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Summary: The difference between the state that a system is assumed or predicted to possess,
and the state that it actually possesses or will possess, constitutes the error in specifying
or forecasting the state. We identify the rate at which an error will typically grow or decay,
as the range of prediction increases, as the key factor in determining the extent to which
a system is predictable. The long-term average factor by which an infinitesimal error will
amplify or diminish, per unit time, is the leading Lyapunov number; its logarithm, denoted
by A1, is the leading Lyapunov exponent. Instantaneous growth rates can differ appreciably
from the average.

With the aid of some simple models, we describe situations where errors behave as
would be expected from a knowledge of A1, and other situations, particularly in the earliest
and latest stages of growth, where their behavior is systematically different. Slow growth
in the latest stages may be especially relevant to the long-range predictability of the atmo-
sphere. We identify the predictability of long-term climate variations, other than those that
are externally forced, as a problem not yet solved.

1. INTRODUCTION

As T look back over the many meetings that I have attended, I recall a fair number of times when I
" have had the pleasure of being the opening speaker. It’s not that this is necessarily a special honor,
jbut it does allow me to relax, if not to disappear altogether, for the remainder of the meeting. On
the present occasion, however, I find it is a true privilege to lead off. This is both because the subject
of the seminar, predictability, is of special interest to me, and because much of the significant work

in this field has taken place here at the European Centre.

Most of us who are here presumably have a special interest in the atmosphere, but the subject
of predictability, and the knowledge of it that we presently possess, extend to much more general
systems. By and large these systems fall into two categories, within which, to be sure, there are many
subcategories. On the one hand there are real or realizable physical systems. On the other there are

systems defined by mathematical formulas. The distinction between these categories is not trivial.

The former category includes the atmosphere, but also many much simpler systems, such as a
pendulum swinging in a clock, or a flag flapping in a steady breeze. Instantaneous states of these
systems cannot be observed with absolute precision, nor can the governing physical laws be expressed

without some approximation. Exact descriptions of the dissipative processes are particularly elusive.

In the latter category, initial states may be prescribed exactly. Likewise, the defining formulas
may be precisely written down, at least if the chosen finite-difference approximations to any differential

equations, and the inevitable round-off procedures, are regarded as part of the system. In some
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instances the equations are of mathematical interest only, but in other cases they constitute models
of real physical systems; that is, they may be fair, good, or even the best-known approximations to
the equations that properly represent the appropriate physical laws. The relevance of mathematically
defined systems cannot be too strongly emphasized; much of what we know, or believe that we know,
about real systems has come from the study of models.

Systems whose future states evolve from their present states according to precise physical laws
or mathematical equations are known as dynamical systems. These laws or equations encompass not
only the internal dynamics of a system, but also any external factors that influence the system as
it evolves. Often the concept of a dynamical system is extended to include cases where there may
be some randomness or uncertainty in the evolution process, especially wheﬁ it is believed that the
general behavior of the system would hardly be changed if the randomness could be removed; thus, in
addition to mathematical models and abstractions, many real physical systems will qualify. Stochastic
terms sometimes are added to otherwise deterministic mathématical equations to make them simulate
real-system behavior more closely.

In the ensuing discussion I shall frequently assume that our system is the atmosphere and its
surroundings—the upper layers of the oceans and land masses—although I shall illustrate some of the
points with rather crude models. By regularly calling our system the “atmosphere” I do not mean
to belittle the importance of the non-atmospheric portions. They are essential to the workings of the
atmospheric portions, and, in fact, prediction of oceanic and land conditions can be of interest for its
own sake, wholly apart from any coupling to the weather.

A procedure for predicting the evolution of a system may consist of an a.ttemptvto solve the
equations known or believed to govern the system, starting from an obserifed state. Often, if the states
are not completely observed, it may be possible to infer something about the unobserved portion of
the present state from observations of past states; this is what is currently done, for example, in
numerical weather prediction (see, e.g., Toth and Kalnay, 1993). ‘At the other extreme, a prediction
procedure may be completely empirical. Nevertheless, whatever the advantages of various approaches
may be, no procedure can do better than to duplicate what the system does. Any suitable method of
prediction will therefore constitute, implicitly if not explicitly, an attempt at duplication—an attempt
to reproduce the resulf of marching forward from the present state.

