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1. INTRODUCTION

Motivated by trends in numerical methods and high performance computing architectures the
Deutscher Wetterdienst (DWD) has developed a new 6perational global numerical weather prediction
(NWP) model that employs a grid point approach with an almost uniform icosahedral-hexagonal grid.
On 1¥ December 1999, this new model has replaced the operational global model GM, derived from
the spectral model of the European Centre for Medium Range Weather Forecasts (ECMWEF), and the
regional model EM for central Europe. It has been named GME.

The grid point approach offers several important advantages relative to spectral methods. One is
elimination of "spectral ringing" in the vicinity of steep gradients. Another is the ability to insure posi-
tivity in quantities such as cloud liquid water and turbulent kinetic energy. The grid point approach
also avoids the large amount of global communication required by speciral transform techniques as
well as the large number of arithmetic opérations normally associated with Legendre transforms at

high spatial resolution.

A major advantage of the icosahedral-hexagonal grid is the avoidance of the so-called ‘pole problem’
that exists in conventional latitude-longitude grids. The singularities at the poles lead to a variety of
numerical difficulties including a severe limitation on the time step size unless special measures are

undertaken. These difficulties simply vanish for grids not having such singularities.

Icosahedral-hexagonal grids were investigated more than thirty years ago for their suitability to mete-
orological application. Williamson (1968) and Sadourny et al. (1968) solved the nondivergent baro-
tropic vorticity equation with finite difference methods on such grids. Later, Cullen (1974) applied a
finite element approach and a similar grid to solve the shallow water equations. The conclusions from
these initial investigations, however, was that the discretization error arising from the slight grid non-
- uniformities was sufficiently large to render this grid point approach inferior to the then emerging
spectral transform method. In the early 1980's Baumgardner (1983) and Baumgardner and Frederick-
son (1985) devised recursively defined spherical barycentric coordinates that provided spherical basis
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functions from which a fully second-order accurate finite element formulation could be obtained.
Second order convergence was demonstrated in both the two and infinity norms. Since that time his
finite element approach has been successfully applied to modelling planetary mantle convection in

spherical shell geometry (Baumgardner, 1985)

In the early 1990s Baumgardner, in collaboration with a colleague John Dukowicz at Los Alamos
National Laboratory, developed a second-order accurate semi-Lagrangian formulation for the shallow
water equations on the icosahedral-hexagonal grid (Baumgardner, 1995). This formulation utilised
basis functions obtained by constructing a local spherical coordinate system at each grid point with the
grid point located at the coordinate frame equator. Since these coordinate systems-are utilised only in
the local neighbourhood of a grid point, the far removed polar singularities introduce no difficulties
GME employs this same set of basis functions that correspond snnply to the longltude and lat1tude in

the local grid point coordinate frame

Other investigators who have applied an icosahedral—hexagonal grid in an atmospheric modelling
context include iMasuda and Ohnishi (1986), Heikes and Randall (1995a,h), and Stuhne and Peltier
(1996, 1999). Masuda and Ohnishi applied a finite difference approach to solve the shallow water
equations in stream function/velocity potential form with the finite difference operators derived froma
line integral method. Heikes and Randall used an alniost identical approach except that they introduce
a ‘twist’ in the grid to rnake it symmetrical across the equatorial plane and they employ a multigrid
strategy for solving elliptic equations for the streamfunction and‘velocity potential. \They also intro-
duced a scheme for moving the grid points slightly to reduce the errors in their finite difference op-
erators. Stuhne and Peltier, on the other hand, applied‘a method very close to that of Baumgardner and
Frederickson (1985) for solving the elliptic equations via a finite element/multigrid strategy with re-
cursively defined barycentric basis functions but chose a finite difference strategy similar to Baum-
gardner (1995) for discretizing first derivative operators. The main difference in the latter strategy
from Baumgardner is their use of Cartesian coordinates and local basis functions that lie in a plane
tangent to the sphere' at each grid point instead of local spherical coordinates and spherical basis

functions.

None of the more recent formulations that achieve second- order accuracy (e.g., Baumgardner and V
Frederlckson 1985 Heikes and Randall 1995a, b; Baumgardner l995 Stuhne and Peltier, 1996

1999) displays the 51gn1ficant wave number five error that plagued the early formulations using the |
1cosahedral hexagonal gr1d We are convinced that the explanatlon for the large error in the earlier

formulations was simply the low order of their spatlal discretization.
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A first description of the design and implementation of the GME, including shallow water tests and an
evaluation of the dynamical core of the model, is given in Majewski (1998); here we concentrate on

the operational version of the model and tests at high resolutions.

The outline of the paper is as follows: Section 2 describes the basic numerical methods including the
grid generation, formulation of the discrete operators, and an evaluation of their accuracy. In section 3
the three-dimensional version of GME, including the physical parameterization package, is described.
Section 4 provides an overview of the data assimilation scheme, section 5 describes the operational
implementation at the DWD, and section 6 presents some results of diagnostics and verification of the
model. Finally, section 7 summarises the first results of 24-h forecasts of the GME at mesh sizes be-
tween 160 and 15 km.

2. NUMERICAL METHODS
2.1 Grid Generatibn

The icosahedral-hexagonal grid, first introduced in meteorological modelling by Sadourny et al.
(1968) and Williamson (1968), has been gaining increasing interest in recent years, e.g. Masuda and
Ohnishi (1987), Heikes and Randall (1995 a, b), Giraldo (1997) and Thuburn (1997). The approach
described here closely follows the work of Baumgardner (1983) who has applied this grid to the prob-

lem of planetary mantle convection.

To generate the grid, a regular icosahedron (Fig. 1) is constructed inside the sphere such that two of its
twelve vertices coincide with the north and south poles. Five of the other ten vertices are spaced at
equal longitudinal intervals of 72° (= 360°/5) along a latitude circle at 26.565°N, the other five along a
latitude circle at 26.565°S.

Figure 1 Regular icosahedron which consists of 20 equilateral triangles.
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Figure 2

Connecting nearest neighbours among these twelve points with great circle arcs divides the spherical
surface into 20 equal spherical triangles (Fig. 2, top left). Beginning from this grid of icosahedral tri-
angles, a new finer grid of triangles is generated by connecting midpoints of the spherical triangle
sides by an additional set of great circle arcs (Fig. 2, top right). This process may be repeated until a
grid of the desired resolution is obtained. This construction procedure yields a grid consisting of 10 n?
+ 2 grid points (nodes) and 20 ; elementary spherical triangles, where »; is the number of equal inter-
vals into which each side of the ofiginal icosahedral triangles is divided. Each of these 10 n’ +2 grid
points is surrounded by six nearest neighbours E:xcept‘ for the original twelve icosahedral vertices
which are surrounded by only five. We therefore refer to these twelve special points as pentagonal

points. The dual mesh to the triangular one we have just described consists exclusively of hexagons
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Grid generation by successively halving the triangle edges to form new triangles. Pa-
rameter 7 is the number of intervals on a major triangle edge (length ~ 7054 km).

except for the twelve pentagons at the pentagonal points (Fig. 3).

50



Majewski, D. et al.: THE GLOBAL ICOSAHEDRAL-HEXAGONAL ...

3
INNeSS :"“ﬁb
R sssss
NN Aesss
N NH:N H’:A:} "H,J
“"‘*:“"‘“‘:E:: 2822222
:E Er‘;—-f-ad;é
3 22222
- -

Figure 3 The grid points of GME represent nearly uniform hexagons (pentagons at the twelve

special points); in this figure, there are three pentagons visible.

