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1. INTRODUCTION

In this paper we discuss the study of differences between observations and short-range for
in a data assimilation context. Such differences are called ‘departures’ or sometimes ‘innova-
tions’. Their statistics are widely used to assess the quality of the observations, of the data as-
similation system and of the short-range forecasts. We give examples of monitoring activities,
and we describe the algorithms for data quality control within the operational four-dimensional

variational (4D-Var) data assimilation system of ECMWF.

2. JUSTIFICATION

The reasons why the comparison of observations against short-range forecasts can provide such
powerful diagnostic on the performance of the observation network and the assimilation were
discussed by Hollingsworth et al. (1986). '

. First, it was demonstrated that in areas where there is adequate radiosonde
coverage the 6-hour forecast error is comparable with the observation error.

. Second, the forecast accounts for most of the evolution of the atmospheric state
from one analysis to the next, so the analysis needs to make only a small correction
to an accurate background field.

. Third, large variations of the departure statistics from station to station are
indicative of problems in the data or in the assimilation system.

The forecast removes the large synoptic variations from the statistics. The high accuracy of the

forecast enables useful comparison of departure statistic between stations and between obser-

vation types - the synoptic variations would otherwise render such comparison impossible.

3. MONITORING

Data monitoring has become an established and important part of the activities of most numer-
ical weather prediction centres (Delsol 1984; Béttger et al. 1987; Kashiwagi and Baba 1989,
Julian 1989; Uddstrom and Purnell 1989). In recent years theﬁmonitoring activities have been
extended to incorporate an increasing number of space-based observing systems, such as cloud

motion winds (Lalaurette et al. 1998; Butterworth 1998) and radiances from polar orbiting and
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geostationary satellites (McNally et al. 1999; Munro et al. 1999).

The data assimilation systems calculate differences (or departures) between the observations
and their model equivalents computed from a short-range (typically 6-hour) forecast. From sta-
tistics of time series of these departures it is possible to make statements about the typical ac-
curacy of the different types of observations. In many occasions it has also been possible to
identify problems with individual stations, which after notification to the data producers have
been corrected. Such examples were given by Hollingsworth et al. (1986; 1989), Radford
(1987) and Strauss (1996). Monthly accumulations of monitoring statistics (stratified by type,
station identifier, pressure ...) provide the basis for regular changes in the operational blacklist.
re they can
be introduced actively into the data assimilation systems. Such pre-operational monitoring can
be very effective in identifying problems with any new data. A good example is the validation
of ERS-1 scatterometer data by Stoffelen and Anderson (1994). In this section we will show ex-
amples relating to profiler data, and in a later section dropsonde data, which are the two data

types most recently introduced into operations at ECMWF.

3.1 Profiler data

The United States’ network of profiler stations provides hourly wind profiles from approxi-
‘mately 25 sites. The high temporal resolution makes this data set particularly interesting for use
in 4D-Var. The accuracy of the profiler data was compared with the accuracy of U.S. radio-
sondes, through comparison of their respective departures from the background (short-range
forecasts). Studies revealed that most profilers were as accurate as radiosondes above 700 hPa
and had larger errors below that level. It is unclear whether the larger departures in the lower
parts of the profiles are due to inherent measurement problems, or to a lack of representativity
as the profilers register boundary layer and small-scale 6rographjc effects unresolved by the
model. The monitoring statistics and the results from data assimilation experiments led to the
decision to use most profiler data above 700 hPa, hourly. Only a handful of profiler stations re-
quired blacklisting. It was decided to assign the same observation error standard deviation for

profiler data as for radiosondes wind profiles.