When we speak of “predictability,” we may have either of two concepts in mind. One of these is
intrinsic predictability—the extent to which prediction is possible if an optimum procedure is used.
The other is practical predictability—the extent to which we ourselves are able to predict by the
best-known procedures, either currently or in the foreseeable future. If optimum prediction consists
of duplication, it would appear that imperfect predictability must be due to one or both of two

conditions—inability to observe the system exactly, and inability to formulate a perfect forward-
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extrapolation procedure. The latter condition is certainly met if the laws involve some randomness,
or if future external influences cannot be completely anticipated.

When we cannot determine an initial state of a system precisely, there are two possible ‘conse-
quences. The system may be convergent; that is, two or more rather similar states, each evolving
according to the same laws, may become progressively more similar. In this event, a precise knowledge
of the true initial state is clearly not needed, and, in fact, the governing laws need not be known,
since empirical methods will perform as well as any others. When we predict the oceanic tides, for
example, which we can do rather well years in advance, we do not start from the observed present
state of the ocean and extrapolate forward; we base our prediction on known periodicities, or on
established relations between the tides and the computable motions of the sun, earth, and moon.

If instead the system is divergent, so that somewhat similar states become less and less similar,
predictability will be limited. If we have no basis for saying which, if any, of two or more rather similar
states is the true initial state, the governing laws cannot tell us which of the rather dissimilar states
that would result from marching forward from these states will be the one that will actually develop.
As will be noted in more detail in the concluding section, any shortcoming in the extrapolation
procedure will have a similar effect. Systems of this sort are now known collectively as chaos. In the
case of the atmosphere, it should be emphasized that it may be difficult to establish the absence of
an intrinsic basis for discriminating among several estimates of an initial state, and the consequent
intrinsic unpredictability; some estimates that now seem reasonable to us might, according to rules
that we do not yet appreciate, actually be climatologically impossible and hence rejectable, while

others might, according to similar rules, be incompatible with observations of earlier states.

2. FIRST ESTIMATES OF PREDICTABILITY

Two basic characteristics of individual chaotic dynamical systems are especially relevant to predictabil-
ity. One quantity is the leading Lyapunov number, or its logarithm, the leading Lyapunov exponent.
Let us assume that there exists a suitable measure for the difference between any two states of a
system—possibly the distance between the points that represent the states, in a multidimensional
phase space whose coordinates are the variables of the system. If two states are infinitesimally close,
and if both proceed to evolve according to the governing laws, the long-term average factor by which
the distance between them will increase, per unit time, is the first Lyapunov number. More generally,
if an infinite collection of possible initial states fills the surface of an infinitesimal sphere in phase
space, the states that evolve from them will lie on an infinitesimal ellipsoid, and the long-term aver-
age factors by which the axes lengthen or shorten, per unit time, arranged in decreasing order, are
the Lyapunov numbers. The corresponding Lyapunov exponents are often denoted by Aq,Az,...; a

positive value of A; implies chaos (see, e.g., Lorenz, 1993). Unit vectors in phase space pointing along
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the axes of the ellipsoid are the Lyapunov vectors; each vector generally varies with time.

Our interest in pairs of states arises from the case when one member of a pair is the true state

of a system, while the other is the state that is believed to exist. Their difference is then the error
in observing or estimating the state, and, if the assumed state is allowed to evolve according to an
assumed law, while the true state follows the true law, their difference becomes the error in prediction.
In the meteorological community it has become common practice to speak of the doubling time for
small errors; this is inversely proportional to A; in the case where the assumed and true laws are the
same.
‘ The other quantity of interest is the size of the attractor; specifically, the average distance p
between two randomly chosen points of the attractor. The attractor is simply the set of points
representing states that will occur, or be approximated arbitrarily closely, if the system is allowed to
evolve from an arbitrary state, and transient effects associated with this state are allowed to die out.
Estimation of these quantities is fairly straightforward for mathematically defined systems—ordinarily
p? is simply twice the sum of the variances of the variables—but for real systems A\; may be difficult
to deduce.

The third quantity that would seem to be needed for an estimate of the range of acceptable
predictability is the typical magnitude of the error in estimating an initial state, ostensibly not a

__property of the system at all, but dependent upon our observing and inference techniques. For
the atmosphere, we have a fair idea of how well we now observe a state, but little idea of what
to expect in the years to come. Even though we may reject the notion of a future world where
observing instruments are packed as closely as today’s city dwellings, we do not really know what
;some undreamed-of remote-sensing technique may some day yield. However, assuming the size of an
injtial error, taking its subsequent growth rate to be given by A;, and recognizing that the growth
should cease when the predicted and actual states become as far apart as randomly chosen states—
when the error reaches saturation—we can easily calculate the time needed for the prediction to
become no better than guesswork.

