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3D- and 4D-Var with an OGCM

Abstract

Three- and four-dimensional variational assimilation (3D- and 4D-Var) systems have been developed for
the OPA ocean general circulation model (OGCM) of the Laboratoire d’Océanographie Dynamique et de
Climatologie. An iterative incremental approach is used to minimize a cost function that measures the
statistically-weighted squared differences between the observational information and their model equiva-
lent. The control variable of the minimization problem is an increment to the background estimate of the
model initial conditions available at the beginning of each assimilation window. In 3D-Var, the increment
is transported between observation times within the window using a persistence model, while in 4D-Var
a dynamical model derived from the tangent-linear (TL) of the OGCM is used. Both the persistence and
TL models are shown to provide reasonably good descriptions of the evolution of typical errors over the
10- and 30-day widths of the assimilation windows used in our 3D- and 4D-Var experiments, respectively.
Intermittent updating of the linearization state of the TL model is shown to be an important feature of the
4D-Var minimization algorithm.
The present system relies on a univariate formulation of the background-error covariance matrix. In prac-
tice, the background-error covariances are specified implicitly within a change of control variable designed
to improve the conditioning of the minimization problem. Horizontal and vertical correlation functions are
modelled using a filter based on a numerical integration of a diffusion equation. The filter is computation-
ally efficient, and flexible to capture key statistically-observed features, such as longer zonal than meridional
length scales in the temperature field in the tropics. The background-error variances are geographically de-
pendent and specified from the model climatology. Single observation experiments are presented to illustrate
how the TL dynamics act to modify these variances in a flow-dependent way by diminishing their values
in the mixed layer and by displacing the maximum value of the variance to the level of the background
thermocline.
The 3D- and 4D-Var systems have been applied to the tropical Pacific and cycled over the period 1993-98
using in situ temperature observations from the Global Temperature and Salinity Pilot Programme. The
overall effect of the data assimilation is to reduce a large bias in the thermal field which was present in the
control. The fit to the data in 4D-Var is better than in 3D-Var, and within the specified observation-error
variance. The fit is also very good at time-scales of the same order or shorter than the assimilation win-
dow (e.g., at the time-scale of tropical instability waves), which demonstrates the effectiveness of 4D-Var in
carrying information through time using the linearized ocean dynamics. Both the mean state and the inter-
annual variability of the thermal field are improved by the assimilation. For other fields, the improvement is
less evident. Some fields are even degraded (for example the surface currents in 3D-Var). These deficiences
suggest that other constraints are needed to control the analysis of the nonassimilated variables. Improve-
ments in the analysis can be expected in the future with the inclusion of a multivariate background-error
covariance matrix.
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1 Introduction

The El-Niño Southern Oscillation (ENSO) phenomenon is one of the main contributors to predictability on sea-
sonal to interannual time-scales (Barnett et al. 1993; Palmer and Anderson 1994). Accurate ENSO forecasts are
thus a prerequisite to the development of a reliable dynamical seasonal forecasting system with a coupled ocean-
atmosphere model (CGCM). Early studies (Cane et al. 1986; Latif and Flügel 1991; Balmaseda et al. 1994)
showed that some ENSO forecasting skill could be obtained using only observed surface wind-stress to initial-
ize the ocean component of the forecasting system. More recent studies have shown that assimilating ocean
observations to initialize CGCMs resulted in significantly better ENSO forecasts (Ji and Leetma 1997; Rosati
et al. 1997; Alves et al. 1998; Segschneider et al. 2000a; 2002). Subsurface temperature observations from
Expendable BathyThermographs (XBTs) and the Tropical Atmosphere-Ocean (TAO) array (McPhaden 1993)
were shown to be especially beneficial to forecast skill (Ji and Leetma 1997; Alves et al. 1998; Segschneider
et al. 2002). Combining available observations and an ocean model into a dynamically consistent picture of the
ocean state can also help to provide better insight into the processes determining ocean variability at various
time scales.

The ocean data assimilation system currently used for operational seasonal forecasting at the European Centre
for Medium-Range Weather Forecasts (ECMWF) is based on a statistical univariate scheme that uses temper-
ature information only (Alves et al. 1998; Segschneider et al. 2002). Analyses are produced sequentially by
combining observations distributed over a pre-specified time window, with a background temperature estimate
from the model. Statistical (covariance) information about the background and observation errors is used to
determine the structure and amplitude of the temperature corrections to be applied to the background state.
The analysis problem is solved using optimal interpolation (OI) (Smith et al. 1991). In order to avoid exciting
unrealistic gravity waves, the temperature corrections generated by the OI are merged slowly into the model
until the next analysis time ten days later.

The ECMWF OI system has a number of limitations. First, as time-distributed observations are assimilated
simultaneously, the analysis is unable to capture any variability in the observations occurring at time-scales
less than the window width. This could occur, for example, for a first baroclinic mode equatorial Kelvin wave
which can travel nearly 2500 kilometres in the 10-day window width currently used in the ECMWF opera-
tional system. Second, the system has been adapted from an existing two-dimensional analysis scheme (Smith
et al. 1991) in which an analysis is performed separately at each model level. This requires that observa-
tions first be interpolated to model levels, a procedure that can ultimately degrade the information content of
the observations particularly when their vertical distribution is sparse. Third, the scheme is univariate so that
corrections are made only to the temperature field. Recent studies have shown that introducing dynamically
unbalanced increments into the model can lead to serious model biases (Bell et al. 2001; Burgers et al. 2002).
Correcting temperature while leaving salinity unchanged can upset the static stability of the water column and
lead to spurious convection (Segschneider et al. 2000b; Troccoli et al. 2002). This particular problem has
been largely solved in the ECMWF system by imposing a local temperature-salinity (T-S) conservation on the
analysed temperature field (Troccoli et al. 2002). Ideally, however, such a constraint should, if possible, be in-
tegrated into the analysis step itself to allow for a more consistent use of all available observational information.
Some success has been achieved in assimilating altimeter data with the OI system (Segschneider et al. 2000a;
2002) using a procedure that relies on converting the altimeter data into pseudo-temperature observations prior
to the analysis step (Cooper and Haines 1996). This leads to the delicate problem, however, of how to weight
the pseudo-temperature observations in the OI, in particular relative to assimilated in situ temperature obser-
vations. Some of these problems are not fundamental deficiencies of OI and could in principle be corrected.
However, the development of the ECMWF OI is limited and so we explore here the possibility of developing
more advanced data assimilation methods.

In meteorology, OI was the standard technique used for many years for producing initial conditions for Numer-
ical Weather Prediction (NWP) (Lorenc 1981). More recently, however, most of the major NWP centres have
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replaced their OI systems by variational assimilation systems (Parrish and Derber 1992; Courtier et al. 1998;
Gauthier et al. 1999; Rabier et al. 2000; Lorenc et al. 2000). In variational assimilation, the analysis problem
is defined by the minimization of a cost function that measures the statistically-weighted squared differences
between observations (including a model background state) and their model counterpart. The cost function is
minimized with respect to selected control variables and this is done iteratively using a gradient descent method.
Variational assimilation overcomes many of the limitations of OI: it allows for greater flexibility for assimilat-
ing different observation types (possibly nonlinearly related to the model state); it eliminates the need for data
selection so that all observations can in principle influence the analysis at every model grid-point; it provides
a more general framework for using more sophisticated background-error covariance models; and it provides
a clearer development path towards advanced, four-dimensional assimilation techniques. These advantages are
equally relevant for oceanographic data assimilation.