The number »; is a natural parameter for specifying the resolution of the grid. It can be shown that
there is a close numerical equivalence between »; and the maximum harmonic degree in a spherical
harmonic representation. The (minimum) spacing between grid points is then the length of a side of
the original icosahedral triangles (about 7054 km for the. earth) divided by »,. For example, with n;
128 we obtain a spacing between grid points of about 55 km.

The jcosahedral-hexagonal grid provides a nearly uniform coverage of the sphere even though the
hexagonal cells vary somewhat in their exact shape and size (Table 1a), especially those close to the
pentagons. The pentagons, however, are perfectly regular. To increase the available choice of grid

resolution, an initial trisection of the main triangles edges followed by bisections may be performed.

Specifications for these grids are summarised in Table 1b.
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Table 1 Some characteristic quantities of the icosahedral-hexagonal grid at different resolutions
specified by 7;, the number of intervals on a major triangle edge. Here, N = 10 n* + 2 is the number of
grid points, Ay, is the minimum area of the hexagons, Apy is the maximum area of the hexagons; A,y
is the average distance between grid points; Ay, is the minimum distance between grid points; and
Amax 18 the maximum dlstance between grid points.

Table 1a Sides of icosahedral tnangles are each bisected ¢ times, i.e. n; = 27, where g is a positive
integer.

q m | N Anin (km®) | Apay (km?) | A, (km) | Apip (lkin) | Apyyy (k)
4 16 2562 154109 238061 477 .6 440.5 526 .0
5 32 | 10242 38515 59955 239.3 220.3 263.2
6 64 40962 9628 15017 119.8 110.1 131.6
7 128 163842 2407 3756 58.9 55.1 65.8
8 256 655362 602 939 30.0 27.6 32.9
9 8512 (2621442 150 235 15.0 13.8 16.5

Table 1b Sides of 1cosahedra1 triangles are initially trisected, and then blsected 1 times, i.e.,
n=3%2=29 where g = 1.585 + 1.

q n; N Anin (km?) | Ay (km?) (A, (km) | Apin (ki) | Ay (km)
4.6 24 ,5762 68477 97683 319.0 293.7 346.9
5.6 48 23042 17117 24494 159.7 146.8 173.5
6.6 96 92162 4279 6128 79.9 73.4 86.8
7.6 192 368642 1070 1532 40.0 36.7 43 .4
8.6 384 (1474562 267 383 20.0 18.4 21.7
9.6 768 |5898242 ‘ 67 96 10.0 9.2 10.9
sp :
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Figure 4 Logical data layout of the icosahedral-hexagonal grid of GME consisting of ten

rhombi (diamonds), five containing the north pole and five the south pole.
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By combining the areas of pairs of the original adjacent icosahedral triangles, the global grid can logi-
cally also be viewed as comprised of ten thombi or diamonds, each of which has #; x »; unique grid
points. The diamonds are indexed as shown in Fig. 4. Five diamonds share the north pole and five the .
south pole. The indexing on a diamond is based on the convention that those #; x »; grid points which
are unique to-each diamond aré numbered from 7 to »; in the rows and columns of the data arrays as
shown in Fig. 5. The grid points on the diamonds edges, (0,1) to (0, n+1) and (0, n;+1) to (n;, n/+1),
are shared between adjacent diamonds and their data values must be exchanged at each time step. The
polar points (0,]) are each shared by five diamonds. Diamonds 1 to 5 share the north pole and dia-

monds 6 to 10 share the south pole.

NP ]
(0,1) (ni, ni+1)
i (0, ni+1) T (0, ni+1)
l~ Diamond j2 Diamond

1t05

6to10.

(ni, 1) (ni, 1)

(ni, ni+1) (0,1)

j1
SP

Figure 5 Indexing the grid points within one diamond; on the left for diamonds 1 to 5 which
originate at the north pole, on the right for diamonds 6 to 10 which originate at the
south pole.

From the computational point of view the icosahedral-hexagonal grid offers the major advantage that

no indirect addressing is required. The data structure is regular and has the dimensions (0: »;, n+1,10),

i.e., consists of ten logically square arrays of points. Discrete differential operators have the foﬁn of

seven point stencils, involving the home point and the six nearest neighbour points. The indices of the

neighbour points are given by fixed offsets from the index of the home point. These operations can be
coded to obtain high efficiencies on both vector and cache-based computer architectures. Further-
more, the square arrays of points are readily partitioned in a domain decomposition strategy for dis-

tributed memory parallel architectures.

2.2 Horizontal Finite Difference Operators

The derivation of finite-difference operators is not based on Gauss” theorem as in Masuda and Ohnishi
(1987) or Heikes and Randall (1995) but follows a strategy similar to that of Stuhne and Peltier (1996,
1999). Our approach utilises local basis functions that are orthogonal and conform perfectly to the
spherical surface. These basis functions are the longitude and latitude of a locally defined spherical
coordinate system whose equator and zero meridian intersect at the grid point. We generate such a
local spherical coordinate system at each grid point with coordinates (1), %) and align the local east

direction to coincide with the global east direction and the local north with the global north direction.
53



. Majewski, D. et al.: THE GLOBAL ICOSAHEDRAL-HEXAGONAL ...

The local spherical coordinate system is specified by three orthogonal unit vectors [Xo, (€x)o, (€p)ol,
where X is the grid point location on the unit sphere, (e) is orthogonal to x, and aligned with the

global east and (e,)o is orthogonal to X, and aligned with the global north direction (Fig. 6).

. global coordinate system
* . .
— = local coordinate system at grid node

Figure 6 Global coordinate system (X, y, z) and local system (1), X) at a grid point.

The advantages of this local coordinate system are

e  Within the local neighbourhood of the grid point the coordinate system is nearly Cartesian, i.e., the
coordinate singularities are far removed from this grid point neighbourhood; and |

. only two (tangential) velocity components are needed to describe the horizontal velocifies.

However, there is one disadvantége, namely, transformations are required between the local coordi-

nate systems of neighbouring grid points when operators are applied to vector fields.

The meteorological equations are formulated and solved in the local spherical system (1, X), where the

horizontal distances (dx, dy) on the earth of radius a are given by dx = acos ¥ dn and dy =ady .

Discrete horizontal operators must be derived for this system. The analytical form of the operators is
the usual form as given for example by Dutton (1976) taking into account that 1 = ¥ = 0 at the centre

node.



Majewski, D. et al.: THE GLOBAL ICOSAHEDRAL-HEXAGONAL ...

2.2.1 Derivation of the Discrete Gradient and Laplace Operators

To obtain a second-order accurate representation of the partial differential equations we desire to
solve, we approximate an arbitrary global function ¥ in the neighbourhood of each grid point by a

quadratic polynomial ¥ in the local coordinates (1), %) as

WL X)) =Wo + N + 0, ¥ + 057 + oy + 05 1 @2.1)

Eq (2.1) may be interpreted as a Taylor series of the form

oW oy 1{o* ) , [ *w 1{o%w) , .
)= 1 2 | 0¥ |, 1[0V 22
wan, 1) W°+(anJ"+[ale+2[an2 T Srar 2l 5 (2.2)

The finite-difference form of the gradient and Laplace operators for a scalar field  may be written in

terms of a stencil operation involving the values of ¥ at the center node and the nearest five or six
neighbours. (For simplicity in what follows, we shall let the neighbour index m range from 1 to 6 also
in case of pentagonal nodes where it will be understood that the stencil coefficients for the non-
existent node are identically zero.)

