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Abstract

Numerical simulations of idealized orographic flows are carried out with a nonhydrostatic
anelastic model to investigate the interaction between nonlinear orographic effects and the synoptic
flow, through in-line calculations of momentum budgets in different domains of variable size
representative of a meshgrid of a General Circulation Model.

In the hydrostatic regime, for two-dimensional (2D) breaking mountain waves, the mean flow is
decelerated in the vertical between the ground and the theoretical breaking level. In the horizontal,
the deceleration of the large-scale flow is uniformly distributed by non-resolved acoustic waves.
In the regime of three-dimensional (3D) quasi-symmetrical lee vortices, the large-scale flow is
decelerated in a restricted region centered on the wake. When the symmetry of the lee vortices
is altered, by a long model integration or by introduction of a perturbation, the flow evolves
towards the vortex shedding regime. A very long integration of the model numerically shows the
growth and the saturation of the perturbation after 160 units of dimensionless time. Budgets of
momentum indicate that vortex shedding significantly enhances the large-scale flow deceleration,
still located near the wake. Off-line tests of a drag parameterization show that some adaptations
are necessary to improve the prediction of the impact of subgrid-scale orographic effects on the
large-scale flow for the investigated idealized configuration.

In the nonhydrostatic regime, for 2D non-breaking trapped lee waves, the pressure drag is enhanced
but the mean flow is not decelerated at low levels. In case of 3D non-breaking trapped lee waves,
the mean flow is decelerated at low levels.

1. INTRODUCTION
When a stratified air is flowing over an obstacle, gravity waves can develop and propagate vertically.
The momentum is extracted from the flow aloft and transported downward to balance the orographic
drag generated by the pressure gradient across the mountain. In case of momentum dissipation (e.g.
wave breaking), the downward flux of horizontal momentum is divergent and thus decelerates the
large-scale flow. Under those circumstances, the impact of the subgrid-scale orography needs to be
parameterized in a general circulation model (GCM hereafter) in order to compute a realistic forecast.
The purpose of this paper is to test the basic concepts of current drag parameterizations with a
high resolution numerical model where the orographic flow is correctly resolved. To facilitate these
tests, the real-flow problem is simplified to an idealized problem of orographic flow containing the
essential features of the real flow. The tests are carried out through in-line computation of exhaustive
momentum budgets in boxes of variable size. The paper is organized as follows. Section 2 contains
a brief summary of the method employed for this analysis of momentum transfers. In section 3,
the momentum budget is used to analyze three potential sources of mean-flow deceleration in the
hydrostatic regime. In section 4, the study is extended to the impact of nonhydrostatic effects on the
large-scale flow through the investigation of typical cases of trapped lee waves (tlw in the following).

Conclusions of the study are drawn in section 5.
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2. STRATEGY

Momentum transfers in orographic flows are studied through numerical simulations with the non-
hydrostatic anelastic model Meso-NH (Lafore et al. 1997) of a stable stratified atmosphere over a
bell-shaped Witch of Agnesi mountain defined by

ho

(14 ()

where a and hg are respectively the half-width and the maximum height of the obstacle. The aspect

h(z,y) =

(1)

ratio R of the obstacle is either infinite (2D orography) or set to unity (3D axisymmetrical obstacle).
Incident flow speed (Up) and Brunt-Viisild frequency (Ng) are uniform by layers far upstream of
the obstacle. The atmosphere is dry, adiabatic, frictionless, non rotating, Boussinesq and inviscid.
Under these assumptions, the flow regime is controlled by two dimensionless parameters:

Noho Noa, .

b= G =
Uo 27 0,

h measures the importance of the nonlinear effects in the momentum equations while & controls
the nonhydrostatic effects. In the nonhydrostatic regime, the Scorer (1949) number is an additional
parameter which controls the wave propagation. Its variation with height may induce wave trapping
in a restricted layer of atmosphere. This simplified configuration allows to recover the main features
of a real orographic flow while conserving a minimum set of physical parameters controlling the
regime of flow.