In this paper, we describe three- and four-dimensional variational assimilation (3D- and 4D-Var) systems that
have been developed for the rigid-lid version of the OPA Ocean General Circulation Model (OGCM) of the
Laboratoire d’Océanographie DYnamique et de Climatologie (LODYC) (Madec et al. 1998). One of the main
motivations for developing the system is to produce ocean analyses for seasonal climate forecasting. In the
present study, the 3D- and 4D-Var systems are used to generate an extended set of analyses, covering the period
1993-98, for the tropical Pacific Ocean. Here, we evaluate the analyses by focussing on their climatological
properties and comparison with independent data-sets, rather than their impact on climate forecasts.

Both the 3D- and 4D-Var systems have been designed following the incremental approach (Courtier et al. 1994).
The control variable of the minimization problem is taken to be an increment to the background estimate of the
model initial conditions at the beginning of a given assimilation window. In the cost function, the observations
are compared to the sum of the background counterpart of the observations and an increment computed in
observation space using a linear model. The fundamental difference between the 3D- and 4D-Var formulations
lies in the level of sophistication of the linear model used to transport the state increment between observation
times. In 3D-Var, a simple persistence model is used, whereas in 4D-Var a dynamical model based on the
tangent-linear (TL) of the OPA OGCM is used. 4D-Var involves substantially more development than 3D-Var
since an adjoint model must be derived for the linearized version of the OGCM in order to compute the gradient
of the cost function with respect to the increment at initial time.

This particular incremental version of 3D-Var can be viewed as a limiting case of incremental 4D-Var in which
the TL operator is replaced by the identity matrix. Observations can be assimilated at their appropriate mea-
surement times since they are compared directly to the background state which is propagated in time using the
OGCM. For this reason, the scheme has been coined 3D-FGAT for First-Guess at Appropriate Time (Fisher
and Andersson 2001)1 In this respect, 3D-Var partly overcomes the first limitation of the OI mentioned above.
Another important difference with the OI is that the observations are assimilated at their appropriate depths.
The increments at the observation points are smoothed onto model levels in the variational analysis using the
adjoint of an interpolation operator and the vertical background-error covariances. As with the OI, our current
3D-Var system is univariate and assimilates temperature information only.

In incremental 4D-Var, the dynamical model used to propagate the increment provides a time-dependent mul-
tivariate constraint on the analysis. Incremental 4D-Var is derived as an approximation to the complete 4D-
Var problem in which the full nonlinear model (here an OGCM) is imposed as a constraint in the cost func-
tion with the model initial conditions taken as the control variables (Lewis and Derber 1985; Le Dimet and
Talagrand 1986; Talagrand and Courtier 1987). In oceanography, most 4D-Var-related applications to date
with OGCMs have concentrated on solving the complete problem directly, and in some cases using differ-
ent or additional control variables (e.g., surface forcing fields) (Tzipermann et al. 1992a,b; Tzipermann and
Sirkes 1997; Yu and Malanotte-Rizzoli 1998; Maroztke and Wunsch 1993; Lee and Maroztke 1997, 1998;
Greiner et al. 1998a,b, 2000; Bonekamp et al. 2001). The incremental formulation was introduced in meteorol-

1The 40-year atmospheric reanalysis project (ERA-40) at ECMWF employs an FGAT version of 3D-Var.
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ogy to overcome some important practical difficulties with solving the complete 4D-Var problem directly. In
the latter, nonlinearities in the model constraint can significantly complicate the structure of the cost function
and prevent its minimization at a reasonable computational cost using a gradient descent method. Furthermore,
in order to compute a numerically accurate gradient, the adjoint of the exact TL of the full nonlinear model is re-
quired. When the nonlinear model contains discontinuous parametrisations or numerics, an accurate derivation
of these models can be particularly difficult (Xu 1996).

The incremental algorithm should be viewed as a practical algorithm for solving the complete problem. As con-
straints are linear, the cost function is quadratic and minimization with a gradient descent method is generally
much more efficient. In the present study, our main objective is to reconstruct the large-scale, low-frequency
component of the tropical ocean circulation which is well known to be largely governed by linear wave dynam-
ics (e.g., see Philander 1989). Therefore, a priori the linearity assumption in incremental 4D-Var would not
appear to be a very restrictive one. More generally, however, nonlinear effects can be partly accounted for by in-
troducing a feedback (outer) loop in the algorithm to update the basic state of the linear model with increments
generated during minimization (the inner loop) (Courtier et al. 1994; Laroche and Gauthier 1998). In terms of
reducing the amount of technical development, the incremental formulation has a distinct advantage over the
complete formulation as the linear and adjoint models can be greatly simplified by smoothing or neglecting
discontinuous parametrisations (Mahfouf 1999). For example, this latter point has been exploited in the present
study to neglect changes in vertical diffusion coefficients associated with perturbations in temperature, salinity
and velocity. Finally, the computational cost of 4D-Var may also be significantly reduced by computing the
increments at lower resolution than that of the full model (Rabier et al. 2000), although this is not an issue in
our present system which employs a relatively low resolution version of the OGCM.

The purpose of this paper is twofold: first, to give a thorough description of the current 3D- and 4D-Var systems;
and second, to provide a detailed evaluation and intercomparison of tropical Pacific Ocean analyses generated
by the two systems. Some comparisons with the ECMWF OI, which has also been implemented in our tropical
Pacific version of OPA, will also be carried out. The organisation of the paper is as follows. Section2 describes
the general formulation of the incremental 3D- and 4D-Var problems. In section3, the different system compo-
nents are described. In section 4, several diagnostics are presented to highlight some of the important properties
of the two systems. In section 5, the analyses are presented, and evaluated by examining their climatological
properties (mean and variability) and by comparing them to independent observations. A summary and discus-
sion are given in section 6. Appendices provide some mathematical details on the incremental algorithm and
the implications of the rigid-lid constraint in 4D-Var.
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2 Formulation of the 3D- and 4D-Var problems

2.1 Incremental formulation

The notation used in this paper closely follows the recommendations of Ide et al. (1997). Let w denote the ocean
state vector. The components of w consist of those model variables that are to be estimated from observations
to produce the analysis wa. A model forecast, initiated from a previous analysis, provides a prior or background
estimate, wb, of w. Since wb will already be close in some sense to the “true” state we wish to estimate, it is
convenient to formulate the estimation problem in terms of an increment, δw, where

w � wb �δw� (1)

The state vector is propagated in time by the ocean model

w�ti� � M�ti� ti�1��w�ti�1�� (2)

where M � M�ti� ti�1� represents the nonlinear model operator acting on w�ti�1� between times ti�1 and ti.
Substituting (1) into (2) and expanding (2) about wb�ti�1� gives, to first order,

w�ti� � M�ti� ti�1��wb�ti�1�� � M�ti� ti�1�δw�ti�1� (3)

where M � M�ti� ti�1� denotes a linear operator that acts on δw�ti�1� between times ti�1 and ti. If M is taken to
be an exact linearization of M about wb�ti� then M� �∂M�∂w��w�wb is the tangent-linear (TL) operator, and

δw�ti� � M�ti� ti�1�δw�ti�1� (4)

is the corresponding TL model. More generally, M may be taken to be any linear operator that verifies the
approximation (3). Indeed, the fundamental difference between the 3D- and 4D-Var formulations used in this
study lies in the choice of M, as detailed in section2.2.

