Architecture of the new MARS server

Baudouin Raoult
Meteorological Applications
ECMWF

1. Introduction

Since 1985, the ECMWF Meteorological Archival and Retrieval System (MARS) has grown both in size and
diversity. At its start in 1985, the operational archive was growing at 70 Mbytes/day. In 1996, the growth rate was 125
Gbytes/day of operational data and 7 Gbytes/day of research data; the total archive was 22 Tbytes. The number of
individual items archived is also very large: 120,000 operational fields/day, 140,000 reports/day and 200,000 research
fields/day. :

Figure 1 shows the various data types that are in MARS and the year in which they have been introduced. We actually
have more data, for example we have had observations since 1979, but the data type “observation” was added to
MARS in July 1990. Earlier data was then back-archived. Since this chart was drawn, new types have been added: 4D
variational analysis, climatological simulatiouns, seasonal forecasting, ensemble tubes and much more. As you can
see, the curve shown is exponential, and we add new types more and more often.

Figure 1: MARS - Data Types

: ' ‘ - : Wave :Monthly Means_
: ' Analysis Feedback __|
: Sensitivity, Forecast
: i Monthly Means

. Ensemble Means
Re-Analysis |
+ ERSI . =

Forecast Pn'ibability
. Time Series
Satellite Images____ !
Ensemble.,
Waves
Errorin FG.
Other Centres. :

Observations

[
1
1
1
1
'

'
1
1
1
'
1
1
'
'
'
1
1
'
'
]
'
'
'
'
'
'
'
'
'
'
)
'

|
|
|
'
1
'
'
1
'
1
1
'
'
'
'
'
'
'
)
[
[
[
[
[
¢

'
'
'
'
'
'
'
'
'
'
'
[
'
'
1
1
1
+
1
t
1
1
1
1
'
1
'

Error in Analysis ! . : ; : !
Toga ; ; : ; ; ; ;

1
t
|
'
|
|
'
'
'
'
'
1
1
1
i
'
'
'
'
'
'
'
'
'
'
]
'
¢
'
|
|
|

Model

86 87 88 89 90 91 92 93 94 95
We still have to add ocean models, coupled models, private datasets,... this list is endless.

MARS is used in batch from the super-computers, interactively through Metview and remotely from the Member
States. Every day, 30,000 requests are processed, 1,500,000 fields and 100 Gbytes are moved.

In order to cope with this growing archive and the ever changing requirements, a project was set up in 1996, called the
DHS project (Data Handling System). MARS was totally redesigned to run on a Unix platform. It is written in C4++
and uses ObjectStore to store its metadata and ADSM to store the actual data.

The new MARS had to be compatible with the old system. It has to provide a service for the next 10 years, and like

every computer program, it has to be efficient, scalable and flexible. This paper describes how we are trying to
achieve these goals.

90

2. Decoupling physical and logical organisation of the data

From the experience gained with the previous MARS systems, we knew we could build a scalable system if we could
decouple the physical organisation of the data from its logical organisation. In order to do so, we split the system in
two parts. The first part, the MARS Server, has semantic knowledge of the data. It knows what a meteorological field
is, what a forecast is. The second part, the Data Server, has physical knowledge of the data. It knows if a piece of data
is on tape, on disk or cached. Figure 2 shows the architecture of MARS.

Figure 2: Architecture

M-——— " — T T T ===
-] 8 I I 8 Il
8| | ! I
$/ | MetaData | | MetaData ||
3'—L—___°——J——-——-—____':_——:_—_~J_J
Reques;T IReferences . Refemnce;T lFiles
—Request, uest, MARS References_; Data
«— | Server Server

Data Data
Dat:il lFiles
r T
]
| |
L _ _ADSHM

The MARS Server does not handle files but data references. When a user request is processed, the MARS Server
translates it into a list of data references that are passed to the Data Server. The Data Server translates data references
into actual files and returns the data.