Examples of U-component profiler departure statistics are shown in Fig. 1. The figure shows
that the data retained for use by the assimilation system has an r.m.s of between 3 and 4 m/s
against the background (with largest departures at jet level) and small bias. These statistics com-
pare favourably with radiosondes in the same geographical area (not shown). The histograms

show symmetric near-Gaussian-distributions, with almost zero mean.
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Figure 1: Statistics of U-wind component from profilers, 19990507-12 to 19990516-18. The top two
panels show r.m.s. (left) and bias (right) for departures from the background (full lines) and the analysis

(dashed). The histograms show departure from the background (left) and the analysis (right). The
sample excludes blacklisted and otherwise rejected data.

4. PERFORMANCE OF DATA ASSIMILATION SYSTEMS

4.1 Error statistics

The departure statistics are used also to monitor the performance of the data assimilation system
itself (Talagrand 1999, in this volume) and to charaterize the observation errors and background
errors (Hollingsworth and Lonnberg 1986; Lonnberg and Hollingsworth 1986; Hall 1987,
Jarvinen 1999). Accurate estimates of these errors are required in order for the data assimilation
system to assign the correct relative weights to the various data types, and to the background
(Lorenc 1986). If the specified observation and background errors agree poorly with the actual
errors, the performance of the data assimilation system will be poor. Evidence of significant cor-

relation of observation error is of particular concern, as such correlations are neglected in many
175



ANDERSSON, E.: MONITORING AND QUALITY CONTROL OF THE OPERATIONAL OBSERVING SYSTEM

schemes currently, including ECMWEF’s 4D-Var.

4.2 Biases

The formulation of most data assimilation schemes assumes that both observation and back-
ground errors have zero mean, i.e. that they are unbiased. It is important to establish that this is
indeed the case, as was done for profiler data in Fig. 1. Relative biases can reliably be detected
through the study of monitoring statistics, but it may be more difficult to determine which com-
ponent (background or observations) is the main contributor to the bias (Kéllberg and Delsol
1986, Hollingsworth et al. 1988). Bias tuning algorithms based on monitoring statistics have
been devised for radiosonde temperature data (correcting for solar radiation, Lalaurette 1999,
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00G). Bias correc-
tion of stratospheric TOVS radiance channels is a particularly delicate problem as there are few
" conventional data to compare against, and it cannot be assumed that the model’s stratospheric
temperatures are unbiased (McNally ef al. 1999). Fig. 2 shows an example with a small over-
all bias but an excess of cold departures (caused, in this case, by residual cloud-contamination)

results in a skewed distribution.
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Figure 2: Histogram of radiance departures from the background, for HIRS channel 3, 19981203-00
to 19981206-18. The data highlighted in bold were rejected by quality control. The distribution is
skewed with an excess of large negative departures.

5. QUALITY CONTROL

5.1 The Gaussian assumption

Histograms of departures represent the probability distribution of the sum of background and
observation errors. Under the assumption of near-Gaussian background errors the histograms
can give some indications of the main non-Gaussian characteristics of observation error. In all
linear estimation problems Gaussian distributions of errors are assumed. In variational data as-
similation the Gaussian assumption leads to a quadratic cost function (Lorenc 1986). In many
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cases the histogfams of departures agree fairly well with the Gaussian assumption. In other cas-
es there may be an excessive number of data with larger departures than would be expected from
a purely Gaussian distribution of errors. Such data may need to be removed from assimilation
as they are likely to be incorrect. Alternatively the Gaussian assumption can be relaxed, as will

be shown in Section 6.1.

5.2 Quality control algorithms

There is a variety of different algorithms for quality control of meteorological data. Lorenc
(1996) discusses the theoretical basis for three different approaches: 1) ‘Buddy checking’, 2)
Optimum Interpolation quality control and 3) Variational quality control. Each of these algo-
rithins may be applied prior io the main analysis, and iheir purpose is io remove incorreci daia
from further processing. Alternatively the variational quality control can be incorporated within
the analysis itself through a generalization of the variational cost function. The quality control
then takes place during the iterative search for the most probable analysis, while the costfunc-
tion is being minimized. This latter approach has been taken in ECMWEF’s 3D-Var and 4D-Var.