Once a given regime of orographic flow is reproduced with Meso-NH, to analyze the momentum
transfers between meso scale and synoptic scale, the Meso-NH momentum equations are summed
within a box of variable size (L, Ly, Z) representative of a meshgrid of a GCM to give the momentum

budget equation:

O1prefu+ 3.«c (prefuz) ir 0y (Pr’;ﬂ”z+ 32 @+ ps‘b;@xh 4 Prefuth(Z) = pref Fo — prefNuz = Res, (2)
A P E F G

— z 2 ~ .
where 0 = fj—fm//j jf:/g odzdy and 0 = fhz(m,y) odz. As a reference, we assume a mean flow directed

along z. In (2), A represents the instantaneous variation of momentum in the box. B corresponds to
the difference of momentum flux between the lateral sides of the box. C accounts for the variation
of momentum due to the horizontal pressure gradient between the lateral sides of the box. D is the
mountain pressure drag, and F is the vertical lux of momentum through the top of the box. Term F
accounts for the variation of momentum due to turbulent mixing, and term G represents the discrete
form for numerical diffusion and upper relaxation in the Meso-NH momentum equation. Finally,
Res,, is the residual term of the budget, which must be small compared to the other terms to have a
correct closure. This point has been checked for any budget of momentum presented in this paper.
The special in-line calculation allows to easily obtain either an instantaneous budget (i.e. calculated

on one model timestep) or a temporally averaged budget. A similar integral budget is built for p,sv.
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Figure 1: Meso-NH solution for an orographic airflow characterized by A = 1 and & = 10: (a)
potential temperature (contour interval 2.5 K); (b) Turbulent kinetic energy (contour interval .5 m?
s72), (c) horizontal wind (contour interval 2 m s™!) at t* = tUp/a = 32. In this and in all the figures
which follow, the airflow is from left to right. (d) Pressure drag, normalized by Dj;, as a function of
dimensionless time t*.
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Figure 2: Nonlinear hydrostatic regime (h =1, a=10): budget of momentum at ¢* = 32 in a 80a wide
box (a) centered on the obstacle, (b) localized upstream of the obstacle, (c) localized downstream of
the obstacle. The 3 boxes are contiguous. (d) Budget of momentum at t* = 32 in a 14a wide box
centered on the obstacle. In this and in all the budgets of momentum which follow, all the terms are
normalized by the linear theoretical drag Di;y.
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3. IMPACT OF HYDROSTATIC NONLINEAR EFFECTS ON THE MEAN FLOW

3.1 2D breaking mountain waves

The orographic flow considered here has uniform mean wind speed (Up = 8 m s™!) and static
stability (No = 0.012 s™!) far upstream of the obstacle. The mountain is specified by (1), with
R = co. The dimensionless parameters / and & are respectively 1.0 and 10.0, corresponding to a
nonlinear hydrostatic flow. The model is firstly run with cyclic lateral boundary conditions (Ibc in
the following), and other parameters for this simulation are given in Table 1. Subgrid turbulence is

parameterized by the scheme developed by Bougeault and Lacarrére (1989).

2D breaking lee 2D trapped 3D trapped
mountain waves vortices waves waves
Nx x Ny x Nz | 1024 x 1 x 36 | 120 x 80 x 32 | 512 x 1 x 80 | 120 x 80 x 32

Ax 4 km 4 km 1km 1km
Ay / 4 km / 1km

Az 333 m 500 m 200 m 400 m
At 60 s 40 s 10s 10 s

ho 667 m 3000 m 750 m 750 m

a 10 km 10 km 10 km 10 km

R 00 1 00 1

Ibe cyclic open open open

Table 1: Overview of the parameters for the set of numerical simulations.

Initjally, the atmosphere is in hydrostatic equilibrium, v = Uy and N = Ny. The obstacle is
abruptly inserted in the flow, and the model is integrated until ¢* = 32, leading to the solution
displayed in Fig. 1. In the potential temperature field (Fig. 1a), a region of wave breaking is clearly
visible just below the theoretical breaking level (2, = 0.75 A;, where A, = 27Uy/Np is the analytic
value of the vertical wavelength for hydrostatic gravity waves). Strong turbulent mixing is associated
with breaking (see Fig. 1b). Breaking features are also apparent in the u field reported in Fig. Ic,
where exists a zone of reverse flow in altitude, and a windstorm near the ground. In the evolution of
the pressure drag (Fig. 1d), we note that after a rapid growth until * = 15, the drag increases up
to 3.5 times its theoretical linear value (Dy, = 7/4presUgNohd) by t* = 32.

In order to study the distribution of the mean-flow deceleration in the physical domain, we have
computed the budget of momentum for the model solution at t* = 32 (Fig. 2). The different terms
of the budget are defined in (2). The momentum budget is calculated at different locations of the
physical domain, in a box of size 80a, representative of the horizontal extension of a GCM meshgrid.