Using this design, we have a system that is independent from the underlying hardware and from the underlying
software (ADSM). The data can be physically re-organised without any impact on the system. Data files are split or
joined, moved from disk to tape without the need for the MARS Server to know. Something else we have learnt from
the previous system is that the fewer files we have, the more manageable the system is. Most existing systems have
problems managing more that a few million files. With this architecture, we reduce the number of files by merging
them into larger files. Nowadays, we have more than 30 Tbytes in less than 200,000 files.

3. The metadata

The metadata is “data that describes the data”. In MARS, data are fields or observations. Metadata is data that knows
where is which field or observation. This metadata is stored in an object oriented database, managed by a commercial
product called ObjectStore. As we saw earlier, we need to split the logical organisation of the data form its physical
organisation. This split is reflected in the metadata. In order to define this metadata, we first need to look at the data
and answer the following question:

3.1 What is a meteorological field?

For MARS, a meteorological field is the smallest addressable object. It is defined by various attributes such as:

Attribute Value

Class Operational

91

Attribute Value

Version 1

Stream Daily archive
Parameter Temperature
Level 1000 hPa

Date 1993-08-~10

Base Time 122
Time Step 120 H
Member 42

The attributes may be different for different data types. For eiample, the number attribute is only used to select a
specific forecast number in an EPS (Ensemble Prediction System).

3.2 Archive objects

There are too many fields to store each individually. We need to group them into logical entities such as “a forecast”,
“a month of analyses” or “a research experiment”. This provides a natural data co-location for a faster access to
related data. These entities are called archive objects. We can stack all the fields for a forecast in a “cube™ as shown in
Figure 3. We group the fields using three attributes: level, parameter and step. This would represent a single

forecast, for a given date, a given base time, and a given version. The three attributes are the three dimensions of the
archive object.

Figure 3: Archive object

L L L S ST
4 yd
yavd A4

V1

4 d

T
Parameters

[
ANERANEANEAN

Levels
|

Because we group the fields using more than three attributes, the archive objects are actually hypercubes. Figure 4 is

an attempt to draw a six dimension hypercube that would represent all the fields of all the forecasts of an EPS for a
month.

Figure 4: Archive objects are hypercubes

N
N
~\
N
\
Never
N
N
N
N
N
(J N
N e e N
N e
:\
NN
NN
[N
1 N
e
‘Pﬁ»
N
\
Y
N
\
NME AN
T
\
N
N
W
o ~
V\‘\\ oS

N
\

Vel

N
N

Z

N
N
N

1
N
N
N

4%

R
LR P,

t
A

3

Timesg
Levall
ST
‘nn\\

SR

By

|

1
oS
A,

N,

Le
S
D

B

3.3 Shapes and Layouts
We split the description of an archive object into its shape and its layout. The shape will be:

¢ Its meteorological content.
* Its logical organisation.
* Part of MARS metadata.

And its layout will be:

* Its physical organisation.
e TIts physical location.
» Part of the Data Server metadata.

Figure 5 shows how we perform this split: the archive object is represented as a cube. The MARS Server metadata is
simply a list of each dimension of the cube: in this case, three axes and their labels. This is called the “shape” of the
archive object.

The Data Server metadata contains the size of each field, the file in which it is, and its offset in this file. This is the

“layout” of the archive object. Each layout is given a unique identifier that is saved by the MARS Server with the
shape.

93

Figure 5: Shapes and Layouts

MARS Server Data Server
Metadata Metadata
o~ T T __ _bayout =
| [Sti)[s——r—] | | Length Files |
| 12 24 a8 | | | 32000 |
[Levels | - — — - e | 57000 l
32000
850 500 200			
parameters			32000
!z I T		157000	
— e —— = e e e s
3.4 MARS Server metadata

All shapes are organised in a tree fashion, as shown in Figure 6. The nodes of the tree are defined by attributes that are
not used to describe the dimensions of archive objects.

When a user request is received, it is used to navigate the tree. The highlighted path in Figure 6 corresponds to a
request for some fields from the operational analysis of february 1996.

Figure 6: MARS Tree

Because the design is object-oriented, each node and each shape can be different (polymorphism). New nodes can be
added later, as new attributes are invented, and new shapes can be added later, as new data types are created. The
branches of the tree can all be different and the tree can span several physical databases.