Now, let yo
i denote the observation vector at time ti. The model equivalent of yo

i is

Hi�w�ti�� � Hi�wb�ti�� � Hi δw�ti� (5)

where Hi is the observation operator at ti, and Hi is a linear approximation to Hi. Assuming that a time-sequence
of observation vectors is available over an interval t0 � ti � tn, then the model estimates of the observations
within this interval can be directly related to the model initial conditions since w�ti� � M�ti� t0��w�t0�� where
M�ti� t0��M�ti� ti�1� � � �M�t1� t0�. Thus,

Hi�w�ti�� � Gi�w�t0��� Gi�wb�t0�� � Gi δw�t0� (6)

where the combined operator Gi � HiM�ti� t0� is a generalized observation operator and Gi � HiM�ti� t0� is its
linearized counterpart with M�ti� t0��M�ti� ti�1� � � �M�t1� t0�.

In variational assimilation, the analysis is defined as the state vector wa �wa�t0� that simultaneously minimizes
the “distance” to the background state wb � wb�t0� and to the time-sequence of observations yo

i on t0 � ti � tn.
Distance is defined by an inner product (a cost function JF) whose weighting metric takes into account the
statistical accuracy of the background and observational information. Expressed as a function of the increment
δw � δw�t0�, which constitutes the control vector of the minimization problem, JF may be written as

JF�δw� �
1
2

δwT B�1δw� �� �
Jb

�
1
2

n

∑
i�0

�
Gi �wb �δw��yo

i

�T
R�1

i

�
Gi �wb �δw��yo

i

�
� �� �

JF
o

(7)
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where the matrices B and Ri contain estimates of the covariances of background and observation error, respec-
tively. In (7) the observation errors are assumed to be uncorrelated in time and uncorrelated with the background
error. The observation term �JF

o � measures the fit between the observations and their model equivalent. The
background term (Jb) penalizes the size of the increment (i.e., measures the fit to the background state). The
analysis is given by wa � wb �δwa where δwa is the increment that minimizes JF .

In the incremental formulation of variational assimilation (Courtier et al. 1994), (7) is approximated by a
quadratic cost function J in δw by replacing Gi�wb �δw� with its linearized counterpart (6). This results in an
important practical simplification to the minimization problem, from one with potentially many minima due to
the nonlinearity in Gi, to one with a unique minimum as guaranteed by the linearity of Gi. The simplified cost
function reads

J�δw� �
1
2

δwT B�1δw� �� �
Jb

�
1
2

n

∑
i�0

�Gi δw�di �
T R�1

i �Gi δw�di �� �� �
Jo

(8)

where the innovation vector

di � yo
i � Gi�wb� � yo

i � Hi�wb�ti�� (9)

plays the role of an effective observation vector. For convenience of notation, the time summation in (8) may be
eliminated by defining d � �����dT

i � ����
T , G � �����GT

i � ����
T , and R � diag�����Ri� ����, a block-diagonal matrix,

to yield

J�δw� �
1
2

δwT B�1δw �
1
2
�Gδw�d �T R�1 �Gδw�d � � (10)

The minimizing solution (analysis increment) is now readily obtained by setting the gradient of (10) to zero
and solving for δw (Lorenc 1986; Tarantola 1987):

δwa �
�
B�1 �GT R�1G

��1
GT R�1d (11)

� BGT �GBGT �R
�
�1

d� (12)

In practice, the cost function (8) is minimized approximately using an iterative gradient descent method. The
increment is updated on each iteration using the gradient of the cost function with respect to the increment. As
outlined in section 2.3, the gradient of the Jo-term with respect to the increment can be obtained efficiently using
the adjoint of the linear model (4). A feedback between the linear and nonlinear models can then be introduced
by allowing the basic state-trajectory of the linear model to be regularly updated with the most recent estimate
of the state trajectory obtained during minimization (Courtier et al. 1994). The updates are performed on an
outer loop of the assimilation algorithm, while the iterations of the actual minimization are performed within
an inner loop (see Appendix A). With frequent updates, the accuracy of the linear model should improve and
the minimum of the incremental cost function should be closer to that of the original (non-incremental) cost
function (7) involving the nonlinear model (Laroche and Gauthier 1998). This provides a practical way of
accounting for nonlinearities in the assimilation algorithm while retaining the computational advantages of a
quadratic minimization problem.

2.2 The increment propagator

As pointed out in section 2.1, our 3D- and 4D-Var formulations differ principally in the choice of the linear
increment-operator M. In the 3D-Var, the increment is evolved by a simple persistence model which corre-
sponds to setting M to the identity matrix (M3DVar � I). In the 4D-Var, the increment is propagated by an
approximation to the TL model (M4DVar � �∂M�∂w��w�wb), the main approximation being introduced in the
parametrization of vertical mixing as described in more detail in section3.2.
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An important feature of this formulation of 3D-Var is that the observations are compared with the model back-
ground at their correct measurement times. This differs from the more traditional implementation of 3D-Var
in which the observations are assimilated concurrently, usually at the centre of the assimilation interval, which
is tantamount to assuming that all observations are valid at the same time. In the FGAT formulation, obser-
vations that are already close to the model background will produce a small innovation (Eq. (9)) and will not
have a large impact on the analysis. This may not be the case in the classical approach in which artificially
large innovations may be generated simply because of a temporal inconsistency. As discussed by Fisher and
Andersson (2001), this may lead to a potentially large mean analysis error. For example, this could easily arise
for a Kelvin wave which in 10-days2 can travel more than 2000 km. Moreover, from a technical point of view,
the incremental approach provides a much cleaner development path from 3D- to 4D-Var.

2.3 Preconditioning

In order to improve the convergence properties of the minimization, a preconditioning is employed by which
the cost function is redefined in terms of a nondimensional variable

v � U�I δw (13)

where U is a rectangular matrix defined such that B � UUT and B�1 � �U�I�T U�I . The superscript �I
denotes generalized (right) inverse. Introducing the transformation (13) directly into (10) leads to the precon-
ditioned problem of minimizing

J�v� �
1
2

vT v �
1
2
�Gδw�d �T R�1 �Gδw�d � (14)

where
δw � Uv� (15)

The variational analysis problem is solved directly in v-space, and then transformed back to model space using
(15). The conditioning of the Jb term in v-space is optimal in the sense that the Hessian of Jb (the matrix of
second-derivatives of Jb) is the identity matrix. For the special case of a single observation, the convergence of
the minimization in v-space is achieved in a single iteration using a gradient descent method with an exact line
search.