The gradient operator at each grid point may be expressed

0 & .

B—ZII=ZG77,m (l/jm —WO) (2.3)
m=l1

W NG o) @4

a;( o x.m m 0 . :

The coefficients Gy m Gy m (m =1,...,6) are associated with the neighbouring nodes and depend only
on the geometric locations of the nodes expressed in terms of thg local coordinates (1, %). The num-

bering of the grid points is counterclockwise as shown in Fig. 7.

5
®
6 4
0
1 3
®
2
Figure 7 The central node (0) and the 6 surrounding neighbours (1 70 6) of a hexagon used by

the elementary stencil of the icosahedral-hexagonal grid.
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Similar to the approach for the gradient operator, the Laplace operator is expressed in terms of the

neighbouring nodes as

al a?_ 6 )
+ = E L — 2.5
(an2 aZZ )w o m (l//m Yo ( )

To obtain the stencil coefficients G;, ,, G4 »» and L,, we apply the quadratic polynomial approximation
(2.1). For the case of six nearest neighbours, we have six constraints for the five coefficients ¢,

..., & that specify the function yin the local neighbourhood, namely,

l/’m (nm ’Zm ) = l//O + alnm + a?_Zm + a3nl_721 + 6’(477111/?1'1 + 0“,5/1,31 (26)

for m = 1,..,6. A least squares procedure is used to solve for the five unknown coefficients from a
system of the form

&; =B W —¥o) @7
where j = 1,...,5, and the sumrmation is over m = 1,...,6.

Using Eqs. (2.1) through (2.6) the coefficients G;, ., Gy » are then given by

Gom= Bl.,m and Gym= Bom , (2.3)
and the coefficients L, by

L, =2Bs + Bs) @9

where m=1,...,6.

Due to the symmetry of ’the icosahedral-hexagonal grid, the coefficients G, », Gy », and L, may be
precomputed and stored only for diamond 1. Since the divergence operator is simply the negative
transpose of the gradient operator, we can use the same gradient coefficients to compute the velocity
divergence. Care has to be taken, however, to rotate the wind components (u,,, v,/ of the surrounding
nodes into the local spherical coordinate system of the central node before the divergence operator is

applied.

23 Iﬂterpolation in the Icosahedral-Hexagonal Grid

GME uses semi-Lagrangian advection for water vapour and cloud water. Semi-Lagrangian methods
require the interpolation of fields from neighbouring grid points to the departure and midpoints of the
parcel trajectory. Our approach involves two types of interpolation, namely bilinear and biquadratic.

Bilinear interpolation is used in the calculation of the trajectory itself to derive the wind components
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(u, v) at the trajectory midpoint. Biquadratic interpolation is then applied to find the prognostic fields
at the departure point of the trajectory. Both methods are performed.on grid triangles.

23.1 Bilinear Interpolation

Bilinear interpolation of an arbitrary function y{7,%) at a point P(7,}) uses the values (¥4, ¥, W) at
the three grid points (Py, P, P) having position vectors (py, p;, p,) that are the vertices of the spheri-

cal triangle containing the point as indicated in Fig. 8.

XA

>
P (0,0) n

Figure 8 A triangle Py, Py, P> in the local spherical (7, 7) coordinate system.

To derive the value ¥(7, ) at P(7, ) we introduce barycentric coordinates. Each point within the tri-

angle is uniquely defined by the vector

P=YoPo t NP T V2P where Yothh +7,=1 (2.10)

where (%, 7, ) are called the barycentric coordinates of the point P. To calculate these coordinates

the following linear system has to be solved (note that at the central node Py, 7 = = 0):

n=nm +7,1, and =1 +%4> and ¥, =1-7,-7, (2.11)

The bilinear interpolation of y(7, 3) within the triangle is then obtained by weighting the values of yat

the triangle vertices by the corresponding barycentric coordinates:

v, x)=row (. 20 )+ v, 1)+ 12w (2, 1) 2.12)
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2.3.2 Biquadratic Interpolation

The standard biquadratic interpolation formula for a triangle in terms of values at the triangle vertices
and midpoints of the edges (Fig.9) is applied to obtain the value of y at an arbitrary point P(7, 1) in the

triangle:

W (¥, 71,72 )= 76270 D0 + 127 =)W, + 7221, =)W, + 4101V + N1aWs + 72VoWs) (2.13)

where (7, 7, ;) are again the barycentric coordinates of the point P.

2 A

v,

3
¥, n

Figure 9 The six values used for the biquadratic interpolation of a function y(7, %) in a triangle.

The values of the function ¥ at the midpoints of the triangle edges, Wi, ¥, Vs, are obtained by ap-
proximating ¥ along these edges with a cubic Hermite polynomial using the gradients at the end
points, that is, at the triangle vertices (Py, P;, P3). When the stencil of the gradient operator is taken
into account, the biquadratic interpolation is based on a stencil that involves twelve grid points

(Fig. 10).

Figure 10 The twelve grid points involved in the biquadratic interpolation in the triangle Po, Py, Ps.
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Monotonicity may be enforced by simply demanding that the interpolated value not be higher or lower
than the values at the three corner points (P, P;, P;). In the same way, positive definiteness may be

enforced by the condition that the interpolated value be greater than or equal to zero.

If the Courant numbers are restricted to values less than unity, it is fairly easy to determine which of
the surrounding triangles contains the departure or midpoint of the trajectory. Without this restriction
the search algorithm is more complicated and uses a binary search procedure to accelerate conver-

gence.

2.4 Accuracy of the Gradient and Laplace Operators

Heikes and Randall (1995b) introduced the following function to test the accuracy of their finite-

difference operators on the icosahedral-hexagonal grid

B.  (Le)= a? cos? (m@)cos(nl) V (2.14)

mn

where A is the longitude, @ is the latitude, a is the radius of the earth, and m and » are integers set to 1

true

or 3. For different resolutions »; of the grid the analytical solution x" is compared to the finite-

difference one X, and some error norms are evaluated. The one-norm is defined by

"xfd _ xlrm:

__1 NA Jd true 2.15
1_22 ,.Ix,. i (2.15)

where the summation is over all N grid points of the icosahedral-hexagonal grid, 4; is the area of a

particular hexagon (pentagon), and 4 is the area of the globe

4= 4, (2.16)

The two-norm is defined by

1

= Biz]:;A,. (e — xime )2]2 @17

"xfd _ x!me

and the infinity norm is defined by
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1‘x~f"-x"”‘g =max(‘xifd x| i=1,N) | e | (2.18)

oo

For the gradient operator, the norms of course include both components in the summations and in the

evaluation of the maximum over the grid.

A finite-difference operator is said to be consistent if the infinity norm converges to zeré for decreas--
ing mesh sizes. Figs. 11 and 12 summarise the results for the GME gradient and Laplace operators.
Both operators satisfy the consistency requirement. Their overall accuracy as characterised by their
one- and two-norms is second order because the norms drop close to a factor of 4 when the resolution
n; is doubled. The GME operators constructed from the unaltered icbsahedral—hexagonal grid thus
display an accuracy éimilar to that of the operators derived by Heikes and Randall (1995 b, Fig. 4) on
their twisted icosahedral-hexagonal grid where a special optimisation of the grid point distribution has
been performed. Note that in Figs. 11 and 12, we include results not only for grids constructed with an
initial bisection of the sides of the icosahedral triangles but an initial trisection as well. We also show
results for grids with n; values up to 768, corresponding to a horizontal resolution of about 10 km

which is equivalent to T; 2000 for a spectral model.