How good are such naive estimates? We can demonstrate some simple systems where they
describe the situation rather well, at least on the average. One system is one that I have been
exploring in another context as a one-dimensional atmospheric model, even though its equations are
not much like those of the atmosphere. It contains the K variables X, ..., Xk, and is governed by

the K equations

dXp/dt = =Xk 2 X1 + Xp-1Xik41 — Xk + F, (1)

where the constant F' is independent of k. The definition of X} is to be extended to all values of k¥ by

letting Xj—g and X4 equal Xy, and the variables may be thought of as values of some atmospheric
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quantity in K sectors of a latitude circle. The physics of the atmosphere is present only to the extent
that there are external forcing and internal dissipation, simulated by the constant and linear terms,
while the quadratic terms, simulating advection, together conserve the total energy (X?+...+ X%)/2.
We assume that K > 3; the equations are of little interest otherwise. The variables have been scaled
to reduce the coefficients in the quadratic and linear terms to unity, and, for reasons that will presently
appear, we assume that this scaling makes the time unit equal to 5 days.

For very small values of F, all solutions decay to the steady solution X; = ... = Xg = F, while,
when F is somewhat larger, most solutions are periodic, but for still larger values of F' (dependent
on K) chaos ensues. For K = 36 and F' = 8.0, for example, A; corresponds to a doubling time of 2.1
days; if F is raised to 10.0, the time drops to 1.5 days.

Figures 1 and 2a have been constructed with K = 36, so that each sector covers 10 degrees of
longitude, while F = 8.0. We first choose rather arbitrary values of the variables, and, using a fourth-
order Runge-Kutta scheme with a time step At of 0.05 units, or 6 hours, we integrate forward for
14400 steps, or 10 years. We then use the final values, which should be more or less free of transient
effects, as new “true” initial values, to be denoted by Xy.

From Fig. 1 we may gain some idea as to the resemblance or lack of resemblance between the
behavior of the model variables and some atmospheric variable such as temperature. Figure 1a shows
_ the variations of X; during 720 time steps, or 180 days, beginning with the new initial conditions.
The time series is displayed as three 60-day segments. There are some regularities—values lie mostly
between —5 and 410 units, and about 12 maxima and minima occur every 60 days—but there is
no sign of any true periodicity. Because of the symmetry of the model, all 36 variables should have
étatistically similar behavior. Figure 1b shows the variations of X} with k—a “profile” of X about
a “latitude circle”—at the initial time, and 1 and 2 days later. The principal maxima and minima
are generally identifiable from one day to the next, and they show some tendency to progress slowly
westward, but their shapes are continually changing.

To produce the upper curve in Fig. 2a we make an initial “run” by choosing errors e randomly
from a distribution with mean 0 and standard deviation €, here equal to 0.001, and letting X}, =
X0+ €exo be the “observed” initial values of the K variables. We then use Eq. (1) to integrate forward
from the true and also the observed initial state, for N = 200 steps, or 50 days, obtaining K sequences
Xko, Xk1,...,Xxn and K sequences X}g, X4y,- .- Xy after which we let exn = X}, — X for all
values of k and n.

We then proceed to make a total of M = 250 runs in the same manner, in each run letting the
new values of Xio be the old values of X;n and choosing the values of exo randomly from the same
distribution. Finally we let €2(7) be the average of the I values %, where 7 = nAt is the prediction

range, and let log E?(7) be the average of the M values of log e?(r), and plot E(r) against the number
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Fig. 1 a) Time variations of X; during a period of 180 days, shown as three consecutive 60-day segments,
as determined by numerical integration of Eq. (1), with KX = 36 and F = 8.0. Scale for time, in days,
is at bottom. Scales for X in separate segments are at left. b) Longitudinal profiles of X at three
times separated by 1-day intervals, determined as in a). Scale for longitude, in degrees east, is at
bottom. Scales for X in separate profiles are at left.
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Fig. 2 a) Variations of average prediction error E (lower curve, scale at right) and logyg E (upper curve,
scale at left) with prediction range 7 (scale, in days, at bottom), for 50 days, as determined by 250
pairs of numerical integrations of Eq. (1), with X' = 36 and F = 8.0 (as in Fig. 1). b) The same
as a), but for variations of log;g E only, and as determined by 1000 pairs of integrations of Eq. (1),
with K = 4, and with F = 18.0 (upper and middle curves, with different initial errors), and F' = 15.0
(lower curve).
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of days (57), on a logarithmic scale. (The lower curve is the same except that the vertical scale is
linear.)