In the following sections two mechanism for quality control will be described: the background
check (BgQC, Jarvinen and Undén 1997) and the variational quality control (VarQC, Anders-
son and Jirvinen 1999). BgQC and VarQC represent two fundamentally different approaches
to quality control. The strategy of BgQC is to identify and remove those data that deviate sig-
nificantly from the normal distribution, in order to make the subset of data presented to the anal-
ysis agree more closely to the Gaussian assumption. With the VarQC approach, on the other
hand, the variational cost function is modified to account for non-Gaussian statistics, in an at-
tempt to describe better the actual distribution of observation errors (Ingleby and Lorenc 1993;
Schyberg and Tweiter 1999). The effect in data assimilation is that with VarQC the weight giv-
en to observations will vary with the magnitude of the departure, such that data far from the
Gaussian distribution obtain reduced influence on the analysis. Effectively, a smooth and grad-

ual rejection of severely deviating data can be achieved.

6. VARIATIONAL QUALITY CONTROL

6.1 The observation cost function of 3D and 4D-var

At ECMWEF a four-dimensional variational scheme (4D-Var) became operational in November
1997 (Rabier et al. 1997), replacing the three-dimensional version (3D-Var) implemented in
January 1996 (Courtier et al. 1998; Rabier et al. 1998; Andersson et al. 1998). The variational
method for data assimilation, as described by e.g. Lorenc (1986), comprises minimizing a cost

function made up of two terms, JJ, and J, , measuring the distance to the observations and to

the background, respectively. Both cost functions are given a quadratic form, which assumes
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that the errors in both observations and background are Gaussian in nature. The expression for

the observation cost function is thus

1 T -
J, = 5(y-Hx) 07 (y~Hx), (1)
where y is the array of observations, with error covariance matrix O, x is the model state and
H the observation operator. Eq. (1) degenerates in the case of uncorrelated data to a sum of in-

dividual J,-contributions, i.e.

7, = Ta(2) @

Q

with o, the observation error standard deviation.

6.2 Incorporation of VarQC
The VarQC method is is based on Bayesian probability theory (Gelman et al. 1995, Lorenc and

Hammon 1988). A modification of the observation cost function to take into account the non-
Gaussian nature of gross errors has the effect of reducing the analysis weight given to data with
large departures from the current iterand (or preliminary analysis). Data are not irrevocably re-
jected, but can regain influence on the analysis during later iterations if supported by surround-

ing data.

As in Dharssi ef al. (1992) and Ingleby and Lorenc (1993) we generalize Egs. (1) and (2) by
assuming that an observation error belongs to either of two populations: one which follows the
normal Gaussian distribution, representing random errors, and one which is modelled by a flat
distribution, representing the population of data affected by gross errors. Other models to rep-
resent the probability density of incorrect data could also be used (e.g. Huber 1977; Gelman et
al. 1995). The choice of a flat distribution is convenient since it corresponds to the assumption

that those data provide no useful information to the analysis.

6.3 VarQC formulation

With a prior probability of gross error A and a probability of not having a gross error 1-A we

write the probability density function (pdf) pQ¢ for a single observation as a sum of two terms:

p€ = (1-A)N + AF | &)

N and F are the Gaussian and the flat distributions, respectively:

cojfz_n exp [—%(y;f’)z] 4)
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1 1 . N .
D = s’ if |y — §| < D/2, zero otherwise (6))

F =
where the observed value is y and the model equivalent, 7, of the observed quantity is the ob-
servation operator H applied to the model state x, i.e. § = Hx. The flat distribution is defined
over an interval D (centred at zero) which in Eq. (5) for convenience has been written as a mul-
tiple d of the assumed observation error standard deviation o, . It is assumed in the following

that absolute departures |y - §| greater than D/2 never occur or have been removed in a pre-

analysis check against (for example) the background (see Section 7).