It should be noted that the slope of the infinity norm changes from —2 to —1 for the Laplace operator.
This occurs where errors due to local grid nonuniformity begin to dominate those due to the inherent
inability of the finite grid to represent the function exactly. These maximum absolute errors captured
by the infinity norm due to grid nonuniformity occur along arcs correspondmg to the sides of the
or1g1na1 20 spherical triangles. The magnitude of these errors decreases by a factor of two as #; is
doubled while the area associated with such points also decreases by a factor of two. The fact that the
one- and two-norms involve an area weighting factor explains why these norms maintain a slope close

to —2 where the infinity norm switches to a slope of —1.
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3. THREE-DIMENSIONAL VERSION OF GME

3.1 Differential form of model equations

The prognostic equations of the three-dimensional version of the model are written in differential form

for local spherical coordinates (77, ) and a hybrid vertical coordinate &

RT

5—"—(g+f)v+.§—=—i—a— O+ K)-— i(1np)+[-aﬂj - K,V (3.1)
ot é: a 67] a 877 ) sub
ov ov 10 RT, o 4 V
s . 4+ = — {D+ K In -K,V . 3.2
AL i A e (a)wb o e
or udl vorT or _aw L, e +(?£J -K V4(T Tu/) (3.3)
at a 677 a 624/ ag c p cp or sub

1
?E_L:_lj' 0[P, 0,9\ 4 (3.4)
ot a; 65 61 o& ,
aq\' +£aqv +Xaqv +§ aqv :_Cvc + aqv _K4V4qv (35)
o aodn ady o& sub
aqc +_liaqc +Zaqc +. aqc = O + _a_q_c. : (3.6)
o aodn ady "0 O \ar), '

where

u,v are the zonal (meridional) wind components; 7 is the temperature; p; is the surface pressure; g, is
the specific water vapour content and g, is the specific cloud liquid water content; {'is the vorticity and
K the specific kinetic energy; p is the pressure and T, is the virtual temperature; Ty is a reference
temperature depending only on height; C,. is the condensation rate; (..)us is the sub-grid scale ten-

dency due to parameterized processes like radiation, convection or turbulence.

3.2 Numerical solution of the three-dimensional equation set

The shallow water test bed of the GME included a semi-Lagrangian and an Eulerian version of the
code. The semi-Lagrangian version was restricted to Courant numbers less than 1. For larger Courant
numbers the search algorithms and communication pattern become more complicated and were there-
fore not implemented in the short period of time available for the project. In the framework of the
shallow water model both schemes produced very similar results but the Eulerian code was about 20%

faster. Therefore, the dry part of the three-dimensional version of GME, i.e. the prognostic equations
63



Majewski, D. et al.: THE GLOBAL ICOSAHEDRAL-HEXAGONAL ...

for u, v, T, p;, is solved by the semi-implicit Eulerian method, and only the two prognostic moisture
equations (g,, g.) use semi-Lagrangian advection in the horizontal direction to allow for monotonicity
and positive definiteness. In the vertical, the energy and angular momentum conserving finite-
difference scheme of Simmons and Burridge (1981) is applied to all prognostic equatioﬁs. | 4
The semi-implicit treatment of gravity waves leads to a three-dimensional Helmholtz equation for the
second temporal derivative of the divergence of the horizontal wind field. The eigenvectors of the
vertical structure matrix are used to diagonalise this 3-d equation into i3e 2-d Helmholtz equations
where i3e is the number of layers in the model. A split semi-implicit scheme (Burridge, 1975) is em-
ployed which solves only the Helmholtz equations corresponding to the external mode plus the first
four internal ones. Currently, these five 2-d equations are solved by successive overrelaxation; about
20 iterations are needed to solve for the external mode, only 3 to 11 for the internal ones. A slight off-
centering of the implicit terms is necessary to damp the gravity waves and to stabilise the solution.

Part of the sub-grid scale tendencies are treated implicitly for stability reasons, too.

33 Physical Parameterizations

The simulation of diabatic processes in the icosahedral-hexagonal grid of the GME uses the same
methods and procedures that are applied in any other NWP grid structure. However, the uniformity of
the GME grid avoids unnecessary physics calculations in over-resolved high latitude zones that com-
monly occur in grids with polar singularities (e. g. regular latitude-longitude grids). In contrast to such
grids, where the area represented by each grid node varies strongly with latitude, the distinction be-
tween resolved and unresolved atmospheric scales does not depend on the geographical position in the

GME grid because the area of grid nodes varies by 20% at most. Unresolved atmospheric processes

interact with the large-scale flow but contain also essential forecast information (e. g. cloudiness or

precipitation) which can not be generated by the adiabatic part of the model. The simulation of such
processes is the subject of a set of dedicated parameterization modules incorporated in the GME. The
following physical phenomena are simulated by these modules

e radiative transfer of solar and thermal radiation in clear and cloudy atmospheres (Ritter and Ge-
leyn, 1992); a full radiation step is performed every two hours at all grid points,

e grid-scale precipitation scheme including parameterized cloud microphysics (Doms and Schdittler,
1997), |

e deep and shallow convection based on a mass fluxvapproach (Tiedtke, 1989),

e vertical turbulent fluxes (Miiller, 1981); in the Prandtl-layer based on Louis (1979), for the bound-
ary layer and the free atmosphere a diagnostic level-two scheme according to Mellor and Yamada
(1974),

e sub-grid scale orographic effects (Lott and Miller, 1997),"

e - soil model (Jacobsen and Heise, 1982), s
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 cloudiness derived from specific cloud liquid water content, relative humidity, convective activity
and stability. '

For computational efficiency, some of the parameterization schemes (convection, turbulent fluxes,
sub-grid scale orographic effects) aré called only every fifth time step of the model.

With the exception of the sub-grid scale orographic effects scheme, which was adapted from the op-
erational ECMWF forecast model, the parameterization modules have been used in the previous NWP
system of the DWD, where they have undergone extensive testing and evaluation both in global and
limited area model applications. In the framework of the GME the parameterization schemes needed

some adjustments of the free parameters based on available validation and verification data.

34 External Parameters

Time-invariant grid point properties, such as mean orographic height, land-sea fraction, roughness
length and soil type, are generally named external parameters and need to be computed for each grid
element area based on high resolution supplementary data. Table 2 summarises the data sets used in

the generation of external parameters for the GME.