For small n we see a nearly straight sloping line, representing uniform exponential growth, with
a doubling time of 2.1 days, agreeing with A, until saturation is approached. For large n we see
a nearly straight horizontal line, representing saturation. It should not surprise us that the growth
rate slackens before saturation is reached, rather than continuing unabated up to saturation and then
ceasing abruptly.

The alternative procedure of simply letting E%(7) be the average value of e*(r), i.e., averaging
the runs arithmeticaﬂy instead of geometrically, would lead to a figure much like Fig. 2a, but with
the sloping line in the upper curve indicating a doubling time of 1.7 days. Evidently the errors tend
to grow more rapidly for a while in those runs where they have already acquired a large amplitude by
virtue of their earlier more rapid growth, and it is these runs that make the major contribution to the
arithmetic average. One could perhaps make equally good cases for studying geometric or arithmetic

means, but only the former fits the definition of );.

3. ATMOSPHERIC ESTIMATES
Some three decades ago a historic meeting, organized by the World Meteorological Organization, took
i)lace in Boulder, Colorado. The principal topic was long-range weather forecasting. At that time
numerical modeling of the complete global circulation was just leaving its infancy; the three existing
state-of-the-art models were those of Leith (1965), Mintz (1965), where A. Arakawa also played an
essential role, and Smagorinsky (1965).

At such meetings the greatest accomplishments often occur between sessions. In this instance Jule
Charney, who headedv a committee to investigate the feasibility of a global observation and analysis
experiment, persuaded the creators of the three models, all of whom were present, to use their models
for predictability experiments, which would involve computations somewhat like those that produced
Fig. 2a. On the basis of these experiments, Charney’s committee subsequently concluded that a
reasonable estimate for the atmosphere’s doubling time was 5 days (Charney et al., 1966). Taken
at face value, this estimate offered considerable hope for useful two-week forecasts but very little for
one-month forecasts.

The Mintz-Arakawa model that had yielded the 5-day doubling time was a two-layer model.
Mintz’s graphs showed nearly uniform amplification before saturation was approached; presumably
they revealed the model’s leading Lyapunov exponent, although not, as we shall see, the leading
exponent for the real atmosphere. As time passed by and more sophisticated models were developed,
estimates of the doubling time appeared to drop. Smagorinsky’s nine-level primitive-equation model,

for example, reduced the time to 3 days (Smagorinsky, 1969).
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Experiments more than a decade later with the then recently established operational model of
ECMWF, based upon operational analyses and forecasts, suggested a doubling time between 2.1
and 2.4 days for errors in the 500-millibar height field (Lorenz, 1982). In the following years the
model was continually modified, in an effort to improve its performance, and the newly accumulated
data presently pushed the estimate below 2 days. There were small but significant variations of
predictability with the season and the hemisphere, and quantities such as divergence appeared to be
considerably less predictable than 500-mb height.

One of the most recent studies (Simmons et al., 1995), again performed with the ECMWF
model, has reduced the estimate to 1.5 days. It is worth asking why the times should continually
drop. Possibly the poorer physics of the earlier models overestimated the predictability, but it seems
likely that a major factor has been spatial resolution. The old Mintz- Arakawa model used about 1000
numbers to represent the field of one variable at one level; the present ECMWF model uses about
45000. Errors in features that formerly were not captured at all may well amplify more rapidly than
those in the grossest features.

As with the Mintz-Arakawa model, the doubling times of the recent models appear consistent
with the values of A; for these models. Obviously not all of them can indicate the proper value of the
exponent for the real atmosphere, and presumably none of them does.

Our reason for identifying the time unit in the model defined by Eq. (1) with 5 days of atmospheric
time is now apparent. With K = 36 and F = 8.0 or 10.0, and indeed with any reasonably large value
of K and these values of F, the doubling time for the model is made comparable to the times for the

up-to-date global circulation models.