A supplementary term E’ defined by

E' = prest'w’ = (preft — Preji)(w — W) = PrefUW — PrefUW = E — Praf W (3)

has been added. E is the exact vertical momentum flux required to close the momentum budget (2).
In the conventional scheme where linear mountain waves transport positive momentum downward to
exactly balance the pressure drag, the fields perturbations vanish far from the obstacle and @ = 0. In

the finite-domain solutions of a time-dependent nonlinear model, W is different from 0, and we have
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to calculate £’ to compare the results with the predictions of the Eliassen and Palm (1960) theorem.
E' is the source of deceleration which would exist if the numerical domain was quasi-infinite.

The momentum budget for a box of size 80a centered on the obstacle is plotted in Fig. 2a. In
this profile, the pressure drag is partly balanced by the vertical flux of horizontal momentum. The
decrease (here and in the following, in terms of absolute value) of the vertical flux of momentum is
located between the ground and the breaking level z., with a magnitude of 2.5 Dj;,,. Above 2z, all the
terms are uniform with height, this means that momentum transfers are located below the breaking
level. Below 2, the divergence of the vertical flux of momentum is mainly balanced by the pressure
term C' and by the tendency term A. When the width of the budget box is extended to the domain
limits, the lateral terms (B and C') vanish, due to the imposition of periodic conditions, and the
divergence of the vertical flux is entirely balanced by the tendency term. In a periodic domain, the
tendency term thus accounts for the deceleration of the mean flow, and the pressure term only acts
to distribute the mean-flow deceleration in the physical domain. For this 80a box, the tendency term
is equal to 20% of the divergence of the vertical momentum flux, and as a consequence, only 20% of
the deceleration occurs in this central box. Still in Fig. 2a, it is worth noting the role played by the
turbulent term which tends to vertically redistribute momentum, between the ground and z,. The
turbulence acts against the wind shear to restore the original wind profile. Concerning the lateral
term B, it redistributes momentum between the ground and the top of the simulation domain.

To specify the horizontal distribution of the mean-flow deceleration, momentum budget has been
calculated in 2 boxes of size 80a, contiguous to the central box, located upstream (see Fig. 2b) and
downstream (see Fig. 2c) of the obstacle. If we compare with the previous budget in the central
box (see Fig. 2a), the three tendency terms (A) are found to be very close. This implies that the
deceleration is equally distributed between the 3 boxes. Budget profiles (not shown) in the remaining
80a boxes located at the limits of the domain present the same profile of tendency terms. Thus, the
mean-flow deceleration is uniformly distributed in the horizontal. Looking at Fig. 2a, one can see that
this is the pressure term which distributes uniformly the mean-flow deceleration. Further analysis
shows that when exists a variation of momentum in the model in a 2D configuration, the pressure
solver uniformly distributes this variation in one timestep by creating an adequate pressure gradient.

Momentum budget calculation in a narrow box (L = 14a) centered on the obstacle (see Fig. 2d)
shows that the source of deceleration for the whole numerical domain, i.e. the divergence of the
vertical flux of horizontal momentum FE’, is fully constructed on a few mountain half-widths.

To reproduce the conditions of an infinite domain with a reasonable computing cost, it is in-
teresting to replace periodic lbc by open conditions. In order to study the impact of lbc on the
mean-flow deceleration, we have run again the previous case with open Ibc. In Fig. 3 is displayed
the evolution of the domain-averaged momentum as a function of time for both simulations. This
quantity is defined by

< pregu >z o [T [T et g,
W/-wp Jo H—-h
where H and W are respectively the height and the width of the full numerical domain. As it can be
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Figure 3: Meso-NH solution for an orographic airflow characterized by A = 1 and @ = 10: domain-
averaged momentum (kg m~2 s7!) as a function of dimensionless time ¢* for the simulation with
open lbc (dash dot) and for the simulation with periodic lbc (solid line).
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Figure 4: (a) Meso-NH simulation with open Ibc of the nonlinear hydrostatic regime (iz =1,a=10):
budget of momentum at t* = 32 in a 80a wide box centered on the obstacle. (b) Simulation with a,
large-scale model (cyclic Ibc) without orography, and forced by the divergence of the vertical flux of
momentum of the meso-scale model: budget of momentum at t* = 32 in a 80a wide box centered on
the obstacle.