Table 2 Description of data sets used in the generation of external parameters for the GME.
Dataset- Source Coverage Resolution Projection Derived parameters
GLOBE NOAA NGDC global 30 regular h, stdh

GTOPO30 USGS global 30 regular h, stdh
GLCC USGS global ~1km Goode homolosine | 1f, zg, root, plcov, lai
CORINE ETC/LC most European 250 m Lambert azimuthal | 1f, zy, root, plcov, lai
) countries
DSM FAO global 5’ regular soil type
CORINE: CoORdination of INformation on the Environment
DSM: Digital Soil Map of the World
ETC/LC: European Topic Centre on Land Cover
FAO: Food and Agricultural Organisation of UNO
GLCC : Global Land Cover Characterization
GLOBE: Global Land One-kilometer Base Elevation
USGS: United States Geological Survey

For each icosahedral-hexagonal grid element those high resolution raw data values which are associa-
ted with the corresponding geographical location are combined to form a grid area average; at the cur-

65




Majewski, D. et al.. THE GLOBAL ICOSAHEDRAL-HEXAGONAL ...

rent operational mesh size of 59.9 km, the average grid area is 3100 km®*. For some parameters the
processing of the data also includes a conversion from basic information ayvailable, e. g. soil texture, to
the model parameter required, e. g. soil type. In geographical‘ regions where more than one raw data
set is available for the same external parameter, a priority rule is applied in the processing based on a
quality assessment of the raw data sets involved. E. g. for most grid elements in Europe land use de-
pendent parameters are baéed on the CORINE information rather than on the lower resolution GLCC

data set.

4. DATA ASSIMILATION SCHEME
4.1 Intermittent 4-d Data Assimilation Suite

The data assimilation scheme of the GME is based on a traditional intermittent 6-hourly analysis-
forecast cycle. Analyses are performed at 00, 06, 12 and 18 UTC based on all observations valid in a
1.5 hour window around the analysis times. A 6-hour forecast of the GME provides the first guess to

the analysis scheme.

4.2 Upper Air Analysis

Table 3 outlines the salient features of the upper air analysis. A multi-variate optimum interpolation
(OI) scheme provides the analysis of the mass (surface pressure and geopotential) and wind (zonal and
meridional wind components) fields simultaneously. The correlation functions employed until now are
the ones of the former global spectral model (T106, L19) of the DWD; they will be replaced by func-
tions properly describing the error statistics of the GME by the end of the year 2000. The upper air
analysis is not performed on the icosahedral-hexagonal grid of the GME but on a regular lati-
tude/longitude grid with a resolution 0.75° x 0.5° (480 x 361 grid points). Only the analysis increments
are interpolated to the GME grid. In the near future, the analysis increments will be computed on the

GME grid directly to avoid any smoothing due to the interpolation between model and analysis grids.
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Table 3 Data assimilation and analysis of atmospheric fields for the GME
Method: 6 hourly intermittent data assimilation. Analyses at 00, 06, 12 and 18 UTC.
Main steps: Analysis, initialization, forecast
Mass and wind Humidity
3D multivariate optimal interpolation 3D univariate Ol in the troposphere below
Method (OI) of deviations of observations from 250 hPa. Constant specific humidity in the
6-h forecasts stratosphere
Analysed vari- Geopotential height, wind components, Relative humidity
ables surface pressure

Analysed corrections locally approxi-
mately nondivergent and geostrophic
First guess 6 hour model forecast

Product of a horizontal and a vertical part.

Constraints

Horizontal model:
2

Forecast error Series of Besselfunctions 10 1n)
correlation Component length scale (middle lati- U, =e 2 e 7, =300km
dutes): 400 km Y
Vertical model: Empirical positive definite functions
SYNOP, SHIP:

Temperature and dewpoint.

Pressure. Winds from ships and from Total cloud amount and precipitation.

tropical landstations

TEMP, PILOT: Temperature and dewpoint.
Geopotential heights, winds Standard levels and significant levels up to
Observations (Only standar.d levels) 275 hPa
SATOB: gi?zﬂiol;?:;lu ls:: doa:,rz;s Upper troposphere humidity (UTH)
SATEM: Thickness data at 250 km
resolution. Not used over Precipitable water content for 3 layers
land below 100 hPa. \
AIREP, ASDAR: Winds
Observation

time window + 1.5 hours

Quality control | Comparison with first guess, comparison with OI analysis

Box method:  Simultaneous analysis of a large number of data (up to 500) in large
partial volumes of the atmosphere ‘
Realisation Analysis grid:  (0.75° x 0.50°) geographical grid (480 x 361 grid points)

Only analysis increments are interpolated to icosahedral-hexagonal model grid.

4.3 Surface Analysis

The only surface fields analysed so far are the sea surface temperature (SST) and the snow depth. No
analysis of soil temperatures and water contents is performed, but the 6-hour first guess fields of the
GME are taken. Table 4 gives an overview of the surface analysis scheme. To avoid interpolation

problems, the surface analysis is calculated on the icosahedral-hexagonal grid of the GME directly.
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Table 4

Data assimilation and analysis of surface parameters for the GME

Sea surface temperature (SST)

Snow depth

Analysis frequency

Daily at 00 UTC

6 hourly at 00, 06, 12 and 18 UTC

Correction method. Increment calcula-
tion-at grid points with local data se-

Weighted average at grid points'witvh

nearby observations

Method lection local data selection.
Influence radius: 450 km Influence radius: 330-km
“Weights given to a) Dependent on distance Dependent on horizontal and vertical
b b) Dependent on age of o
observations . displacement
observations
, SYNOP snow depth observations.
Observation SST-data from ships and buoys Snowfall data derived from SYNOP
ons of the last 7 days precipitation, temperature and weather
) observations of the last 6 hours

Quality con trol Comparison with first guess gnd with Plausibility checks.

Comparison with previous analysis

First guess

Previous analysis

Previous analysis

Adaption in data

Blending with SST analysis from
NCEP Washington

Use of snow depth forecast

sparse areas

Gridded sea ice analysis based on
SSMI Satellite data from NOAA

Ice mask OMB. Interpolated into GME analysis
grid
Smoothing 2-D smoother is applied to the analy-

sed field

4.4 Incremental Digital Filtering Initialisation

Initialisation schemes have to remove noise from the forecast while causing acceptable small changes

to the analysis and forecasts. Furthermore, if the initialisation achieves a better balance between hu-

midity and dynamic fields, the spin-up problem can be alleviated. For the GME, the digital filtering
initialisation (DFI) of Lynch (1997), involving a 3-h adiabatic backward integration and a 3-h diabatic

forward one centered around the initial time, has been implemented. An incremental approach (IDFI)

has been chosen which avoids unwanted smoothing of the first guess fields due to the DFI in regions

without observations by applying the filter only to the analysis increments.

5. OPERATIONAL IMPLEMENTATION
5.1 Daily Schedule of Analyses and Forecasts

Since 1% December 1999 the GME is the operational global NWP model of the DWD and provides the

meteorological data base for many follow-up products and systems. The GME and its data assimila-

tion scheme are implemented on the Cray T3E1200 of the DWD; the GRIB (Gridded Binary) code

analysis and forecast data are stored in huge ORACLE data bases on an SGI Origin cluster.
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The operational schedule is structured by data assimilation steps every six hours, i. e. for 00, 06, 12
and 18 UTC with a data cut-off between 7 to 12 hours. An early run with a data cut-off of 2h 14min
and forecasts up to 78 hours allows early numerical guidance, and provides lateral boundary condi-
tions for the nonhydrostatic regional model LM (7 km mesh size, 35 layers) of the DWD as well as
the regional models of ten other NMS (see 5.3). The early runs are based on 00, 12 and 18 UTC analy-
ses and use 13 x 13 processors. To complete the 78-h forecast takes about 50 minutes wallclock time.
The main run with a data cut-off of 3h 30min and forecasts up to 174 hours is based on 00 and 12

UTC analyses. With 15 x 15 processors the whole 174-h forecast takes 1h 35min.