4, THE EARLY STAGES OF ERROR GROWTH

Despite the agreement between the error growth in the simple model, and even in some global circula-
tion models, with simple first estimates, reliance on the leading Lyapunov exponent, in most realistic
situations, proves to be a considerable oversimplification. By and large this is so because A; is defined
as the long-term average growth rate of a very small error. Often we are not primarily concerned
with averages, and, even when we are, we may be more interested in shorter-term behavior. Also, in
practical situations the initial error is often not small.

Sometimes, for example, we are interested in how well we can predict on specific occasions, or in
specific types of situation, rather than in some general average skill. For any particular initial state,
the initial growth rate of a superposed error will be highly dependent on the form of the error—on
whether, for example, it assumes its greatest amplitude in synoptically active or inactive regions. In
fact, there will be one error pattern—in phase space, it is an error vector—that will initially grow

more rapidly than any other. The form and growth rate of this vector will of course depend upon the
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state on which the error is superposed.

Likewise, the average initial or early growth rate of randomly chosen errors superposed on a
particular initial state will depend upon that state. Indeed, the identification of situations in which
the atmosphere is especially predictable or unpredictable—the prediction of predictability—and even
the identifiability of such situations—the predictability of predictability—have become recognized as
suitable subjects for detailed study (see Kalnay and Dalcher, 1987; Palmer, 1988).

Assuming, however, that we are interested in averages over a wide variety of initial states, the
value of A; may still not tell us what we want to know, particularly in the earliest or latest stages of
growth. In fact, in some systems the average initial growth rate of randomly chosen errors systemat-
ically exceeds the Lyapunov rate (see, e.g., Farrell, 1989).

This situation is aptly illustrated by the middle curve in Fig. 2b, which has also been produced
from Eq. (1), in the same manner as Fig. 2a, but with K reduced to 4 and F increased to 18.0, and
with € = 0.0001. Also, because so few variables are averaged together, we have increased M to 1000.
Between about 6 and 30 days the curve has a reasonably uniform slope, which agrees with A{, and
indicates a doubling time of 3.3 days, but during the first 3.3 days the average error doubles twice.
Systems exhibiting anomalously rapid initial error growth are in fact not uncommon. Certainly there
are practical sitnations where we are mainly interested in what happens during the first few days,
and here )A; is not always too relevant.

This phenomenon, incidentally, is in this case not related to the chaotic behavior of the model.
The lower curve in Fig. 2b is like the middle one, except that F' has been reduced to 15.0, producing
a system that is not chaotic at all. Again the error doubles twice during the first 6 days, but then
it levels off at a value far below saturation. If € had been smaller, the entire curve would have been
displaced downward by a constant amount.

When the initial error is not particularly small, as is often the case in operational weather
forecasting, Ay may play a still smaller role. The situation is illustrated by the upper curve in Fig.
2b, which has been constructed exactly as the middle curve, except that ¢ = 0.4, or 5 percent of
saturation, instead of 0.001. The rapid initial error growth is still present, but, when after 4 days
it ceases, saturation is already being approached. Only a brief segment between 4 and 8 days is
suggestive of 3.3-day doubling.

The relevance of the Lyapunov exponent is even less certain in systems, such as more realistic
atmospheric models or the atmosphere itself, where different features possess different characteristic
time scales. In fact, it is not at all obvious what the leading exponent for the atmosphere may be, or
what the corresponding vector may look like. To gain some insight, imagine a relatively realistic model
that resolves larger scales—planetary and synoptic scales—and smaller scales—mesoscale motions and

convective clouds; forget about the fact that experiments with a global model with so many variables
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would be utterly impractical with today’s computational facilities. Convective systems can easily
double their intensity in less than an hour, and we might suppose that an initial error field consisting
only of the omission of one incipient convective cloud in a convectively active region, or improperly
including such a cloud, would amplify equally rapidly, and might well constitute the error pattern
with the greatest initial growth rate.

Yet this growth rate need not be long-term, because the local instability responsible for the
convective activity may soon subside, whereupon the error will cease to grow, while new instability
may develop iﬁ some other location. A pattern with convective-scale errors distributed over many
regions, then, would likely grow more steadily even if at first less rapidly, and might more closely
approximate the leading Lyapunov vector.