3.5 Data Server Metadata

The layouts are all organised in a large table, using their unique identifier as an index (Figure 7). A layout can be fully
expanded, in this case it is itself a three column table. The first line correspond to the first field, the second line to the
second field and so on. A layout can also be compacted. Most of the time, the fields have a fixed size, sc we can use a
simple run-length encoding scheme to reduce the size of the metadata. In Figure 7, the layout 12349 represents 8400
lines compacted into 3. The first one is the repeating factor of the two next lines.

94

Figure 7: Data Server Metadata

I 12345 I 12346 l 12347 I 12348 | 12349 }

Offuat Length | wilg

0 32000 I Length
32000 57000 —1 P (4200)
89000 32000 ~—— 57000

121000 57000 32000
0 32000 —_— File
32000 57000 — "
89000 32000 —
121000 57000
] 32000

32000 57000 —y
89000 32000 - 4
/

121000 57000

Again, the design being object-oriented, the layouts are polymorphic objects. Future types of layout may be
introduced without any code change. The files also are polymorphic objects: support for new media or file storage
systems will be done without difficulty. A layout can span several files, tapes or disks and a file can be shared
amongst several layouts.

Each file knows how many layout lines point to them (the numbers shown in Figure 7). This is called reference
counting and is used to perform garbage collection: files that have no pointer to them are automatically deleted.

3.6 Adding a new field to an existing archive object
The design described above gives us a new feature that did not exist in the previous system: incremental archiving. A
field can be added later to an existing archive object. If one of its attributes has a new value, it is automatically

inserted.

If an archive object has three dimensions, there are three ways it can grow, as shown in Figure 8:

95

Figure 8: Reshaping hypercubes

Levels
Levels

&
&
0 I
Paramsters
Parametera] <
mi==
LA
: wa ,//
§ % 74
1 1T T T
Parameters

In general there are n ways to grow an n dimensional hypercube, by inserting an n-7 dimensional hyperplan. It is a lot
easier to perform the same insertion on the metadata once it is split. If we archive a new parameter w in an archive
object (Figure 9), we simply insert a string in an array (MARS Server) and some empty slots in another array (Data
Server).

Figure 9: Updating metadata

MARS Server Data Server
Metadata Metadata
(Shape) (Layout)

Steps Length Files
12 24 48 96 57000 o

32000

Levels 57000

850 500 300 200 \ 32000

Parameters

32000

T T T 1] <>

Z T W U V 57000 u

\ 32000

4. MARS in action

4.1 Archiving

When an archive request is issued from a client, the request descends the tree (Figure 6) until it reaches a shape. If it
does not find a shape, the tree is grown accordingly, and a new empty shape is added. Figure 10 shows an incremental
archive. The names at the top are the various components involved. Time flows from top to bottom. The dashed
arrows are messages sent between the components. The dotted arrows are data transfers.

96

Files a and b contain data that has been archived earlier. Data is transferred from the client machine into a disk file c.
This file contains two 57000 bytes fields. The layout is resized to accommodate the new fields, and it is updated to
point to file c. The data held in c is still on disk, and said to be in “pre-archive” stage.

Figure 10: Incremental archiving

Client HARS Data Servsr
——————— 2
Archive(57000
Param = w,
Level = (850,500)) 32000
———————— ~B 57000
Insert(
Index = (5,9), 32000
1D = 42). 57000
- — e — — — 32000
Transfer(
Target = c) 57000
32000
.................................... - 57000
———————— >
Update(
Index = (5,9},
ID = 42,
File =c,
offset = (0,57900),
Length = (57000,57000))

4.2 Retrieving from disk
While the data is still in “pre-archive” stage, retrieving is very fast. As in archiving, the MARS tree is visited in order
to find one or more shapes matching the user request. The request is translated into a list of indexes in the layout, and

data is read directly from disk files and sent to the user.