The observational cost function of the variational analysis (Lorenc 1986) is given by:

J,=-Inp+e o (6)
We obtain the normal quadratic cost function JY by inserting in Eq. (6) the Gaussian pdf

pN = N, and arbitrarily choosing ¢ = —In(c,+27):

ly—y)z |
N . s~/
JY = 2( 5 0]

Its gradient V with respect to the observed quantity 7 is:

VN — _i(é’_.__y)
V.’)'Jo - 0.0 00 (8)

Similarly substituting the modified pdf, Egs. (3) to (5), into Eq. (6), we obtain after re—arranging
the terms, an expression for the QC—modified cost function JQC and its gradient VsJ2¢:

®

Joc < _m[w(:ﬁ)}

Y+1
V. JQC = V»JN[I __—Y—} 10
7o oL v+ exp(=JIY) (10)

(f ly- 9l <Dr2, V4JQC = V4JN otherwise), with y defined as:

_ AJam
Y = -Ayzd’ , (11)

The term y/(y + exp(-J)) modifying the gradient in Eq. (10) can be shown to be equal to the

a-posteriori probability of gross error P, given x, and assuming that Hx is correct (see Ingleby

and Lorenc, 1993, section 2g):
- Y
Y+ exp(-JY) ‘ (12)

Note also that the VarQC modification of the cost function is a function of A, d and the nor-
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malized departure (y - 9)/0,, only.

Following Eq. (10) we define a VarQC weight WQC such that

VyJ(?C = VyJ(I;I WQC je. WQC = 1-P (13)
Eq. (13) shows that data which are found likely to be incorrect (P = 1) are given reduced weight

in the analysis. Conversely, data which are found likely to be correct (P=0) are given the

weight they would have had using purely Gaussian observation error pdf.

6.4 Application

An a-priori estimate A of the probability of gross error and the range of possible values d are
assigned to each datum, based on study of historical data, such as departures from the back-
ground and from the analysis. Then, at each iteration of the variational scheme, an a-posteriori
estimate of the probability of gross error P and the VarQC weight WQC are calculated (using
Eq. (13) étc.), given the current value of the iterand (the preliminary analysis). The calculated
a-posteriori probability P depends on x and assumes that Hx is correct, which means that it is
important to have a preliminary analysis that is as good as possible at the start of the variational
quality control. This is achieved in practice by performing the minimisation without quality
control for a number of iterations (currently 40) before VarQC is switched on. VarQC then re-
mains switched on until the end of the minimisation, i.e. during the remaining 30 iterations (Ra-
bier et al. 2000). The most obviously wrong data do not influence the minimisation at all, as
they have been removed in a pre-analysis check against the background (BgQC), to be de-

scribed in Section 7.

The VarQC-modified cost function and its gradient are computed thereafter. The modified gra-
dient becomes the input to the adjoint observation operators and provides the forcing for the ad-
joint integration in 4D-Var. This is a quality control algorithm without conditionals or threshold

values. In the case of many observations, all with uncorrelated errors, JQ€ is computed as a sum

(over the observations i ) of independent cost function contributions:

JQC = _1anL-+C = —Zlnpi+C = ZJ%C (14)
i i i

The global set of observational data includes a variety of observed quantities as used by the var-
iational scheme through their respective observation operators. The application of VarQC is al-

ways in terms of the observed quantity.

6.5 Illustration

Egs. (9) and (10) are illustrated for one single observation in Fig. 3. The figure show the normal
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and the VarQC cost functions (top), the VarQC gradient (middle) and the QC weight, Wec, i.e.
1- P (lower panel), plotted against observation departure y - 3 . The parameters are A = 0.01,

d =5 and o, = 2. The figure shows VarQC with a flat distribution for gross errors (as used in
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Figure 3: The top panel shows the observation cost function with (full) and without VarQC (dashed
line). The middle panel shows the gradient of the VarQC cost function and the lower panel shows the a
posteriori probability that the observation is correct (1—-P). A flat distribution has been used to

represent the p.d.f. of incorrect data.
the ECMWF 3D/4D-Var). The cost function flattens out for large values of the departure, and
its gradient goes towards zero, as the probability of the observation being correct also drops to-

wards zero. The interval within which the observation is partly used/partly rejected is relatively

narrow for this set of parameters.