123



HEREIL, P. AND STEIN, J. : MOMENTUM BUDGETS OVER IDEALIZED OROGRAPHY . . . .

seen in Fig. 3, global momentum is nearly uniform for the simulation with open lbc while it linearly
decreases for the simulation with periodic Ibc. Open Ibc therefore conserve global momentum in the
simulation domain. As a consequence, the mean flow cannot be decelerated in the whole simulation
domain with open lbc.

In order to verify this statement, the budget of momentum has been calculated for the simulation
with open lbc (Fig. 4a), for the same central box as for the periodic case (see Fig. 2a). Comparison
between both budget profiles reveals that the tendency term (A) decreases dramatically, and even
vanishes at the top of the domain with open lbc. In this upper region, the vertical momentum
flux divergence is entirely balanced by an increase of the pressure term. Open lbc have created a
supplementary horizontal pressure gradient which prevents the mean-flow deceleration at any place
extending vertically up to the top of the simulation domain.

The Meso-NH model is now used to simulate the response of a GCM to a parameterized orographic
forcing. The low-resolution model is integrated in a limited cyclic area defined by 32 horizontal grid
points with a 128-km mesh interval and with 36 layers of 333-m depth each. Other model parameters
are as before, excepted for orography, which is removed. To reproduce the effect of the subgrid-scale
orography, a forcing (D + E of the meso-scale inodel) is introduced in the GCM. The GCM is
integrated until ¢* = 32, and the budget of momentum is calculated for a 7-point wide box. When
we compare the corresponding budget profile (Fig. 4b) to its counterpart calculated with the wave-
resolving model (Fig. 2a), there is a good accordance between the tendency and pressure terms.
Thus, when it is well parameterized, the vertical flux of momentum is the only term required by a
GCM to accurately reproduce the mean-flow deceleration existing in a meso-scale anelastic model for
this case of breaking mountain waves, and there is no need to parameterize additional budget terms
to obtain a realistic behaviour of the GCM.

As the consideration of a 2D orographic flow may be too restrictive compared to the dynamics of
a real orographic flow where 3D nonlinear effects play an important role, the study is now extended

to the interaction of 3D nonlinear orographic effects with the large-scale flow.

3.2 3D lee vortices
The 3D orographic ﬂoW considered here has been numerically simulated by Schir and Durran here-
inafter referred to as SD97). The mountain is defined by (1) with Ag = 3 km, R = 1, @ = 10 km, and
is located at the origin of the coordinate system. The atmosphere has uniform mean wind speed (Uo
=10 m s™1) and static stability (No = .01 s~1) far upstream of the obstacle. Under these conditions,
the dimensionless parameters are i = 3.0 and & = 10.0, and the flow belongs to the hydrostatic non-
linear regime. In the numerical model, the incident flow is aligned with the positive z-axis and lbc
are open. Other parameters are given in Table 1. At the coﬁtrary of the SD97 numerical simulation,
the model solution is not here forced to be symmetrical.

The Meso-NH solution at t* = 40 is presented in Fig. 5. In a vertical section along the center

plane of the horizontal wind field (Fig. 5a), one can observe the coexistence of a pronounced upstream
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Figure 5: Meso-NH solution at t* = tUp/a = 40 for an orographic airflow characterized by h =30
and @ = 10.0: (a) horizontal wind field u (contour interval 2 m s™!) in a vertical section along the
center plane, (b) horizontal wind field u (contour interval 2 m s™') at the surface. Negative values
are plotted in dashed lines. In these figures, and in the following, the airflow is from left to right,

oriented parallel the z direction.
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Figure 6: Meso-NH solution for an orographic airflow characterized by h = 3.0 and & = 10: pressure
drag, normalized by Dj;y, as a function of dimensionless time t* = tUp/a. (a) Solid line and dash-dot
line respectively represent the along-flow component (z) and the cross-flow (y) component of the
drag; (b) enlargement of the evolution of the cross-flow component of the drag.
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deceleration (minimum value of .2 Ug) with an elongated reverse flow downstream (minimum value
of -.6 Up) nearly stationary by t* = 40. In the horizontal wind field at the surface (Fig. 5b), one can
see that the reverse flow is associated with two contra-rotative quasi-symmetrical lee vortices.

An overview of the drag evolution is provided in Fig. 6. The along-flow (z) component of the
drag (Fig. 6a) tends towards a nearly steady state after t* = 20, characterized by an amplitude of
.6 Dyip. Dy = 257pye onNoahg is the hydrostatic linear drag value for an axisymmetrical obstacle
(Phillips 1984). The cross-flow (y) component of the drag (Fig. 6b) has an amplitude 3 orders
of magnitude smaller than the along-flow component. Nevertheless, from ¢* = 20, it exponentially
amplifies with time (growth rate equal to 0.03), with a pseudo-period estimated to T* = 15. This
evolution indicates that the flow progressively becomes asymmetrical, despite an axisymmetrical
obstacle exactly centered in the simulation domain.

