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These notes are about methods for finding the solution z of the linear
simultaneous equations

Az =1b (1)

where A is a known real or complex n xn matrix (which is assumed invertible)
and b is a known n-vector.

The coeflicient matrix would generally be considered to be either full,
banded or sparse. For any of these types of matrices, good numerical al-
gorithms based upon systematic (Gaussian) elimination exist. (For general
software, you need look no further than the NAG library. Hardware-specific
routines exist on many advanced architecture machines.) Such algorithms
terminate with (in general) an accurate numerical answer after a predictable
ammount of computation. The basic difficulty is that for large n such pre-
dictable requirements in terms of CPU time, computer memory and disc
storage may be completely unavailable whether you work on a workstation
or a supercomputer. (See for example the table of work estimates on page 388
of [2]). However, iterative solution methods are often available and practica-
ble for such large problems especially when the coefficient matrix is sparse.

In the context of dynamic simulations such as arise in weather prediction
(as well as other areas including petroleum reservoir modelling, semicon-
ductor process modelling and financial option pricing) such systems usually
derive from an implicit time discretisation method, the simplest of which
would be the backwards Euler method. Linearisation via Newtons method
or Picard iteration might also be involved. In such implicit time-dependent
computations the coefficient matrix always has the form

1
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in the case of finite difference replacement of the spatial terms or

"Al”EM +L o M+ALL

where M is the ‘mass matrix’ in the case of finite element approximation
in the spatial variables - the appearance of M rather than I is of no great
significance since it is known that simple diagonal scaling of M renders the
solution of systems involving M trivial since diag(M)~*M is (spectrally) very
close to the identity (see [23]). For approximations based on expansions
in terms of globally-defined functions (such as arise in spectral methods),
the orthogonality properties of the basis functions are important. Here £
represents the spatial differential opertor terms.

This is a simple truth, but from the point of view of solving the matrix
system at each time step it indicates that the choice of time-step At can
have a profound effect: if Af is small then the coefficient matrix looks more
and more like the identity matrix whereas larger values of At make the
coefficient matrix closer to a steady-state operator. For direct (elimination)
algorithms the choice of At does not affect the work in solving such systems
(only the accuracy of the computed results) however for iterative methods,
solution with small At generally takes very few iterations; many iterations
might be required in the case of a larger time-step. Of course the choice
of timestep is usually determined by the time scale of a simulation and any
accuracy/stability constraints.

The two leading classes of iterative methods are those based on the Multi-
grid approach, and the Conjugate Gradient method and its generalisations.

The multigrid method was originally derived for grid-based problems such
as arise from finite difference or finite element discretisation of partial differ-
ential equations. For certain model problems extremely rapid convergence
rates are proved and observed with this method. For problems with no ob-
vious geometric sequence of (multi-)grids, there has been attention directed
towards finding a mimicking algebraic procedure (Algebraic Multigrid), but
such methods are generally less rapidly convergent. Much research on Multi-
grid methods continues - I am not an expert on it! A general reference for
Multigrid methods is [14].

Methods of Conjugate Gradient (CG) type (so-called Krylov subspace
methods) are however more widely applicable, and convergence rates in many
cases are fast. It is methods of this type that I mainly intend to review in
these notes.
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In all the methods of this type, reference to the coefficient matrix, A
is only required for the computation of matrixxvector products, Ap (and
sometimes also ATp) where p is a known n-vector. For a sparse matrix these
products can usually be encoded so that only calculation on the non-zeros is
required.

In many applications, preconditioning of the original linear system is em-
ployed. Indeed after an explosion of new Krylov subspace methods in the
early 1990’s it was realised that finding and effective preconditioner is much
more important in general than the specific choice of iterative method. The
idea here is that if a preconditioning matrix M can be easily computed such
that convergence of the appropriate iterative method is faster for the precon-
ditioned system

M™7*Az =M1 (2)

than the original, AND systems of equations with M as coefficient matrix are
very rapidly solvable (such a solution will be required at each iteration), then
the overall solution time will be shorter. The inverse of M is not required; the
equation (2) is only schematically equivalent to the preconditioned methods
that are used. Indeed a good preconditioner might be a ‘process’ such as a
single multigrid cycle which only for theoretical purposes can be considered
as a matrix. ,

A simple but not necessary motivation for a good preconditioner is that -
it be an easily invertible approximation of the coefficient matrix A. Alterna-
tively one may have an approximate inverse so that preconditioning involves
only a matrixxvector multiplication at each iteration.

There are many approaches to the construction of preconditioners. For
particular applications problems, there is sometimes a specific and inherently
simpler approximation which ‘captures the main physics’ and is more read-
ily invertible which may be employed as a preconditioner. For example one
might have computed a triangular factorisation but need solution of many
linear systems with slightly different coefficient matrices - the original fac-
torisation may then be used as a good preconditioner. This type of situation
might arise for example in nonlinear/time-dependent problems.

For problems with particular mathematical structure, there are often ways
to utilise that structure for preconditioning - for example for problems with
constraints there have been some very successful recent advances which are
based on approximation of subproblems (see [15],[12]).

For self-adjoint and positive definite elliptic partial differential equation
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problems, successful preconditioners based on domain decomposition are also
conveniently parallelisable. There is much work on these methods - see
the sequence of proceedings of which the latest is can be obtained from
http://www.gre.ac.uk/ dd11/dd11/proceedings.html.