On each iteration of the minimization, the gradient of J with respect to v is required. The gradient computation
proceeds as follows. First, the gradient of the Jo term with respect to δw is evaluated through a single backward
integration, from tn�1 to t0, of the forced adjoint model (Lewis and Derber 1985; Le Dimet and Talagrand 1986;
Talagrand and Courtier 1987; Thacker and Long 1988)

p�ti� � M�ti�1� ti�
T p�ti�1� � HT

i R�1
i �Hiδw�ti��di � (16)

where p�ti� is the adjoint state vector with p�tn�1� � 0 and p � p�t0� � ∇δwJo. For the FGAT version of 3D-
Var, (16) simply implies a summation of the forcing terms within the interval. Then, applying the adjoint of the
transformation (15) to p gives the gradient of Jo with respect to v. Finally, the sum of the gradients of Jo and Jb

gives the total gradient;
∇vJ � ∇vJb � ∇vJo � v � UT p� (17)

Besides acting as an efficient preconditioner, another practical advantage of this formulation is that the inverse
transformation (13) from δw to v (involving U�I) is never actually needed, providing the initial guess for
minimization is taken to be w � wb (Courtier 1997; Derber and Bouttier 1999). In this case, δw � v � 0

2Ten days is a typical window width used in OI-type ocean analysis systems such as the operational system at ECMWF (Alves
et al. 1998). It is also the window width used for the 3D-Var experiments presented here.
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and the Jb term has no influence on the minimization on the first iteration. The minimization then proceeds
in v-space, with each new estimate of v passing through the transformation (15) to provide a new estimate of
δw which is needed to compute the increment-minus-innovation residual in (14) and (16). The definition of
B through this transformation is an important design feature of the assimilation algorithm and is discussed in
more detail in section 3.3.

The minimization routine used in this study is the limited memory quasi-Newton algorithm M1QN3 of Gilbert
and Lemaréchal (1989). An exact line search has been employed with M1QN3 in order to improve the efficiency
of the algorithm for quadratic minimization problems. The so-called “warm” start facility of M1QN3 is also
employed when more than one outer loop is performed in order to precondition the minimization using the
information accumulated on the Hessian matrix during the preceding minimization.

2.4 The nonlinear analysis trajectory

The minimizing solution of the quadratic cost function (8) is a trajectory of increments δwa�ti� which satisfies
exactly the equations of the linear model (4). The corresponding model trajectory wb�ti��δwa�ti� is used in the
Jo term to compare with the observations (Eq. 8). It will be convenient to refer to this trajectory as the linear
analysis in order to distinguish it from the nonlinear “analysis” trajectory wa�ti� defined below. We will return
to this point in sections 4.6 and 5.2.

There are several ways the analysis increment δwa may be used to correct the trajectory of the nonlinear model.
Two different approaches have been adopted in our 3D-Var and 4D-Var systems. Since our current assimilation
system incorporates only temperature observations and relies on a univariate formulation of the background-
error covariance matrix (section 3.3), the 3D-Var produces an analysis increment for the temperature field only.
A practical way of adjusting the nonanalysed model fields while minimizing spurious adjustment processes, is
to apply the analysis increment gradually through a forcing term in the prognostic model equations:

wa�ti� � M�ti� ti�1��wa�ti�1�� � F�ti�δwa (18)

where wa�t0� � wb, and F�ti� is a weighting function defined such that ∑n
i�0 F�ti� � 1 so as to conserve the

time-integrated value of the analysis increment δwa. The forcing term can be shown to behave as a low-pass
time filter (Bloom et al. 1996). In this study, the temperature increment is applied uniformally over the time-
window via a constant forcing F � 1�n. A similar procedure has been adopted in the ECMWF ocean analysis
system (Alves et al. 1998), and is illustrated schematically in Fig.1a.

In contrast to the 3D-Var, the 4D-Var produces a multivariate analysis increment by virtue of the TL model
dynamics which act to couple the different increment variables. To a large extent, this dynamical coupling
serves as a balance constraint on the analysis. As such, in producing the analysis trajectory, we choose to
initialize the nonlinear model directly using the analysis at t0;

wa�ti� � M�ti� t0��wa�t0�� (19)

where wa�t0� � wb � δwa (Fig. 1b). Finally, when cycling the 3D- or 4D-Var over an extended period, the
analysis obtained from the trajectory at the end of the interval is taken to be the background state for a variational
analysis performed on the following interval (Fig.1).
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a) Cycling of 3D-Var

b) Cycling of 4D-Var

Figure 1: Schematic representation of the cycling procedures used for a) 3D-Var and b) 4D-Var. Two cycles are illustrated
in each sketch. The dotted (solid) curves correspond to the background (analysis) trajectory; the cross symbols denote
observations. The shaded square (circle) at the beginning of each cycle denotes the background (analysed) initial state.
Note that in 4D-Var the analysis increment (represented by the difference between the shaded square and circle) is applied
directly to the background initial state to produce the analysis trajectory, whereas in 3D-Var it is applied gradually as a
forcing to the model equations. This explains why in 3D-Var the analysis and background start from the same point at the
beginning of each cycle.
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3 Components of the assimilation system

3.1 The ocean model

The ocean model used in this study is the OPA OGCM of the Laboratoire d’Océanographie Dynamique et de
Climatologie (Madec et al. 1998). The model solves the primitive equations for horizontal currents u � �u�v�,
potential temperature Tθ and salinity S. The equations are formulated in orthogonal curvilinear z-coordinates
and discretized using finite differences on an Arakawa C-grid. The basic configuration of the model is described
in Vialard et al. (2001). It covers the tropical Pacific Ocean from 120ÆE to 70ÆW, and 30ÆN to 30ÆS. The zonal
resolution is 1Æ and the meridional resolution varies from 0�5Æ at the equator to 2Æ at the northern and southern
boundaries. The model has 25 levels, with a resolution of 10m in the upper 130m, increasing to 1000m in
the bottom level. The vertical distribution of temperature grid points has been chosen to match as closely as
possible the location of temperature sensors on the TAO moorings. Realistic bathymetry is included using the
Levitus (1982) land-sea mask.

The equation of state for seawater is defined by the Jackett and McDougall (1995) formula. The effects of unre-
solved small-scale processes on the flow are parametrized using a Laplacian-type mixing along and perpendicu-
lar to the geopotential surfaces. The horizontal mixing coefficients are set to 2000m2 s�1 in the equatorial strip,
with somewhat larger values in off-equatorial regions and near the boundaries. The vertical mixing coefficients
are computed from a 1.5 turbulent closure scheme. The scheme involves the solution of a prognostic equation
for turbulent kinetic energy (TKE) (Blanke and Delecluse 1993). Convective adjustment is parametrized using
an enhanced vertical diffusion; i.e., when a static instability is detected, the local vertical diffusion coefficients
for momentum and tracers are set to a large value (0�5m2 s�1). The vertical diffusion terms are solved using an
implicit time-discretization scheme. The time step is 1�5 hrs.

At solid boundaries, conditions of no-slip and no-normal flux are applied on the velocity and tracer fields,
respectively. At the ocean surface (z � 0), a rigid-lid and no-volume flux condition is applied (Roullet and
Madec 2000). An obvious consequence of the rigid-lid condition is that, unlike in a free-surface model, there
is no prognostic equation for sea-surface height (η � 0). The no-volume flux condition is an additional require-
ment that the vertical velocity identically vanish at the surface (w � 0 at z � 0), and hence from the continuity
equation, that the horizontal velocity field �u�v� is nondivergent (Bryan 1969). The latter condition is satisfied
by defining the �u�v�-field through a barotropic streamfunction ψ and a set of independent baroclinic velocities
�	u�	v�. This leads to some important technical difficulties in formulating the 4D-Var as detailed in Appendix B.