5.2 Available Products

GME data are mostly stored on the icosahedral-hexagonal grid (Arakawa-A, 163842 grid points, 31
hybrid layers). More than 80% (11 GByte) of the data of a 174-h forecast are given in this spatial rep-
resentation. Software is available to extract the GME forecast at single grid points anywhere on the
globe to derive meteographs. To ease the data visualisation and as an interface to applications like
wave modelling, selected forecast fields are interpolated horizontally from the icosahedral-hexagonal
grid to a regular latitude/longitude one (0.75° x 0.75°). Moreover, some multi-level fields are interpo-

lated vertically from the 31 model layers to selected pressure levels.

53 GME Data as Lateral Boundary Conditions at other NMS

Forecast data from the early run of the GME are sent via the internet to other national meteorological
services (NMS). These data serve as initial and lateral boundary conditions for regional NWP models,
which are based on either the high-resolution regional model (HRM) of the DWD or the nonhy-
drostatic LM. Only those GME grid points which cover the domain of interest of the NMS in question
are transmitted to reduce the amount of data. Because of this, real-time distributed computing has been
realised, where the GME at the DWD and the regional models at the NMSs run in parallel and the
internet is used for the transfer of the lateral boundary data. Currently, the following ten NMSs are
receiving the GME data twice daily based on 00 and 12 UTC data out to 48 (78) hours at 3-hourly (for
some even at hourly) intervals |

e Brazil (Directorate of Hydrography and Navigation),

e Brazil (Instituto Nacional de Meteorologia),

¢ China (Guangzhou Regional Meteorological Centre),

o Greece (National Meteorological and Hydrological Service),

e Israel (Israel Meteorological Service),

e Jtaly (Regional Service SMR-ARPA),
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¢ Oman (National Meteorological Service, DGCAM),

e Poland (National Meteorological Service, MGW),

e Romania (National Meteorological and Hydrological Service),

e Switzerland (National Meteorological Institute).

Most of the regional models running at the NMSs have resolutions between 30 and 7 km; they are able
to add valuable details to the GME forecast because the topographical forcing generally modifies the

larger scale flow provided by the GME.

6. SOME RESULTS OF DIAGNOSTICS AND VERIFICATION
6.1 Systematic Trends in 60-d Forecasts

To detect systematic trends in the GME forecasts a 60-d (=1440 h) run has been performed at the op-
erational resolution of 60 km and 31 layers. The forecast was initialised on 15 Dec. 1999 at 00 UTC
and used constant sea surface temperature. Global diagnostics were produced each day to monitor the
model evolution. The results are summarised in Fig. 13. No obvious trends are visible at first glance.
The volume average of the kinetic energy (Fig. 13, top left) varies slowly between 150 and 175 m’/s’
whereas the maximum wind speed (usually found at the top level, i. e. at 10 hPa) fluctuates on a much
shorter time scale between 80 and 140 my/s. Although the mass (Fig. 13, top right) is not formally con-
served, the mean deviation from the initial state never exceeds 0.14 hPa. The hydrological quantities
(Fig. 13, bottom) seem to be balanced rather well throughout the 60-d period; only a slight tendency is

visible to shift the precipitation from the convective to the grid-scale regime.

6.2 Verification of Precipitation Forecasts

The Global Precipitation Climatology Centre (GPCC) provides an objective analysis of monthly pre-
cipitation. This analysis is based on measurements at about 6000 surface stations over land and esti-
mated amounts derived from brightness temperatures of geostationary satellites over the oceans. The
spatial resolution of the combined product is 2.5° x 2.5° (Fig. 14, bottom). For February 2000, the
precipitation forecasts of the GME for the 24-h period 06 to 30 hours have been accurhulated for each
day to derive a monthly value (Fig. 14, top). There is close correspondence between observation and
simulation of the main features like the precipitation extremes at the ITCZ and the storm tracks of both
hemispheres. Even the heavy flooding which hit Mozambique in Februray, has been forecasted by the
GME rather well. Concerning the distribution over the continents, the model is able to simﬁlate the
topographical modification of the precipitation field in more detail than can be depicted by the GPCC

analysis due to the coarse resolution of the observing network.
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Figure 13 Diagnostic evaluation of a 60-d run of the GME initialised on 15 Dec. 1999 at 00 UTC.

6.3 Kinetic Energy Spectra

Based on the horizontal wind components at the icosahedral-hexagonal grid points of the GME the
kinetic energy spectrum has been computed by replacing the integrals by summations over the grid
elements. At the operational resolution n; = 128 with 163842 grid points, a triangular truncation of up
to T340 is possible. Fig. 15 shows the resulting spectrum of the eddy kinetic energy (after summation
over the zonal index m for m > 0) at 250 hPa on 25 May 2000 at 00 UTC. The full spectrum is shown
on the left, the higher end between wave numbers 150 to 340 is shown to the right. No “wave number
5 problem” can be detected in the GME spectrum. For comparison, the spectrum of the ECMWF
model (T.319, 60 layers) is depicted, too. Both models show close agreement up to wave number 100,
especially the n” drop of energy in the wave number range between n = 10 to n = 100. At higher wave
numbers, the GME spectrum falls off at a rate close to n™* whereas the ECMWF one drops off at a
much higher rate indicating a stronger (and more effective) horizontal diffusion of the model. Inte-
grated over the full spectrum, both models have almost the same level of eddy kinetic energy (for the
GME: 133.8 m*/s” and the ECMWE model: 135.8 m?s?).
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GME Feb. 2000 Precip (mm) 06—30h
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Figure 14 Monthly precipitation (mm) for February 2000. Top: GME forecasts, time
range: 06 to 30 hours. Bottom: Analysis of the GPCC, combined product.
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6.4 Christmas 1999 Storm in France and Germany or “The Flap of a Butterfly’s Wing*

On December 25, 1999, a strong winter storm with peak gusts of more than 200 km/h caused huge
damage in France, Belgium, Switzerland, and Germany, and was responsible for the death of more
than 80 people. Afterwards, the media blamed the meteorologiqal services of the countries hit by the
storm for not having warned the public early enoﬁgh.

This storm has developed out of a cyclone which appeared on 26" December 1999 at 00 UTC west of
Brittany having a central pressure of about 980 hPa. While moving rapidly east-north-eastward the
storm deepened by about 20 hPa in only 6 hours. Mean winds of about 50 kt and peak gusts of moré
than 90 kt have been reported. The translation speed of the storm centre exceeded 50 kt (~ 90 kiv/h).
At 12 UTC the system had reached Frankfurt (Main), see Fig. 16, top. At the south-western flank of
the cyclone very stormy winds occurred which caused severe damage in southern Germany; at the
mountainous region of the Black Forest, large areas of forests have been destroyed completely.

The operational GME severely underestimated the strong development of this system even in the 24-h
forecast based on the 25 December 12 UTC analysis (Fig. 16, bottom). Peak gusts of less than 30 kt
were forecasted for southern Germany, and no closed low pressure system has been simulated over
Germany by the model. What is the reason for this complete failure?

A first hint can be found by comparing the 48-h forecasts of the GME based on the early and main
runs, started at 12 UTC on the 24™ December. The early run (Fig. 17, top) has a data cut-off around 2h
14min past the analysis time, whereas for the main run (Fig. 17, bottom) the cut-off is 3h 30min. Both
forecasts differ dramatically! The early run shows 48 hours in advance a clear signal of a strong cy-
clone with peak gusts around 30 m/s (~ 60 kt) in southern Germany, while the main run predicts a
totally different weather situation, namely a well developed storm over south England.