In the 2D numerical experiments described previously, it has been shown that open lbc involve
the conservation of the global momentum in the simulation domain. In order to study if this problem
still exists for 3D simulations, the evolution of global momentum in the 3D numerical domain has
been calculated for simulations employing different lbc: cyclic, open and wall (see Fig. 7). As one
can see, the association of open-wall lbc exclusively involves the conservation of global momentum.
The other 3D associations lead to a decrease of global momentum. Thus, 3D open lbc exert no
constraint on global momentum, due to the presence of a supplementary degree of freedom on v in
the anelastic equation of the 3D model. As all the 3D orographic flows of the present paper are
simulated in an open simulation domain, the tendency term calculated in the 3D momentum budget
can be considered as a good diagnosis of the distribution of the mean-flow deceleration.

In order to study the interaction between the orographic flow and the large-scale flow, the budget
of presu has been calculated for the model solution at t* = 40. Because of the oscillation of the
solution with time (see the y component of the drag in Fig. 6b), the budget has been averaged over
one period of oscillation (7™ = 15). The lateral terms B and C are associated in (2) in a single term
denoted B + C, in order to facilitate the budget analysis. Furthermore, term (B + C)' is added to
describe the budget in a quasi-infinite budget box. It is defined by (B+C)’ = (B+C) - (E-E’). In
the budget profile (Fig. 8a), the loss of momentum due to pressure drag is mainly balanced by the
vertical flux of horizontal momentum, the tendency term and the lateral term. The vertical flux E'is
strongly divergent between the ground and the mountain top hg, and never balances the drag in the
low levels (at the contrary of the 2D case of breaking mountain waves). The effective divergence of
the vertical flux is equal to the departure of the flux from its profile balancing the drag. The decrease
of the vertical flux is found to be equal to .4Dy;,, and represents the potential source of mean-flow
deceleration. Above hg, the flux divergence is less intense, and corresponds to the slow construction
of the vertical flux. This feature has been confirmed by model integration until #* = 80. The residual
flux only balances 20% of the drag at z = hg. The remaining of the drag is balanced by the tendency
term (20%) and by the lateral term (60%). According to the previous conclusions concerning the role

of Ibc, the tendency term represents the local mean-flow deceleration in the box where the budget is
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Figure 8: Lee vortices regime (iz = 3, & = 10): time-averaged budget of momentum at t* = 40 in a
box (L = 40a, Ly = 30a) centered on the obstacle. (a) Budget of p,csu; (b) budget of pfv. The
average period is set to T™ = 15.
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computed. It is worth noting that 3D nonlinear effects associated with flow splitting concentrate the
mean-flow deceleration below the mountain top.

The budget of preyv momentum leads to terms which are two orders of magnitude smaller than
the terms of the budget of p,.ju (see Fig. 8b). As a consequence, the Prefv momentum has a
negligible contribution to the global momentum transfer in the lee-vortices regime.

In order to study the horizontal distribution of the mean-flow deceleration, the tendency (9;presu)
has been computed in the whole numerical domain. In the vertical section along the center plane (Fig.
9a), a zomne of negative tendency (deceleration) is clearly visible downstream. In the vertical, this
zone is located below the mountain top, in accordance with the previous analysis of the momentum
budget. In the tendency field at z = 0.5 hq (Fig. 9b), one can see that negative values are distributed
in either flank of the wake, while positive values are found in a more restricted area located in the
core of the wake. It is worth noting that the tendency field is not perfectly symmetrical, which is
another evidence of the progressive transition of the symmetrical vortex regime towards the vortex
shedding regime. The tendency field thus indicates that most of the mean-flow deceleration at t* =
40 is concentrated in a restricted area including the wake. Computation of the tendency term A4 of
the presu budget in this restricted region leads to the profile reported in Fig. 9c. As it can be seen,
this term is equal to 80 % of the tendency term in the large box (compare with Fig. 8a). This result
confirms that most of the mean-flow deceleration at t* = 40 is preferentially exerted in the restricted
area including the wake, and validates the use of the tendency field as a diagnosis of the mean-flow
deceleration in a given box.