Surface fluxes of momentum, heat and fresh water are prescribed at the ocean-atmosphere interface. The mo-
mentum flux is specified through weekly wind-stress products from the ERS scatterometer (Grima et al. 1999).
The heat and fresh water fluxes are specified as a daily climatology computed from the European Centre for
Medium-range Weather Forecasts (ECMWF) reanalysis (Gibson et al. 1996). The solar and nonsolar compo-
nents of the heat flux are specified separately in order to allow penetration of the shortwave radiation in the
upper ocean. A relaxation to weekly analyses of sea surface temperature (SST) (Reynolds and Smith 1994) is
applied through a Newtonian damping term added to the surface (nonsolar) heat flux. The relaxation coefficient
is set to �40Wm�2 K�1, which for a depth-scale of 50m corresponds to a restoring time-scale of one month.
No relaxation is applied to sea surface salinity. In the control integration in which no data are assimilated, a
damping to Levitus climatological temperature and salinity is applied outside the 10ÆS to 10ÆN band, below the
surface mixed-layer.

3.2 The tangent-linear and adjoint models

The numerical codes of the TL and adjoint models have been derived directly from the numerical code of the
nonlinear model by applying standard (hand-coding) techniques (Talagrand 1991; Giering and Kaminski 1998).
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The task is straightforward but requires rigorous testing at various levels of the code. Standard tests are available
(Thépaut and Courtier 1991) for checking both the numerical accuracy of the linearization and the numerical
consistency of the TL and adjoint codes. These tests have been integrated into a comprehensive validation
module which is called routinely each time the codes are modified.

Some approximations have been introduced in the TL and adjoint models. The most important one is in the
parametrization of vertical diffusion, as described in more detail below. Another one relies on an intermittent
storage of the basic state trajectory to reduce computer memory requirements. In our experiments, the basic
state has been stored once per day (every 16 time steps) and defined at intermediate times through linear
interpolation. The impact of this approximation on the accuracy of the TL model was minor. Finally, to reduce
the CPU cost of the adjoint integration, an approximation has been introduced in the adjoint of the elliptic
solver which is applied on each time step to enforce the nondivergence constraint on the vertically integrated
velocity. Details can be found in Appendix B.3.

Simplified vertical diffusion

Let α denote one of the prognostic state variables u, v, Tθ or S. In the complete TL model, the tendency of a
perturbation δα produced by vertical diffusion is described by the two-term partial differential equation

∂δα
∂t

�
∂
∂z



Av

∂δα
∂z

�
�

∂
∂z



δAv

∂α
∂z

�
(20)

where Av �Av�u�v�Tθ�S� is the vertical diffusion coefficient and δAv ��∂Av�∂u�δu��∂Av�∂v�δv��∂Av�∂S�δS
��∂Av�∂Tθ�δTθ is the perturbation of Av resulting from perturbations of u, v, Tθ and S. The first term on the
right hand side of (20) is a standard diffusion operator with coefficient Av. In the incremental algorithm, Av is
updated on each outer iteration and held constant only during the inner iterations. The second term on the right
hand side of (20) is more problematic because of both theoretical and practical difficulties in computing the
perturbation δAv. First, a direct computation of δAv would involve linearizing the TKE and enhanced vertical
diffusion schemes. These parametrization schemes are highly nonlinear and discontinuous so any attempt to
linearize them directly would have to be done with considerable caution (Xu 1996; Zou 1997). Discontinu-
ities are a well-known source of numerical noise in the TL model. One possibility for reducing such noise is
to derive δAv from a suitably smooth approximation to the original nonlinear scheme (Janiskova et al. 1999).
Generally speaking, however, the problem is more complex than that of simply smoothing isolated discontinu-
ities as the second term in (20) contains other generating mechanisms of spurious noise, which are present even
in smoothed parametrization schemes (Mahfouf 1999; Zhu and Kamachi 2000). The simplest way of avoiding
these potential noise problems is to neglect the second term altogether by setting δAv � 0. This simplifica-
tion, which has been used extensively in meteorology (e.g., Mahfouf 1999), is adopted here. Implementing a
more elaborate linear physics parametrization was considered premature at this stage without first evaluating
the assimilation results using the simplified scheme.

3.3 The background-error covariance matrix

The background-error covariance matrix (B) plays an important role in determining the spatial structure of the
analysis increment in both 3D- and 4D-Var. There are two basic difficulties in specifying B. First, given the
sparsity of ocean observations, it is difficult, if not impossible, to obtain complete and accurate estimates of
the covariances, even in the tropical Pacific which is one of the best-observed ocean basins. Second, even if
there were sufficient observations, the sheer size of B (roughly 5� 1011 elements in our application) means
that this matrix cannot be stored explicitly and so must be simplified. In practice, this is done by modelling the
covariances using analytical functions or filters which depend on a limited number of tunable parameters and
which are numerically efficient for large-scale problems.
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In our current system, B is univariate (three-block diagonal with respect to horizontal velocity, temperature and
salinity) and includes a relatively simple correlation model. B is constructed as a symmetric product of several
operators:

B � SΣΣΣ ΛΛΛL1�2 W�1 LT�2 ΛΛΛ� �� �
C

ΣΣΣST (21)

�
�

SΣΣΣΛΛΛL1�2 W�1�2


� �� �
U

�
W�1�2LT�2 ΛΛΛΣΣΣST


� �� �

UT

(22)

where L is a 3D filtering operator which is self-adjoint with respect to the scalar product whose metric is the di-
agonal matrix W of volume elements; ΛΛΛ and ΣΣΣ are diagonal matrices of normalization factors and background-
error standard deviations, respectively; and S is a simplification operator that maps the horizontal components
of total velocity �u�v� into independent components �ψ�	u�	v� (see Appendix B.1 and B.2).

The underbraces in (22) highlight the preconditioning matrix in (15) and its adjoint in (17), which written
explicitly in operator form are

δw � SΣΣΣΛΛΛL1�2W�1�2 v (23)

and

∇vJo � W�1�2 LT�2 ΛΛΛΣΣΣST ∇δwJo� (24)

The underbrace in (21) highlights that part of B corresponding to the correlation matrix C. The univariate
correlations in C are modelled implicitly with the filter L. The vertical �v� and horizontal �h� correlations
are modelled separately using a 1D filter Lv and 2D filter Lh. The 3D correlation model is then constructed
from the product L � Lv Lh. Premultiplication of L by W�1 is needed to convert L, which is self-adjoint
(i.e., L � W�1 LT W), into a symmetric (covariance) matrix LW�1. Assuming that a factorization of the form
L � L1�2 L1�2 can be found then it is straightforward to show that the factor L1�2 is also self-adjoint and
hence that LW�1 � L1�2 W�1 LT�2. This is the practical form of the filter covariance matrix used for deriving
the preconditioning factorization in (22). The diagonal normalization matrix ΛΛΛ is needed to ensure that the
variances (diagonal elements) of C are equal to unity. This is achieved by setting the diagonal elements of ΛΛΛ to
be the inverse of the square root of the corresponding diagonal elements of LW�1. Procedures for computing
these diagonal elements are discussed in Weaver and Courtier (2001).