Since this reasoning is highly speculative, I have attempted to place it on a slightly firmer basis by
introducing another crude model which, however, varies with two distinct time scales. The model has
been constructed by coupling two systems, each of which, aside from the coupling, obeys a suitably

scaled variant of Eq. (1). There are K variables X plus JK variables Yj x, defined for £ = 1,...,K

and j =1,...,J, and the governing equations are
J
dXy/dt = —Xg_1(Xp—z — Xpp1) — Xi = (he/0) D Vi, (2)
=1
dYjk/dt = —cbYjr1 k(Yitzk — Yi-1,6) — ¥k + (he/b)X. (3)

The definitions of the variables are extended to all values of k£ and j by letting X;_x and Xpix
equal Xy, as in the simpler model, and letting Y; x_x and Yj pyx equal Yj g, while Y;_ 55 = ¥j £-1
and Y;4 5% = Yjk4+1. Thus, as before, the variables X} can represent the values of some quantity
in K sectors of a latitude circle, while the variables Y;, arranged in the order Y;1,Y24,..., Y71,
Y12,Y22,...,Ys2, Ya1, ..., can represent the values of some other quantity in JK sectors. A large
value of J implies that many of the latter sectors are contained in one of the former, and we may
think of the variables Y; x as representing a convective-scale quantity, while, in view of the form of the
coupling terms, the variables X should represent something that favors convective activity, possibly
the degree of static instability.

In our computations we have let K = 36 and J = 10, so that there are 10 small sectors, each
one degree of longitude in length, in one large sector, while ¢ = 10.0 and b = 10.0, implying that
the convective scales tend to fluctuate 10 times as rapidly as the larger scales, while their typical
amplitude is 1/10 as large. We have let h, the coupling coefficient, equal 1.0, and we have advanced
the computations in time steps of 0.005 units, or 36 minutes. Our chosen value F = 10.0 is sufficient
to make both scales vary chaotically; note that coupling replaces direct forcing as a driver for the

convective scales.
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Figure 3 reveals some of the typical behavior of the model, by showing the distribution of X} and
Y; x about alatitude circle, at times separated by 2 days. There are 7 active areas (X large), generally
30 or 40 degrees wide, that fluctuate in width and intensity as they slowly propagate westward, while
the convective activity, which is patently strongest in the active areas, tends to propagate eastward
(note the signs in the subscripts in the nonlinear terms in Eq. (3)), but rapidly dies out as it leaves

an active area.

Figure 4 presents separate error-growth curves for the large and small scales. For computational
economy we have averaged 25 runs rather than 250. The small-scale errors begin to amplify im-
mediately, doubling évery 6 hours or so and approaching saturation by the third day. This growth
rate is compatible with the computed value of Ay for the model. Meanwhile, the large-scale errors
begin to grow at a similar rate once the small-scale errors exceed them by an order of magnitude, the
growth evidently resulting from the coupling rather than the dynamics internal to the large scales.
After the small-scale errors are no longer growing, the large-scale errors continue to grow, at a slower
quasi-exponential rate comparable to what appears in Fig. 2a, doubling in about 1.6 days. Finally
they approach their own saturation level, an order of magnitude higher than that of the small-scale
errors. Thus, after the first few days, the large-scale errors behave about as they would if the forcing

were slightly weaker, and if the small scales were absent altogether.

In a more realistic model with many time scales or perhaps a continuum, we would expect to
see the growth rate of the largest-scale errors subsiding continually, as, one after another, the smaller
scales reached saturation. Thus we would not expect a large-scale-error curve constructed in the

manner of Fig. 4 to contain an approximate straight-line segment of any appreciable length.

We now see the probable atmospheric significance of the error doubling times of the various global
circulation models. Each doubling time appears to represent the rate at which, in the real atmosphere,
érrors in predicting the features that are resolvable by the particular model will amplify, after the errors
in unresolvable features have reached saturation. Of course, before accepting this interpretation, we
must recognize the possibility that some of the small-scale features will not saturate rapidly; possibly

they will act in the manner of coherent structures.

5. THE LATE STAGES

As we have seen, prediction errors in chaotic systems tend to amplify less rapidly, on the average, as
they become larger. Indeed, the slackening may become apparent long before the errors are close to
saturation, and thus at a range when the predictions are still fairly good. For Eq. (1), and in fact

for the average behavior of some global atmospheric circulation models, we can construct a crude
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Fig. 3 a) Longitudinal profiles of X and Y ; at one time, as determined by numerical integration of Egs.
(2) and (3), with K = 36, J = 10, F = 10.0, ¢ = 10.0, b = 10.0, and h = 1.0. Scale for longitude,
in degrees east, is at bottom. Common scale for X}, and Y; ; is at left. b) The same as a), but for a
time two days later.
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Fig. 4 Variations of logyg F (scale at left) with prediction range 7 (scale, in days, at bottom), shown sepa-
rately for large scales (variables X, curve a) and small scales (variables Y; i, curve b), for 30 days,
as determined by 25 pairs of integrations of Eqgs. (2) and (3), with the parameter values of Fig. 3.