Figure 11: Retrieving, data is on disk

Client HARS Data Server
——————— |
Retrieve(U v 57000
Date = 1997-10-10, Get (32000
Param = (zZ,t,w)) Tndex = (2,3,7). .
ID = 42) v==4 57000
: 32000
b~ —— — — - — [
Result(. 57000
(File = a, . 32000
offset = 57000, -
Length = 89000), . 57000
(File = b, s 32000
Offset = 32000, L]
Length = 57000)) : 57000
- — — — — — — o
Receive (:
Data = Result) N
'
it e s amomumemsmsatonenannamme e aaaa a

4.3 Flushing

Flushing occurs when an archive object is complete, or when the disks are full. A flush request writes all the fields
that are in the “pre-archive” stage onto tape. The layout is updated to reflect the change, and the on-line data is
deleted. The layout is then compacted. Figure 12 shows that layout 42 is composed of files a, b, ¢ and more. These
files are merged into a single tape file x. The layout is compacted from 8400 lines to three lines, noticing that the field
sizes are 4200 times 57000 and 32000 bytes long. Once the tape file exists, the archive object is no longer in the “pre-
archive” stage.

97

Figure 12: Flushing

Client MARS Data Server ADSM
Flush(
Date=1997-10-10) - - . T
Flush (—_ e —
ID = 42) Write(
Source = {(a,b,c,),
Target = x)
57000
a
32000
cemmassemssssaaa baae
57000 — 4 : :
32000 : .
]
57000 b . '
cuad s
3200
0 3 : v
57000 »
. x
32000 ' 12300 oo
57000 c . 0
R 57000
2 32000

4.4 Retrieving from tape

When the data is on tape, it must be first copied to a set of disks that are the MARS cache. ADSM is very useful as it
can read portions of a tape file, so only the requested data is cached. When data is retrieved from a tape, a temporary
layout, called the “cache layout” is created. This layout contains pointers to all the data that has been cached for a
particular archive object. Figure 13 shows the flow of request and data. The requested data is copied from tape y into
cache file z. The data is then sent to the user as described previously. The cache is emptied using a least-recently-used
algorithm.

98

Figure 13: Retrieving data that is on tape

Client MARS Data Server RDEHM
——————— -
Retrieve(
Date = 1997-10-10, [— — — T — -+
Param = (z,t,w)) Get(
Index = (2,3,7),
ID = 42)
—————————— B>
Read (
Source = vy,
Target = z,
Offset = (57000,89000,267000},
Length = {57000,32000,57000)}
Y
{(4200) o
8400,
57000 <
32000 :
®
e z
o
. 4
:
a
B
[— — — — — |
Result({ a
File =z, N
Offset = 0, :
Length = 146000) :
&= — - - — — :
Receive(.
Data = Result) .
[}
B e I I R AN I I I T R 4§

4.5 Patching

To correct a field that is wrong, the user simply needs to archive it again. If the layout has been flushed, it is mutated
in its expanded form again, and the field is simply added as for a normal archive (Figure 14). The reference count of
the tape file is decremented. If it reaches zero, that means that all the fields have been replaced, and the tape file is
automatically deleted. The layout can be flushed again. In this case, only new data will be written to tape. The layout
will now point to several tape files. When a layout is too fragmented (it points to too many tape files) it can be
defragmented by copying all of its data back to disk and flushing it again, into a single tape file.

99

Figure 14: Patching

Client MARS Data Server
————— .
Archive
- — — — —
Ifransfer (
Target = File3) o 57000
........................... u 32000
N 57000
32000
57000
32000
______ - 57000 9399
Update(
Index = 3, 32000
Length = 57000, 57000
iD = 42,
Source = Patchl)

5. Conclusion

After one year of service, the new MARS lives up to its promise. It now contains 520 million meteorological fields,
representing 32 Tbytes in only 180,000 files. More than 7 million requests have been processed. The metadata
database represents 0.03% of the size of the archive.

This would not have been possible without an object-oriented design, the metadata being too complex for a relational

approach, and yet very simple for an object-oriented approach. The system is extendable, new data types can be
supported and the underlying storage management can evolve.

100