Various filters exist for modelling correlation functions but some are better suited than others depending on
the application. The complex boundaries associated with coastlines imposes a particular constraint for oceano-
graphic applications. For such applications, Laplacian- or diffusion-based filters are particularly well suited
(Derber and Rosati 1989; Egbert et al. 1994; Weaver and Courtier 2001). Here, a diffusion-based filter has
been used to model both the vertical and horizontal correlations. Lv is defined by an explicit time-step integra-
tion of a 1D diffusion equation in the vertical direction, while Lh is defined by an explicit time-step integration
a 2D diffusion equation over the sphere. The boundary conditions are chosen to be of Neumann-type and are
imposed directly within the finite-difference expression for the Laplacian using a land-ocean mask (Madec
et al. 1998).

Consider a 3D scalar input field 	α � 	α�λ�φ�z� where λ is longitude, φ is latitude and z is depth. For the
special case when the diffusion coefficients are constant, horizontal boundaries are ignored, and	α is assumed
to vanish in the vicinity of the surface (z � 0) and bottom (z � �D�λ�φ�) boundaries, then time-stepping the
diffusion-based correlation model, with 	α as initial condition, is a numerically efficient way of solving the
integral equation

α�λ�φ�z� �
� 0

z���D

� 2π

λ��0

� π�2

φ���π�2
ρ�θ�z� z�;Lh�Lv�	α�λ��φ��z�� cos φ� dφ� dλ� dz� (25)
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Figure 2: The horizontal correlation functions for the tracer fields at latitudes a) 0Æ; b) 5ÆN; and c) 15ÆN. The contour
interval is 0.1.

where the kernel ρ�θ�z� z�;Lh�Lv� is a 3D correlation function, θ is the angular separation between points
�λ�φ� and �λ��φ�� on the sphere, and the parameters Lh and Lv are horizontal and vertical length scales. The
3D correlation function is separable in that it can be expressed as a product of a horizontal correlation function
ρh�θ;Lh� and vertical correlation function ρv�z� z�;Lv�, which depend only on angular and vertical separation,
respectively: ρ�θ�z� z�;Lh�Lv� � ρh�θ;Lh�ρv�z� z�;Lv�. The horizontal correlation function is isotropic and,
for Lh small compared to the Earth’s radius a, well approximated by a Gaussian function of chordal distance
r � 2asin �θ�2�:

ρh�θ�r�;Lh�� exp
��r2�2L2

h

�
(26)

where Lh �
	

2κhTh, κh is the horizontal diffusion coefficient, and Th is the total integration “time” of the 2D
diffusion equation. The vertical correlation function is homogeneous and isotropic, and exactly Gaussian:

ρv�z;Lv� � exp
��z2�2L2

v

�
(27)

where Lv �
	

2κvTv is the vertical length scale, κv is the vertical diffusion coefficient, and Tv is the total inte-
gration “time” of the 1D diffusion equation. A factor L1�2 � L1�2

v L1�2
h , which is required in (22), can easily

be deduced by defining it to be an integration of the diffusion model over half the “time” interval (respectively
Tv�2 � L2

v�4κv and Th�2 � L2
h�4κh for the 1D and 2D diffusion equations). It is also straightforward to gen-

eralize the diffusion model to account for non-Gaussian correlation functions although this possibility has not
been explored in this study. Further details can be found in Weaver and Courtier (2001).

Equation (25) provides a useful interpretation of the diffusion-based correlation model in its simplest form. In
practice, however, the correlation functions can be made anisotropic and can have their length scales varied
geographically by introducing a tensor in the Laplacian operator (Weaver and Courtier 2001). For example,
the diagonal elements of the tensor can be adjusted to allow for a local stretching and/or shrinking of the
coordinates of the correlation model relative to those of the computational domain. This enables the correlation
model to represent, for example, the well-observed feature that correlation length scales near the equator are
longer in the zonal direction than in the meridional direction (Meyers et al. 1991; Kessler et al. 1996). Here, the
horizontal length scales are taken to be a function of latitude and symmetric about the equator. The zonal and
meridional length scales for the tracer fields have been defined to be 8Æ and 2Æ, respectively, at the equator, and
4Æ in both directions poleward of 20ÆN�S, with a linear transition between these values within the equatorial
strip. The anisotropic ratio at the equator is consistent with the climatological observation statistics of Meyers
et al. (1991), although the values of the actual length scales are somewhat smaller in our study. The values
chosen here are broadly similar to those used in previous ocean data assimilation studies of the tropical Pacific
(Smith et al. 1991; Behringer et al. 1998; Segschneider et al. 2002). The horizontal correlation functions for
the tracer fields are illustrated in Fig. 2.

The horizontal correlations of the velocity field are modelled using a diffusion equation formed from the vector
Laplacian rather than the scalar Laplacian used in the tracer diffusion model. The vector Laplacian has the
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Figure 3: The vertical correlation functions for the tracer fields at depths a) 96m (level 10); b) 168m (level 15); and c)
490m (level 19). Note the different scales on the vertical axes.

desirable property of ensuring that the smoothing by the correlation function acts separately on the horizontal
divergence and vorticity components of the velocity field (Madec et al. 1998). With the introduction of the
anisotropic tensor, this is no longer strictly guaranteed. Geostrophy provides a natural constraint which allows
us to estimate the length scale (Lζ

h) of the vorticity correlation functions (ρζ
h) based on the length scale �Lh� of

the tracer correlation functions (ρh). For the special case of a homogeneous and isotropic field (see section 5.3 in
Daley (1991)), an exact geostrophic coupling of the density and velocity fields implies that the correlation func-
tion for horizontal streamfunction �ψ should be equal to that of density.3 In terms of vorticity ζ �∇2�ψ, where ∇2

is the scalar Laplacian operator, the above condition becomes ρζ
h � ∇4ρh (see section 5.2 in Daley (1991)). The

length scale of ρζ
h may be defined from (pg. 110, Daley 1991) Lζ

h �

�
�2ρζ

h�∇2ρζ
h�r�0 �

�
�2∇4ρh�∇6ρh�r�0.

This leads to Lζ
h � 0�6Lh where Lh �

�
�2ρh�∇2ρh�r�0 is the length scale in (26). Based on this simple anal-

ysis, the length scales for the vorticity correlations have been reduced by a factor of 0.6 relative to those for
the tracer correlations. These smaller length scales have also been used for the divergence correlations. It is
worth remarking that, while geostrophy has been used as a constraint for defining the length scales of the tracer
and velocity correlation functions, our covariance model does not at present include a geostrophic balance con-
straint on the covariances themselves. Note also that the correlation model for the velocity background errors
is not required in our univariate 3D-Var which assimilates temperature information only.

The vertical correlations of the velocity field are modelled using a diffusion equation that acts separately on
the components u and v. The vertical length scales for both the tracers and the velocity components are taken
to be a function of depth with a dependence on the model’s vertical resolution to provide adequate smoothing
between model levels. At each model level, the vertical length scale is set to twice the depth of that level. This
results in rather sharp correlations above the thermocline where the resolution is highest and much broader
correlations below the thermocline where the resolution is coarsest (Fig.3).