7. BACKGROUND CHECK

VarQC relies on there being a pre-analysis screening of data, such as a check against the back-
ground fields. The BgQC (Jirvinen and Undén 1997) has effectively remained unchanged dur-
ing the transition from OI to 3D and 4D-Var. It checks that the normalized departure from the

background z, = (y - Hx,)/o, is less than a factor o times its estimated error variance, i.e.

zi<o (1+02/67) (15)
The factor o. may be different for different observation types and variables (Jarvinen and Undén

1997). The values of o, in Eq. (15) are obtained from the background error standard deviations
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actually used in the background term of the variational analysis (Fisher and Courtier 1995), in-

terpolated to the observation locations. For radiance observations the values of o, are estimated

with the technique described by Andersson et al. (2000). Observations rejected by BgQC cannot-
currently be reinstated by VarQC.

8. DIFFICULTIES

The BgQC generally works well but problems can occur when the background itself is severely
in error. In such cases there is a danger that valuable observation are rejected, not because the
observations are wrong but because the background is wrong. Problems of this kind occur in the

vicinity of rapid developments and intense systems. In a study of dropsonde data Cardinali

[a YA TR A HOUS: DV My [N T PRy Epppnpy 5. Ry s Sy SPI ol SUPEUL. Py PRGN, PR Y MRy | P
$99) iouna tnat valuaoie ouservatiois near tne centie oI tropical CyClones were Sysiematicaily

rejected by BgQC, as departures were frequently in excess of 20 m/s. As the intensity of the cy-
clone core is poorly resolved by the analysis, many data had large departures also against the
analysis. Those with departures greater than 10 to 12 m/s (against the analysis) were rejected by
VarQC (Fig. 4).
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Figure 4: Histogram of departures from the analysis (19980830-00 to 19980901-18) for dropsonde
wind data showing rejections by VarQC in bold. From Cardinali (1999).

It is hoped that the development of a Simplified Kalman Filter and flow dependent background

errors will enable a more dynamic description of the variations of ¢, , so that more data can be

retained in the most active areas.

9. SUMMARY AND CONCLUSION
Statistics of departures from the background (typically a 6-hour forecast) are used extensively
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for data monitoring, for assessing data assimilation performance and for specification of quality

control parameters.

The two main mechanisms for quality control, the background check (BgQC) and the variation-
al quality control (VarQC) were described and their application was discussed. VarQC is oper-
ational as an integral part of the ECMWF four-dimensional variational data assimilation scheme
(4D-Var). The scheme provides an estimate of the probability that each observation is in error,
given the observed value and the analysis. The weight given to the observation becomes smaller
as the probability of gross error increases. The weight is recalculated at each iteration of the
minimisation, which means that data can regain influence on the analysis if supported by sur-
rounding data. The calculations are performed in terms of the observed quantities and all data

. A A rraliter ansmbw~ndTad vl m el
from the glcbal set of obscrvations arc used and {uaiily Conirouca simuitancousiy.

The current BgQC is performed separately, prior to the analysis. It rejects observations for
which the departure from the background is in excess of a certain multiple times its expectation,
taking specified observation errors and background errors into account. This implementation,
although found to perform satisfactorily in most cases, has a drawback. In extreme cases of rap-
id development the background itself can be so much in error that correct observations are mis-
takenly rejected. Currently, the BgQC rejections are irrevocable. It may be advantageous in the
future to allow some of the data rejected by BgQC to have a second chance to influence the anal-
ysis during the iterations with active VarQC. '
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