In order to study the evolution of the mean-flow deceleration, the momentum budgets and the
tendency field have been computed at t* = 80. As it can be seen in the budget profile computed in
the large box (Fig. 9d), the main difference with the budget at t* = 40 is the decrease of the tendency
term. This decrease is compensated by an increase of the lateral term (B + C)’, the other budget
terms being unchanged. Thus, the mean-flow deceleration is continually advected at the exterior of

the numerical domain during the simulation.

3.3 Transition to vortex shedding

In order to accelerate the loss of symmetry previously observed in the regime of lee vortices, an
asymmetrical perturbation of potential temperature (with a maximum amplitude of 3 K) has been
introduced in the model solution of quasi-symmetrical lee vortices at t* = 40, then the model freely
evolves. The model solution at t* = 160 is displayed in Fig. 10. This long time of integration is
required to study the evolution of the y component of the pressure drag. In a vertical section along
the center plane of the horizontal wind field (Fig. 10a), successive patches of decelerated flows are
visible downstream of the obstacle, and reveal the flow transition to the vortex shedding regime.
Recirculation occurs very close from the obstacle, with a minimum velocity of -.2Up. In the vertical,
the gravity wave activity has been enhanced by the flow transition. In the horizontal wind field near

the ground (Fig. 10b), one can observe that regions of decelerated flow are flanked by alternative
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Figure 9: Lee vortices regime (A = 3, & = 10): time-averaged tendency (contour interval 5. 107° kg
m~2 572) (a) at z = ho/2; (b) in a vertical section along the center plane. The period of average is
set to T* = 15. Negative values are plotted in dashed lines. (c) Tendency term of the time-averaged
budget of p,esu calculated in the downstream box indicated by large dashes in (a) and (b). (d)
time-averaged budget of p,.su at t* = 80 in a box (L; = 40a, L, = 30a) centered on the obstacle.
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Figure 10: Meso-NH solution at t* = tUp/a = 160 for the perturbed airflow (h = 3.0, @ = 10.0):
(a) horizontal wind field u (contour interval 2 m s~!) in a vertical section along the center plane,
(b) horizontal wind field u (contour interval 2 m s™1) at the surface. Negative values are plotted in
dashed lines. (c) Pressure drag, normalized by Dy;,, as a function of dimensionless time #*. Solid line
and dash-dot lines respectively represent the z component and the y component of the drag. The
time when the perturbation has been introduced is indicated by an arrow. (d) Time-averaged budget
of preju at t* = 160 in a box (L; = 40a, Ly, = 30a) centered on the obstacle. The time-average

interval is set to T = 12.
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patches of accelerated flow. This structure oscillates in time with a period T = 12.

As it can be seen in the temporal evolution of the drag reported in Fig. 10c, the z component of
the drag increases up to .8 Dy, at t* = 160, and then is quite constant. In Fig. 10c, one can note
that the y component of the drag oscillates and amplifies in time until ¢* = 160, with again a period
T* = 12. This evolution is the signature of the growth of a perturbation with time. Further analysis
shows that the y component exponentially amplifies in time, proportionally to 03" After t* = 160,
the amplitude of the cross-flow component saturates at .1Dj;,. The maintenance of the perturbation
in the lee of the obstacle corresponds to an absolute instability, according to the criterion stated by
Huerre and Monkewitz (1990). It must be pointed out that the rounding errors of the calculator
have played here the tole of the inhomogeneities which lead vortices to shed in a real flow. Finally,
comparison of these results with the instability reported in the previous case of quasi-symmetrical
lee vortices indicates that the flow transition to the vortex-shedding regime occurs in the initially
symmetrical solution, provided the time of integration is long enough, or/and the initial perturbation
has a sufficiently large amplitude. |

In order to study how the transition to vortex shedding may modify the large-scale flow, the
budget of momentum has been calculated in a box of size (40a,30a) centered on the obstacle (Fig.
10d). Compared to the quasi-symmetrical regime (see Fig. 8a), the budget presents the same general
features. The increase of the wave activity in case of vortex shedding does not seem sufficient to
modify the vertical flux of momentum. The essential difference between both budgets is the drag
enhancement (+35%) induced by the vortex-shedding regime. As the vertical flux has the same
profile for both regimes, the drag enhancement due to the transition to vortex shedding therefore
involves an increase of the mean-flow deceleration.