The background-error standard deviations are allowed to vary with each grid-point and have been computed
with respect to the climatological model mean obtained from a control run without data assimilation. This
specification is based on the assumption that background errors are likely to be largest in regions of strong
ocean variability (e.g., in the thermocline). The same background-error standard deviations are used at the

3Here �ψ refers to the classical streamfunction defined from Helmoltz’s theorem and is not to be confused with ψ, the barotropic
streamfunction, defined in Appendix B.
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beginning of each assimilation cycle.

3.4 Observations

The assimilation data-set consists of in situ temperature observations from the Global Temperature and Salinity
Pilot Project (GTSPP) of the National Oceanographic Data Centre (NODC). This includes data from mainly
TAO moorings and XBTs, and from a limited number of Conductivity-Temperature-Depth (CTD) casts and
drifting buoys. A manual quality control procedure was used to remove suspicious data (Alves et al. 1998).
Observations falling within the surface level of the model (between 0 and 10m) were also discarded to avoid
potential redundancy with the observed SST (Reynolds and Smith 1994) used in the Newtonian damping term
during outer iterations. The in situ temperatures retained for assimilation were then converted into poten-
tial temperature (the prognostic model variable) using the Bryden (1973) conversion formula (Eq. (A3.13) in
Gill (1982)) with a reference salinity of 35.0 psu.

The observation-error covariances are assumed to be uncorrelated in space and time. The error variances are
set to �0�5ÆC�2 for TAO data and �1�0ÆC�2 for all other data to ensure that the generally higher quality TAO
data have more weight in the analysis. The observation operator H consists of horizontal bilinear interpolation
and vertical linear interpolation. For TAO data, H also includes a time averaging since these data are available
as daily averages.
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4 Evaluation of 3D- and 4D-Var: internal diagnostics and consistency checks

The purpose of this section is to evaluate certain algorithmic and statistical properties of the 3D- and 4D-Var
systems. The analyses themselves will be discussed in detail in section5. First, in section 4.1, the assimilation
experiments are introduced. In section4.2, the validity of the linear assumption which underlies the incremental
formulation is investigated. Convergence and optimality properties of the assimilation systems are then exam-
ined in sections 4.3 and 4.4. In section 4.5, some of the flow-dependent characteristics of the background-error
statistics used implicitly in 4D-Var are examined in a simplified framework with single observations. Finally, in
section 4.6, the statistics of the innovation and residual vectors are examined to assess the fit of the background
and of the analysis to the assimilated observations.

4.1 Experimental set-up

Both the 3D- and 4D-Var have been cycled over the period 01 January 1993 to 30 December 1998 using a
10-day and 30-day assimilation interval, respectively. A total of 60 (inner) iterations of the minimization were
performed per cycle, with an outer iteration performed every 10 inner iterations in 4D-Var. No outer itera-
tions were performed in 3D-Var since Hi is linear.4 Two additional experiments were performed to provide a
reference for evaluating 3D- and 4D-Var: a control experiment in which no data were assimilated, and an assim-
ilation experiment using a univariate OI scheme (Smith et al. 1991) which is also employed in the operational
seasonal forecasting system at ECMWF (Alves et al. 1998). For the OI, the background- and observation-error
statistics have been chosen to match as closely as possible those used in 3D-Var. In all experiments (hereafter
referred to as EX3D, EX4D, EXCL and EXOI), the initial conditions on 01 January 1993 were generated from
a four-year spin-up of the model starting from rest and from Levitus (1982) climatological temperature and
salinity. The wind-stress forcing used for the first three years of the spin-up was a climatology computed from
the ERS wind-stress products. The final year of the spin-up was a transition year between ERS climatological
and year 1992 products.

4.2 Validity of the linear increment models

Incremental variational assimilation is founded on the linear approximation (6). In this section, we wish to
examine the validity of this approximation by checking the accuracy of both the persistence model used in 3D-
Var on a 10-day window and the TL model used in 4D-Var on a 30-day window. The accuracy of each model
can be assessed by comparing the time-evolution of an initial perturbation δw in the nonlinear (NL) model with
its evolution in the linear (L) model. The nonlinear perturbation can be computed from the finite difference

δwNL�ti� � M�ti� t0��wb �δw��M�ti� t0��wb�� (28)

while the linear perturbation is given by

δwL�ti� � M�ti� t0�δw� (29)

Ideally, the initial perturbation δw should have structure and amplitude typical of background errors. The actual
background errors are not known, however, so in order to apply this test a suitable proxy must be defined. In
meteorology, it is commonly assumed that the background errors can be roughly approximated from differences
in model forecasts initiated at different time lags (Rabier et al. 1998). The forecasts will differ because the
shorter term forecast will be initiated from an analysis containing data assimilated between lags. Here we

4It is worth remarking that the FGAT version of 3D-Var is not independent of outer loops even when Hi is linear since updating the
reference state trajectory would lead to a modified effective observation vector (the second term in (40)). Introducing these outer loops,
however, lead to a divergence of the cost function, for reasons which at present remain unclear.
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consider a similar approach in which an initial perturbation is derived from the difference between two model
states obtained from free integrations of the model having different initial states. One of the initial states is
taken to be the analysis state (wa) at the end of a 4D-Var assimilation interval (as defined by (19)), while the
other initial state is taken to be the background state (wb) valid at the same time (see Fig. 1b). In the first
example presented below, wa and wb are taken from the end of the second 30-day cycle (on 01 March 1993) of
EX4D, with δw � wa�wb defining the initial perturbation in (28) and (29). The validity of the linear model
was also investigated for other types of perturbations (analysis increments, differences between analysed states
at two different dates) and for other starting dates, and the results were qualitatively similar to those discussed
below.

A meridional-vertical section of the perturbation temperature at 110ÆW is shown in Fig. 4a. The field is char-
acterized by large perturbations of up to 4ÆC, appearing as a result of the temperature observations which are
assimilated during the second cycle. The perturbations after 10 and 30 days (the widths of the 3D- and 4D-Var
windows) of integration in the nonlinear model are shown in Figs.4b and c, respectively. Figure 4b allows us
to check the assumption in 3D-Var that perturbations evolve slowly over 10 days. The large-amplitude positive
anomaly near 12ÆN and the smaller amplitude negative anomalies near 7ÆS and 16ÆN are indeed well approx-
imated by the 10-day persistence model (cf. Figs. 4a and b). The persistence assumption breaks down nearer
the equator where the oceanic dynamical response is much more rapid. In the persistence model, the positive
anomaly at 4ÆN is largely overestimated, while the negative anomaly at 7ÆN is largely underestimated. In con-
trast, Figs. 4c and d illustrate that the TL model is able to provide a good description of the perturbation in the
equatorial waveguide at least 30 days ahead. The similarity of Figs.4c and d may come as little surprise since it
is well known that the large spatial scale, low frequency response of the tropical oceans involves predominantly
linear wave dynamics (Philander 1989).

