, the grid size over the whole
globe must be reduced to that of present-day LES models (Ax = Ay = Az = 100’ m); Such evolution
is throttled by computer storage and computational speeds, which would need a many-fold
‘increase. If recent-past computér evolution is any indicator, we might reach the needed computer

power in about ten to twenty years, which is well within the career-span of many reséarcheljs.
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