The only difference between the early and the main runs of the GME is the initial state, i. e. the nu-
merical analysis valid at 12 UTC on 24" December 1999. There are small differences between both
analyses in the region of the initial disturbance, a shallow low pressure system west of North America
at 55°W, 38°N, which developed to the Christmas storm later on. The additional observations of the
main run, e. g. a restarted radiosonde at Sable Island and some SATOBs (winds derived from cloud
drift in geostationary satellite pictures), resulted in a reduction of the speed of the upper tropospheric
jet by about 6 m/s. This relatively small difference in the initial state (“Flap of a butterfly’s wing”)
_caused a total failure of the forecast 48 hours later (and more than 4000 km to the east) over Germany.
Thus there is reason to believe that the weather situation was strongly chaotic during this period. A
small change of the initial conditions lead to drastic changes of the forecast after 48 hours only.

This obvious dependence of the forecast quality on the initial state in this case prompted detailed
studies of the data assimilation section into the optimal use of all available observations, e. g. from
ships, planes and satellites. Fig. 18 shows as an example the 24-h forecast of the GME, started at 12
UTC on 25" of December 1999, and based on an experimental data assimilation where the observation

window has been reduced from +/- 3hours to +/- 1.5hours around the analysis times 00, 06, 12, and 18
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GME (ANA) 26/12/99 12 UTC
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Figure 16 Top: GME analysis of mean sea level pressure (hPa) at 12 UTC on 26 Dec. 1999.

Bottom: 24-h GME forecast of mean sea level pressure (hPa) and maximum wind
speed (m/s, shading) valid at 12 UTC on 26 Dec. 1999.
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GME (Pre) 24/12/99 12 UTC + 48h
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Figure 17 48-h GME forecasts of mean sea level pressure (hPa) and maximum wind
speed (m/s, shading) valid at 12 UTC on 26 Dec. 1999.
Top: Early run (data cut off: 2h 14min). Bottom: Main run (3h 30min).
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GME (1.5h) 25/12/99 12 UTC + 24h

N

Figure ]

(=]

s 24-h GME forecast (based on 1.5 h observation window for the analysis) of
mean sea level pressure (hPa) and maximum wind speed (m/s, shading)
valid at 12 UTC on 26 Dec. 1999.

J=

UTC. This reduction avoids the “smearing out” of the information in rapidly changing flow situations.
With a mesh size of 60 km, the GME is of course not able to simulate the rapid deepening (and filling)
of the storm over France in all mesoscale details, but the comparison (Fig. 19) between the observed
and simulated temporal evolution of the surface pressure at Paris (Orly Airport) reveals reasonable
correspondence. Even the nonhydrostatic high resolution regional numerical weather prediction model
LM with its 7-km grid mesh is unable to catch the rapid deepening and filling of this storm in full de-

tail.
The reduction of the observation window improved the forecast quality of the GME not only in this

case, but for the second French storm (28 Dec. 1999) as well as for the Danish storm (3 Dec. 1999).

Since May 2000, the shortened observation window is applied operationally, too.
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Mean Sea Level Pressure at Paris,
25/12/99 12 UTC + 6 to 24h
1010 ‘

o 1 ggg —6— Observ.
o g [e—— -
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6 12 1 8 24
forecast time (h)
Figure 19 Temporal evolution of the surface pressure at Paris Orly between

25 Dec. 1999 18 UTC and 26 Dec.1999 12 UTC.
Observed and predicted by the GME and the Lokal-Modell (LM, 7-km mesh).

7. HIGH RESOLUTION TESTS
7.1 Parallelization on MPP Systems

Since the design of the GME included a domain decomposition from the beginning, it took only three
months to parallelise the program using MPI (Message Passing Interface) for message passing. The
code is written in standard FORTRAN 90 and fully portable. For the two-dimensional domain de-
composition (Fig. 20) the (ni+1)* grid points of each diamond are divided among n/ x »n2 processing
elements (PES). Thus each PE computes the forecast in a subdomain of all ten diamonds. This ap-
proach improves the chance to achieve a better load balancing for the physical parameterizations, e.g.
between day/night, land/sea or rain/no rain. For example, on 13 x 13 PEs of a Cray T3E1200 the
physical parameterizations for a 24-h real data forecast consume between 250s and 316s of wallclock
time; the average time is 279s. In the curreht version of GME, each computational subdomain has a
halo of just two rows and columns of grid points which have to be exchanged via MPI with those PEs
which compute the forecast in the neighbouring subdomains. There are only seven synchronisation
points during one complete forecast step. It should be noted that good load balancing requires that all
processors have nearly the same workload; thus the difference between the mean and the maximum

number of grid points in the computational subdomains should be small.
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GME ni=128

diamond partitions for 13x13 PEs

maximum number of grid points/PE: 100 (x10)
average number of grid points/PE: 98.5 (x10)

Figure 20 Two-dimensional domain decomposition of a diamond of the GME for 13 x 13 PEs.

79



Majewski, D. et al.: THE GLOBAL ICOSAHEDRAL-HEXAGONAL ...

3000

1000

real time (s)

600

300

20 40 70 100 200 400
. #PEs

Figure 21 Speed-up of GME (60 km, 31 layers) on a Cray T3E1200 for a 24-h real data forecast
without postprocessing. .

SL trajectories 6.3 % Radiation 57.5%
Explizit step 62.2 % Grid-scale precip.  29.0 %
SLr.h.s. 6.5 % Convection 6.7 %
SI, SOR 1.8 % Turbulence 5.4 %
SI, add 142 % SSO 0.7 %
Geopot./ condens. 9.0 % Soil 0.7 %

Computational cost of different parts of the GME (unit: percentage of total cost) for
a 24-h forecast on a Cray T3E. ni= 128, A ~ 60 km, 31 layers, At= 240s, Atg,y = 2h.

Figure 22 Cost of the different parts of GME (60 km, 31 layers) on a Cray T3E1200
for a 24-h real data forecast without postprocessing. 13 x 13 PEs have been used.
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7.2 Performance of the GME on the Cray T3E

The GME has been ported successfully to several parallel platforms based on vector or RISC proces-
sors. However, the effort devoted to optifnising the GME code for different computer systems has
been rather limited so far, thus there is surely quite a lot of potential for improvement of the perform-

~ ance of the model.

F1g 21 shows the speed-up of the GME (60 km mesh size, 31 layers) on a Cray T3E1200 for a 24-h
real data forecast without postprocessing. Between 5 x 5 and 13 x 13 PEs an almost linear speed-up

can be realised. About 60 PEs are necessary to perform a 24-h forecast in less than 30 minutes.

The distribution of the cost of the different parts of GME expressed as percentage of the total number
of floating point operations on a Cray T3E1200 is highlighted in Fig. 22.

7.3 Global Forecasts at Resolutions Ranging from 160 Down to 15 km

Current global models of major NWP centres employ horizontal mesh sizes of about 60 km and re-
quire about 5 x 10" floating point operations (Flop) for a 24-h forecast. A few years from now, global
models with mesh sizes in the range between 10 to 20 km will be feasible.