For the case of 2D breaking mountain waves, it has been found that the divergence of the vertical
flux of momentum is the essential forcing that a drag parameterization must provide to a GCM.
It is now interesting to test if a current drag parameterization is able to accurately reproduce this
essential forcing for a typical orographic flow in the nonlinear regime. The off-line prediction of the
Lott and Miller (1997, in the following LM97) parameterization is reported in Fig. 11. The foreseen
vertical flux is divergent between the ground and z = 4000 m. The total flux decrease is largely
overestimated (more than twice the model value), and the height of interaction is 1000 m higher than
for the numerical model. Further analysis has shown that this difference is due to the overestimation
of the flux near the ground by the linear part of the scheme (-1.2D;,). The blocked-flow part of
the scheme is only active between the ground and the blocked height (2 = 2500 m), resulting in a
flux variation of .2Dj;,. In this region, the linear part of the flux is uniform with height. Above the
blocked height, the saturation principle is activated and involves a strong divergence of the vertical
flux below the level z = 4000 m. As the present parameterization is suited to real synoptic flows
where other momentum sinks exist (surface friction for instance), the prediction is not optimal for
this idealized free-slip case of 3D lee vortices.

After the analysis of three typical orographic flows in the nonlinear hydrostatic regime, the study
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Figure 12: Meso-NH simulation of 2D trapped lee waves: (a) vertical wind (contour interval .4 m
s7') at t* = 30. (b) Budget of momentum in a 40a wide box centered on the obstacle.

132



HEREIL, P. AND STEIN, J. : MOMENTUM BUDGETS OVER IDEALIZED OROGRAPHY . . ..

is now extended to the influence of nonhydrostatic effects on the mean-flow deceleration, through the

numerical investigation of idealized tlw.

4. IMPACT OF NONHYDROSTATIC NONLINEAR EFFECTS ON THE MEAN FLOW

4.1 2D trapped lee waves

The interaction of nonhydrostatic effects with the mean flow is now investigated through the Meso-
NH simulation of a typical event of 2D non-breaking tlw described by Durran (1995, in the following
D95). The basic flow has a wind speed which linearly increases from 10 m s~! at the surface to 40 m
s7! at z = 10 km, and remains uniform above this height. An inversion layer is located in the region
2.1 < z < 3.1 km, with a maximum Brunt-Viisild frequency of .02 s~1. Below this layer, N = .005
s~!, and above the inversion, N = .01 s~!. The mountain is defined by (1), with hg = 750 m, a =
10 km and R = oo. With dimensionless parameters near the ground equal to @ = 5.0 and h =04,
the orographic flow belongs to the nonlinear nonhydrostatic regime. Turbulent mixing is absent, and
additional parameters for this simulation are given in Table 1.

The Meso-NH solution at t* = 30 is reported in Fig. 12a. Vertical wind field shows the super-
position of a hydrostatic wave, propagating aloft, with tlw propagating downstream, and having a
maximum amplitude located near the inversion layer. The wavelength of the horizontally propagat-
ing waves is 2w Up/Np. Furthermore, the wave train propagates downstream at a speed of 8.5 m s71,
in agreement with the phase speed of tlw calculated by Nance (1995).

For this regime of non-breaking tlw, momentum budget has been calculated in a 40a box centered
on the obstacle. As non linearities involve unsteadiness of tlw (Nance 1995), the budget calculation
has been averaged on 100 timesteps, which corresponds to the oscillation period of these waves. The
corresponding budget is displayed in Fig. 12b, where the normalization constant (.03h3) is the value
of the drag determined by a numerical simulation of the same case with a reduced mountain height.
As it can be seen in this budget profile, the normalized drag is equal to 2.5: trapping significantly
enhances the drag. The loss of momentum due to pressure drag is balanced by an uniform vertical
flux E’. This exact balance involves that the 2D tlw simulated here do not significantly modify the
conventional transport of momentum by vertically propagating mountain waves.

If 2D tlw seem inefficient to modify the conventional scheme of momentum transfer, it cannot be
excluded that non Boussinesq effects lead the primary vertically propagating wave to break in the
stratosphere. As the drag computed for this case of breaking waves represents, in terms of physical
units, the third of the drag determined for the case of breaking mountain waves, 2D tlw may have
an important impact on the mean-flow deceleration in altitude, and must be taken into account in a

parameterization of subgrid-scale orographic effects.