formula by assuming that the growth rate is proportional to the amount by which the error falls short

of saturation. We obtain the equation
(1/EYdE/[/dr = M(E* - E)/E™, 4)
where E* denotes the saturation value for E. Equation (4) possesses the solution
E = E* (1 + tanh(A17)) /2, (5)

if the origin of 7 is the range at which E = E*/2. The well-known symmetry of the hyperbolic-
tangent curve, when it is drawn with a linear vertical scale, then implies that the rate at which the
error approaches saturation, as time advances, equals the rate at which it would approach zero, if
time could be reversed. This relationship is evidently well approximated in the lower curve of Fig,.
2a, and it has even been exploited to estimate growth rates for small errors, when the available data
have covered only larger errors (see Lorenz, 1969b, 1982). It is uncertain whether the formula is more
appropriate when F is the root-mean-square error or simply the mean-square error.

For many systems, however, Eq. (4) and hence Eq. (5) cannot be justified in the later stages. This
may happen when, as in the case where the early growth fails to follow Eq. (4), the system possesses
contrasting time scales. Here, however, the breakdown can occur because some significant feature
varies more slowly than the features of principal interest—the ones that contribute most strongly to

the chosen measure of total error.
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Perhaps the feature most often cited as falling into this category is the sea-surface temperature
(SST), which, because of the ocean’s high heat capacity, sometimes varies rather sluggishly. Along
with the atmospheric features most strongly under its influence, the SST may therefore be expected to
be somewhat predictable at a range when migratory synoptic systems are not. A slow final approach
to saturation may thus be anticipated, particularly if the “total error” includes errors in predicting
the SST itself.

A perennial feature in which the SST plays a vital role is the El Nifio-Southern Oscillation
(ENSO) phenomenon. Phases of the ENSO cycle persist long enough for predictions of the associated
conditions a few months ahead to be much better than guesswork, while some models of ENSO (e.g.,
Zebiak and Cane, 1987) suggest that the onsets of coming phases may also possess some predictability.
Again, the phenomenon should lead to an ebbing of the late-stage growth rate.

Perhaps less important but almost certainly more predictable than the ENSO-related features
are the winds in the equatorial middle-level stratosphere, dominated by the quasi-biennial oscillation
(QBO). Even though one cannot be certain just when the easterlies will change to westerlies, or vice
versa, nor how the easterlies or westerlies will vary from day to day within a phase, one can make a
forecast with a fairly low expected mean-square error, for a particular day, a year or even several years
in advance, simply by subjectively extrapolating the cycle, and predicting the average conditions for
the anticipated phase. Any measure of the total error that gives appreciable weighting to these winds
is forced to approach saturation very slowly in the latest stages.

Looking at still longer ranges, we come to the question, “Is climate predictable?” Whether or
not it is possible to predict climate changes, aside from those that result from periodic or otherwise
predictable external activity, may depend on what is considered to be a climate change.

Consider again, for example, the ENSO phenomenon. To some climatologists, the climate changes
when El Nifio sets in. It changes again, possibly to what it had previously been, when El Nifio subsides.
We have already suggested that climatic changes, so defined, possess some predictability.

To others, the climate is not something that changes whenever El Nifio arrives or leaves. Instead,
it is something that often remains unchanged for decades or longer, and is characterized by the
appearance and disappearance of El Nifio at rather irregular intervals, but generally every two to
seven years. A change of climate would be indicated if El Nifio should start to appear almost every
year, or only once in twenty years or not at all. Whether unforced changes of climate from one
half-century or century to another, or one millennium to another, are at all predictable is much less
certain.

Let us then consider the related question, “Is climate a dynamical system?” That is, is there
something that we can conscientiously call “climate,” determined by the state of the atmosphere and

its surroundings, and undergoing significant changes over intervals of centuries but usually remaining

15



LORENZ, E. N.: PREDICTABILITY—A PROBLEM PARTLY SOLVED

almost unchanged through a single ENSO cycle or a shorter-period oscillation, whose future states
are determined by its present and past according to some exact or approximate rule? To put the
matter in perspective, let us first reexamine the justification for regarding the ever-changing synoptic
pattern, and possibly the ENSO phenomenon, as dynamical systems.