Popular and general preconditioners for sparse systems can be constructed
using incomplete triangular factorisation of A ([13],[9]) or by (parallel) con-
struction of sparse approximate inverses ([3],[10]). The quality of these pre-
conditioners varies when employed for different application problems and
it can be expensive (even prohibitive) to construct them for very large scale
problems. Less generally applicable preconditioners have also been suggested
which work well on certain classes of problems (see [25],[11],[21]) or the spe-
cial issue of Numerical Linear Algebra and Applications associated with the
conference on Preconditioned held last summer in Minneapolis (see [16]).

We now turn to iterative methods.

For real symmetric (or complex hermitian) and positive definite systems,
the (Hestenes-Steifel) Conjugate Gradient method ([7], page 370) is to set
initial vectors zy = 0,pp = 0, and for each iteration ‘

compute residual 7y =b— Az,

compute conjugate search direction pr = rr_1 + BrPr—1
. . T{_ﬂk-l

with G = =,

update solution xp = zp_1 + arpg

T{—-lrk—l

with oy = E32——=.
k Pj Api

The residual is usually computed recursively as
Th—1 = Th—2 — Qp_1APE1

so that only one matrix X vector multiplication is required per iteration.
The most readily obtained convergence bound for this method is that the
exact solution z and the CG iterates x; satisfy

o = ally <2 (1552) oo sl ®)

where « is the spectral condition number of A (thé ratio of largest to smallest
eigenvalues of A), and ||y|| = y7Ay. Thus rapid convergence is guaranteed if
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k is small. This is the motivation for preconditioning: to reduce «. If a better
guess for zg is available (for example the solution at a previous time-step),
then this can be used and (3) indicates that few iterations are expected to
refine the solution. Contrast this with direct solution procedures which take
the same time whatever is known about the solution.

For real symmetric (or complex hermitian) indefinite matrices and other
matrices whose eigenvalues all lie on a single line in the complex plane, there
exist Conjugate Gradient-like methods (for example the method of Conju-
gate Residuals of which probably the best of the various implementations is
MINRES ([17]) with similar convergence properties but which require a little
more work per iteration. See the ‘taxonomy’ [1]. Similarly to Conjugate
Gradients, rapid convergence can be guaranteed for problems with clusted
eigenvalues - the precise theoretical convergence bounds/estimates are more
complicated, see [8],[24].

For non-symmetric matrices, there are a number of competitive CG-like
methods. None has the monotonic error- or residual-reduction and constant
work per iteration like in the symmetric case, and convergence can be more
erratic. Available convergence bounds are generally not descriptive in con-
trast to symmetric problems. Numerical divergence is occasionally seen.
Nevertheless, a number of methods of this type are significantly used in a
variety of situations.

The most longstanding of the non-symmetric methods is that based on
(Hestenes-Steifel) CG for the normal equations

AT Az = AT,

the coefficient matrix of which is symmetric and positive definite. This ap-
proach is not recommended unless k(A) is small as k(ATA) = k(A)? and
slow convergence as suggested by (3) is usually experienced. There are situ-
ations (such as implicit computations with a very small time-step or where
a high-quality preconditioner is available) where this method might be used.

The GMRES method (Generalised Minimal Residual method) ([19]) the-
oretically is error-minimising at each iteration, however a Gram-Schmidt-like
(in fact Arnoldi) orthogonalisation of the k" ‘search direction’ py against all
previous search direction vectors pg, pi, ..., Pr—1 is required at the k™ itera-
tion - thus the work per iteration increases as the number of iterations grows.
This is generally impractical in both storage as well as computation. The
method may however be used in a cyclic manner: do ! steps of GMRES
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(storing and operating on [ vectors) and then restart. This method is called
GMRES(I). A popular value for [ is about 10. The advantage of this method
is that convergence can always be guamnteed by increasing [. The disadvan-
tage is that too large a value for [ may be required! Indeed, recent examples
provided by Embree ([4]) indicate that it is quite possible for GMRES(l;)
to require fewer iterations and less work to obtain a solution to any conver-
gence tolerance than GMRES(ls) when [y < l;. Thus increasing the restart
length may not be profitable unless it is possible to employ the non-restarted
method GMRES(n).

Restarting is generally not favoured if it can be helped, and in applications
such as petroleum reservoir modelling where this method is widely employed
(usually an implementation called Orthomin), the time-step is often kept
small enough that few enough iterations are required so that restating is not
necessary. In computations I have been involved with, it is not clear that
the adaptive time-step selection mechanism is not in fact responding to the
convergence rate of the iterative linear solver rather than any discretisation
errors or non-convergence of the (outer) non-linear iteration.

The BiCG method ([5]) requires only 2 or 3 p-vectors, but computation
of both of the products Ap and A”p is needed. (The latter may be awkward
to compute depending on the data structure for storing A). The method can
also stall and has been generally cast aside in favour of the modified methods
below.

The CGS (CG Squared) method ([20]) is a variant of BiCG which avoids
the calculation of the transpose product ATp. It exhibits rapid final con-
vergence, though large jumps (increases) in the residual are usually seen at
earlier stages of the iteration.

A further variant of BiCG is the BiCG-STAB method ([22]) which is
similar to CGS, but has a ‘more monotonic’ residual reduction. A useful
hybrid combination of a few steps of GMRES with BiCG-STAB leads to the
useful BiCG-STAB({) method ([18]). Both CGS and BiCG-STAB and its
variants are widely used in semiconductor device simulations.

The QMR (Quasi Minimal Residual) method ([6]) is related to both BiCG
and GMRES looked a very attractive approach when it was announced but
despite the availability of good software, it seems not to be commonly used
except for certain model reduction problems in circuit simulation.

The GMRES(l), CGS and BiCG-STAB(!) methods with appropriate pre-
conditioning are all significantly used in a number of practical situations not
indicated here.
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