On the Fujitsu VPP5000 of the ECMWEF the GME has been tested for the mesh sizes 160, 120, 80, 60,
40, 30, 20 and 15 km. Fig. 23 compares the depiction of the Alps at the different resolutions; the peak
height increases from 1596 m at 160 km to more than 3000 m at 15 km.

The initial state of the test runs has been derived from a rather coarse resolution analysis (T106L19,
i.e. a mesh size of about 120 km, 19 1ayers) by interpolation to the GME grids. Thus these runs cannot
show the full potential of high resolution global modelling because the data assimilation part is miss-
ing. Here, the main goal is to test the behaviour of the GME at different resolutions from the comput-
ing point of view. The case chosen is the Christmas storm (see section 6.4) with the initial date 25
Dec. 1999 12 UTC. A 24-h forecast with postprocessing only at 18 and 24 hours has been performed

for each resolution. The results are summarised in Table 5 and Fig. 24.
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Table 5 Some characteristic numbers of the Global Model GME at different horizontal
resolutions based on measurements on the Fujitsu VPP5000 at the ECMWE.
The number (i3e) of layers is set to 31 for all resolutions.
nis the resolution of the icosahedral grid, A is the mesh size, N is the number of
grid points/layer, At is the time step, HWM is the high water mark of memory
used by the GME.
n; A (km) N/layer | At(s) HWM | Cost (10" Flop) | Speed (Gflop/s)
MW) of 24-h forecast | for 24-h in 900s
48 160 23.042 640 112 0.43 0.48
64 120 40.962 480 144 0.85 0.94
96 80 92.162 320 224 2.43 2.70
128 60 163.842 240 336 5.23 5.82
192 40 368.642 160 752 15.97 17.74
256 30 655.362 120 1.408 36.52 40.58
384 20 1.474.562 80 2.752 111.79 124.22
512 15 2.621.442 60 4.864 259.29 288.10
768 10 5.898.242 40 10.000" 800.00" 900.00"

" estimated

Costy (Flop) ~ [ 24 * 3600s/At * 2.1 + neq * 21.8) * 10° * (my+ 1)* * 10 * i3e

A halving of the mesh size A, i. e. a doubling of the resolution, is normally associated with a factor of
eight increase of the computational cost of the forecast. This is due to the fact that the time step of the
model usually has to be halved as well due to the CFL criterion. Looking at the results presented in
Table 5, in practise the factor is much less for the GME, e. g. for a reduction of the mesh size from 160
km to 80 km, the factor is only 5.65. This smaller increase in the computational work load is due to
processes which do not depend on the time step directly, namely the parameterization of radiation and
postprocessing. A full radiation step is performed every fwo hours at each grid point of the GME. At
the resolution of 160 km, the radiation takes about 40% of the total computational cost, but at high
resolutions like 20 km this portion is down to 11%. Moreover, on vector machines like the Fujitsu
VPP5000 the wallclock time of the model run may not increase as much as expected because of the
greater vector length at higher resolutions. E. g. for the GME, the speed on each processor increases
from 0.9 GFlops at 160 km (with an average vector length of 62 elements) to 2.3 GFlops at 20 km
(with an average vector length of 348 elements).

From the meteorological point of view, the surface pressure forecasts at the different mesh sizes (Fig..
24, isolines) differ only in details for resolutions beyond 120 km. For coarser resolutions, the storm
moves too slowly to the east. On the other hand, the prediction of the peak gusts clearly benefits from
the higher horizontal resolution (Fig. 24, shading). To simulate the observed gusts of up to 32 m/s over

France, Germany and Switzerland a detailed description of the topography is neccessary.
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Figure 23 b  Topography (unit: m) of the GME at different mesh sizes, namely
40 km (top left), 30 km (top right), 20 km (bottom left), 15 km (bottom right).
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Speed-up of GME on Fujitsu VPP5000
24-h real data forecast
10000 - 578

£ .
A 4569 4416 ——60km
pd ‘W — Y
2 1430
X 1000 ®J4 - 1362 30 km
o ‘ 46 : Ideal
% 260 i 15 KM
= 100 | e [l

1 10 100
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Figure 25 Speed-up of the GME at mesh sizes 60, 30, and 15 km of the Fujitsu VPP5000.

Fig. 25 shows the speed-up of the GME at different mesh sizes on the Fujitsu VPP5000. Obviously,
there is some deviation from the linear speed-up. Probably the communication has to be optimised for
this machine. Combining several short messages to larger ones will surely improve the performance of
the GME on the VPP5000 considerably. Moreover, in the current version of the GME only one proc-
essor reads, unpacks and distributes the initial data file; at higher horizontal resolutions, this prepara-

tory step takes up to 10% of the total wallclock time of a 24-h forecast.

Number of PEs required for a 24-h forecast of the
GME in 900s wallclock time on Fujitsu VPP5000
GFlops/PE

2,5 145 150
2,0 120
1,5 ~—+90 @ |-¢—PEs
1,0 m / 54k 60 * |—@—Speed
0,5
0,0 &-6:6——Pi

160 120

mesh size (km)
Figure 26 Number of processors required to perform a 24-h forecast in 900s wallclock time.

Speed (GFlops) per PE on a Fujitsu VPP5000.
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Allowing 15 minutes wallclock time for a 24-h forecast, just 3 Fujitsu VPP5000 processors are re-
quired at the current operational mesh size of 60 km, and about 54 processors will probably be suffi-
cient at 20 km (Fig. 26). This is much less than the 3 x 3 x 3 x 3 = 81 processors derived from the sim-
ple scaling taking the increased number of grid points and the reduced tim'estép into account. At 15 km‘
resolution, this corresponds to T;1333 for a spectral model, more than 145 processors will be needed.
Of course, current computing resources even at the ECMWF do not permit operational global fore-
casts at a resolution of 15 km. Not only the processing power is still insufficient, but the management
of the huge analysis and forecast data files will push the systems to the limits. For example, at a mesh

size of 15 km the initial data file exceeds 9 GByte!

8. SUMMARY AND OUTLOOK

With a small project team the DWD developed and implemented a new global model in just three
years. In December 1999 the GME replaced the former spectral global model GM and the regional
grid point model EM of the DWD, and became the first operational NWP model based on the icosahe-

dral-hexagonal grid world wide.

The code is fully portable (Fortran90, MPI for message passing) and has been tested on several RISC
and vector processors. Analysis and forecast data of the GME are used by ten national meteorological
services world wide as initial and lateral boundary conditions for regional modelling. The GME sys-

tem proved to be very reliable with no blow-ups so far.

The GME has been tested successfully for a wide range of mesh sizes between 160 and 15 km on the
Fujitsu VPP5000 of the ECMWF. With current computer technology, a mesh size of 20 km, this cor-

responds to T.1000 for a spectral model, would be feasible in operational applications.

From numerical and computational points of view, the future development of the GME will concen-

trate on |

e an improvement of the numerical discretization of the Laplace operator to achieve fully second
order accuracy,

e abetter conservation of mass (for seasonal forecasts or climate mode runs),

e a faster solver of the Helmholtz equations, especially for the external mode,

e asemi-Lagrangian scheme allowing for Courant numbers greater than 1,

 better performance of the MPI communication by combining several short messages to larger
ones, and finally

¢ asingle-PE optimisation of the code.
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Based on our experience and the expected improvements of the model in the future, it is probably jus-
tified to consider the icosahedral-hexagonal grid point approach as a serious alternative to currently

employed methods for global models of the atmospheric flow.
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