Experience with numerical weather prediction has shown that we can forecast the behavior of
syﬁoptic systems fairly well, far enough in advance for an individual storm to move away and be
replaced by the next storm, without observing the superposed smaller-scale features at all, simply
by including their influence in parameterized form. If instead of parameterizing these features we
omit them altogether, the models will still produce synoptic systems that behave rather reasonably,
even though the actual forecasts will suffer from the omission. Evidently this is because the features
that are small in scale are relatively small in amplitude, so that their influence acts much like small
random forcing.

Moving to longer time scales, we find that some models yield rather good simulations of the
behavior of the ENSO phenomenon, even if not good forecasts of individual occurrences, without
including the accompanying synoptic systems in any more than parameterized form. Here the synoptic
systems do not qualify as being small in amplitude, but they appear to be rather weakly coupled to
ENSO, so that again they may act like small random forcing.

~ Similarly, climatic ﬂﬁctuations with periods of several decades or longer have more rapid oscil-
lations superposed on them, ranging in time scale all the way from ENSO and the QBO to synoptic
and small-scale features. Certainly these fluctuations are not small. Is their effect on the climate, if
large, determined for the most party by the climate itself, so that climate can constitute a dynamical
system? If this not the case, are these features nevertheless coupled so weakly to the climate that
they act like small random forcing, so that climate still constitutes a dynamical system? Or do they
act more like strong random forcing, so that climate does not qualify as a dynamical system, and
prospects for its prediction are not promising? At present the reply to these questions seems to be

fhat we do not know.

6.  CONCLUDING REMARKS

In this overview I have identified the rate at which small errors will amplify as the key quantity in de-
termining the predictability of a system. By an error we sometimes mean the difference between what
is predicted and what actually occurs, but ordinarily we extend the concept to mean the difference,
at any designated time, between two evolving states. We assume that there would be no prediction
error if we could observe an initial state without error, and if we could formulate an extrapolation
procedure without error, recognizing that such formulation is not possible if the governing laws involve

any randomness.
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In my discussions and numerical illustrations I have found it convenient to consider the growth
of errors that owe their existence to errors in the initial state, disregarding the additional influence of
any inexactness in the extrapolation procedure. However, if the fault lies in the extrapolation and not
in the initial state, the effect will be similar; after a reasonable time interval there will be noticeable
errors in the predicted state, and these will proceed to grow about as they would have if they had
been present initially. If the assumed and actual governing laws define systems with different leading
Lyapunov exponents, the larger exponent will be the relevant one. Randomness in the governing
laws will have the same effect as any other impediment to perfect extrapolation. In the case of the
atmosphere, the inevitable small-scale features will work like randomness.

I have confined my quantitative discussions to results deduced from pairs or ensembles of numeri-
cal solutions of mathematical models with various degrees of sophistication, but alternative approaches
have also been exploited. Some studies have been based on equations whose variables are ensemble
averages of error magnitudes. These equations have been derived from conventional atmospheric mod-
els, but, to close the equations, i.e., to limit the number of variables to the number of equations, it has
been necessary to introduce auxiliary assumptions of questionable validity (see, e.g., Thompson, 1957;
Lorenz, 1969a). Results agree reasonably well with those yielded by more conventional approaches.

There have also been empirical studies. Mediocre analogues—pairs of somewhat similar states—
have been identified in Northern-Hemisphere weather data; their differences constitute moderate-sized
errors, whose subsequent growth may be determined by noting how the states evolve (see Lorenz,
1969b). The growth rates of small errors may then be inferred from Eq. (4); again they are consistent
with growth rates obtained from numerical integrations.

There are other aspects of the predictability problem that I have not touched upon at all, and
I shall conclude by mentioning just one of these—the improvement in weather forecasting that may
reasonably be expected in the foreseeable future. Recent experience, again with the ECMWF opera-
tional system, suggests that errors in present-day forecasting amplify more rapidly than they would
if the continual error accumulation that results from imperfect extrapolation were not present, i.e., if
all of the error growth resulted from amplification of already-present errors. There should therefore
be room for improvement. Numerical estimates suggest that we may some day forecast a week in
advance as well as we now forecast three days in advance, and two weeks ahead almost as well as we

now forecast one week ahead.
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