4.2 3D trapped lee waves
The atmospheric profiles of mean stratification and wind are the same as for the 2D experiment,

but the obstacle has a 3D shape defined by (1) with R =1. An overview of the model parameters
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employed for this simulation is provided in Table 1. As it can be seen in the Meso-NH solution of w
at t* = 30 (cf Fig. 13a), mountain waves essentially propagate downstream of the obstacle, with an
horizontal wavelength equal to 12 km. This nonhydrostatic propagation is caused by the trapping
of the waves in the layer of stronger stratification. In return, if the 3D tlw pattern is extending
downstream with time, the wave amplitude decreases downstream following the law 1.6r=5 (7 is the
radial distance distance from the obstacle). In the horizontal section of the w field at z = 2; = 3 km
(Fig. 13b), one can observe the superposition of a transverse wave with a diverging wave. Using the
analogy with ship waves, as proposed by Sharman and Wurtele (1983), it is possible to determine
the theoretical angle #; containing the wedge. The predicted angle is reported in the w field, and as
it can be observed, the wedge is mainly contained within the theoretical angle.

The budget of p,efu has been calculated at ¢* = 30, in a box of size (6a,5a), leading to the
profile displayed in Fig. 14. To limit the oscillations of the budget terms due to the presence of
nonstationarities, the momentum budget has been temporally averaged over one period of oscilla-
tion of the z component of the drag. In the corresponding budget, the vertical flux of momentum
E' mainly decreases (.3Dy;,) between z = 1000 m and the level z; = 3000 m where static stability
is maximum. Between z; and the top of the physical domain, the flux progressively decreases to
.4Dy;,, resulting in a global decrease of .5Dy;,. Calculation of momentum budget at t* = 20 (not
shown) indicates that the maximum divergence of the vertical flux is due rather to nonhydrostatic
3D effects than to the slow construction of the flux. Concerning the other terms of the budget at ¢*
= 30 (Fig. 14), they oscillate with the height of the budget box, due to the proximity of the wave
field imposed by the small meshgrid employed in this strongly nonhydrostatic simulation. These
oscillations vanish when the budget is calculated in a very large box, which would require a very
time-consuming simulation. As a consequence, it has not been possible to determine the distribution
of the mean-flow deceleration in the horizontal from the tendency term. Nevertheless, the present
budget shows the existence of a source of mean-flow deceleration in the low levels. The decrease
of the amplitude of 3D tlw, more pronounced than for 2D tlw, could be responsible for the mean-

flow deceleration by preventing the transport of the large-scale flow deceleration far from the obstacle.

5. CONCLUSIONS
This numerical study of different idealized orographic flows with a nonhydrostatic anelastic model
has permitted to recover or to identify different mechanisms affecting the mean flow in the context of
an idealized problem of nonlinear orographic flows, both in hydrostatic and nonhydrostatic regimes.
In the hydrostatic regime, study of 2D breaking mountain waves has shown that the mean flow
is decelerated in the vertical between the ground and the theoretical breaking level, and uniformly
in the horizontal. Tests with a GCM have indicated that the parameterization of the vertical flux
of momentum is sufficient to accurately recover the deceleration existing in a meso-scale anelastic
model. This study has also revealed the limitations of 2D simulations to investigate momentum

transfers in orographic flows.
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Figure 13: Meso-NH simulation of 3D trapped waves at t* = 30: (a) vertical wind (contour interval
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In the regime of 3D quasi-symmetrical lee vortices, the mean flow is decelerated in a restricted
region located near the wake. The analysis of Ibc suggests that open conditions have no impact
on the momentum budget in a 3D numerical domain, a significant difference with 2D numerical
simulations. In the vortex-shedding regime, a very long model integration has shown the growth and
the saturation of the perturbation after a very long time (¢* = 160).' Concerning the momentum
transfers, the vortex-shedding regime induces an increase of the mean-flow deceleration. An off-
line test of a typical drag parameterization indicates that some adaptations would be required to
improve the drag parameterization in a GCM, for this idealized flow where other momentum sinks
(for instance surface friction) are ignored.

The investigation has been extended to the nonhydrostatic regime with a typical case of tlw. 2D
tlw do not decelerate the large-scale flow at low levels, but significantly enhance the pressure drag,
an effect which must be taken into account in drag parameterizations. Analysis of a typical case of
3D tlw leads to different conclusions than for the 2D regime: the mean flow is mainly decelerated in
the low levels, below the region of stronger stratification. This deceleration may be caused by the
decrease of the wave amplitude downstream of the obstacle (absent in 2D tlw) which prevents the

transport of the deceleration far from the obstacle.
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