At smaller spatial and temporal scales (� 1000km, � 1 month), energetic motions in the central and eastern
equatorial Pacific are dominated by tropical instability waves (TIWs) (Legeckis 1977). Because of the impor-
tance of nonlinear processes in ultimately limiting the growth of unstable waves, it is interesting to see if some
of the differences between perturbations in the TL and nonlinear models can be linked to TIWs. TIWs are most
energetic during the autumn months. If TIW activity is indeed a limiting factor of the TL approximation then
one would expect this approximation to be less valid during this time. To check this, the above experiment was
repeated using a starting date of 27 September 1993 and a temperature perturbation defined as the difference
between the 4D-Var analysis and background state at that time (i.e., at the end of the ninth 30-day cycle of
EX4D). A zonal-vertical section of the initial temperature perturbation at 4ÆN is shown in Fig. 5a. Figures 5b
and c show the nonlinear and TL model-predicted temperature perturbations after 30 days, while Fig.5d shows
their difference. West of 160ÆW, the TL approximation holds quite well. Most of the nonlinear behaviour is
located in the upper thermocline in the eastern and central Pacific, which is the area of largest thermal signal
from TIWs. The differences between the nonlinear and linear perturbations are mostly associated with larger
amplitudes of the linear perturbation. This confirms that nonlinear mechanisms play an important role in lim-
iting the amplitude of the TIWs, and that the TL approximation is limited at their spatial scale. Over longer
integration periods, the TIWs show up clearly as the dominant error signal (not shown), with the amplitude of
the perturbations tending to be greatly overestimated in the TL model. This limitation is, however, only present
at spatial scales of order 1000km and during the active TIW season.

Strongly nonlinear processes associated with vertical mixing and convection are another factor contributing
to the limitation of the TL approximation, particularly in the small vertical scales. For example, when a per-
turbation leads to a statically unstable water column in the nonlinear model, the water column will be mixed
instantaneously as a result of enhanced vertical diffusion. This process will effectively reduce the amplitude of
the perturbation in the nonlinear model. In the TL model, on the other hand, there is no linearized counterpart
of this process and the perturbation will remain unchanged. This could explain why the perturbations in the
mixed-layer, where vertical mixing is strongest, are larger in the TL model (Fig.5c) than in the nonlinear model
(Fig 5b).
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Further illustration of the previous points is provided in Fig.6 which displays the time evolution of the corre-
lation and root-mean-square (rms) difference between the temperature perturbations in the nonlinear and TL
models. The correlation is above 0.8 during the first three months in both experiments with different starting
dates (Fig. 6a), which indicates that the spatial patterns are in broad agreement. In contrast, in both experi-
ments, the rms difference experiences a rather quick growth during the first 20 days (Fig.6b) and then tapers
off during the next three months. This initial error growth is associated with small-scale processes. For the ex-
periment starting in March, this growth is primarily associated with vertical mixing processes, whereas for the
experiment starting in October, it is caused by the combined effects of TIWs and vertical mixing. In particular,
it can be noted that the absence of nonlinear effects results in an overestimated amplitude of the perturbation
during the TIW-active season.

Figure 6b gives a rather pessimistic view of the validity of the TL approximation. However, if we focus on
the large-scale component of the perturbation, the TL model actually provides a very good description of the
perturbation evolution over several months. To illustrate this point, the correlation and rms statistics have
been recomputed using low-pass filtered versions of the perturbations, LδwL�ti� and LδwNL�ti�, where L is a
close variant of the 3D Laplacian filter used in the correlation model of B (see section3.3). The “large-scale”
component of the perturbation has been isolated by setting the zonal, meridional and vertical length scales in
L to 400km, 200km and 20m, respectively. Figures 6c and d show that the correlation now remains above
0.85 for the entire six-month period and that the rms difference is small compared to the rms of the nonlinear
perturbation over at least four months.

In summary, the results from this section indicate that the 10-day persistence model used in 3D-Var is adequate
for describing large-scale perturbations in off-equatorial regions but has some limitations closer to the equator
where the dynamical adjustment time scales are shorter. In comparison, the 30-day TL model provides a good
description of large-scale perturbations in both off-equatorial and equatorial regions. Smaller scale, regionally-
confined structures associated with TIWs, however, are more problematic and our experiments suggest that they
are possibly the main source of error in the TL integration. Vertical mixing and convective processes also tend to
limit the accuracy of the TL model in the small vertical scales. Further research is required to determine whether
the accuracy of the TL model can be improved using a more sophisticated parametrisation of vertical diffusion,
in particular one which accounts for (nonzero) perturbations in the vertical mixing coefficients. However, it
will be shown in section 5.2 that these limitations on the validity of the TL model are much less severe than
appears at first sight and that in fact a very good fit to the data is possible.

4.3 Convergence properties

Each 10-day 3D-Var cycle required roughly 25 minutes of CPU time on the Fujitsu VPP700, while each 30-day
4D-Var cycle required roughly 5 hours of CPU time (i.e., a factor four more costly than 3D-Var). Figures7a
and b show an example, taken here from the second cycle of EX3D, of J and the norm of ∇vJ as a function of
the number of minimization iterations. The convergence of the minimization in 3D-Var was relatively quick,
requiring on average less than 25 iterations to reach the effective minimum of J. Figures8a and b (solid curves)
show the same quantities from the second cycle of EX4D. The convergence of the minimization in 4D-Var
was generally slower than in 3D-Var. After the final (60th) iteration, the reduction of the norm of ∇vJ relative
to its initial value was typically between three and four orders of magnitude compared to over six orders of
magnitude in 3D-Var.

The jumps in the solid curves in Figs. 8a and b occur after an outer iteration when the reference trajectory is
reinitialized (here every 10 iterations). To illustrate the value of these outer iterations, the 4D-Var minimization
on this particular cycle has been repeated with only one outer iteration (i.e., 60 minimization iterations with no
trajectory updates). The dashed curves in Figs. 8a and b correspond to this sensitivity experiment. Figure 8b
illustrates that, relative to the initial gradient norm, convergence is more efficient without than with outer
iterations, with a gain of approximately an order of magnitude in the reduction of the gradient norm. On the
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other hand, the reduction of the cost function in the experiment performed without outer iterations saturates
at a level above the cost function with outer iterations. One has to be careful, however, in making direct
comparisons between these two curves since, after the first outer iteration, the cost functions are no longer the
same in the two experiments. It is more instructive to compare the final value of the full (nonapproximated)
cost function JF (Eq. (7)) for each experiment. These values are plotted on Fig.8a with an asterix (plus) symbol
for the experiment with (without) outer iterations (for clarity the symbols have been displaced slightly to the
left of the right border). This figure provides a clear indication of the positive impact of the outer iterations.
The final value of JF with outer iterations is about half that without outer iterations. Furthermore, it is very
close to the final value obtained with the approximated (quadratic) cost function (solid curve) and thus provides
a good measure of the consistency of the incremental approach. In the absence of outer iterations, however,
this consistency is lost as illustrated by the large discrepancy between the final value of JF and that of the
approximated cost function J (dashed curve).

In 3D-Var, 60 iterations was more than double the number actually needed to reach an acceptable level of
convergence. With only 25 iterations, for example, the computational cost of 3D-Var could be reduced by a
factor of 1.8 without degrading the quality of the analysis. Despite this potential to economize in 3D-Var, 60
iterations were retained simply to be consistent with the total number of iterations used in 4D-Var. In 4D-Var,
convergence was slower but still reasonably efficient. Preconditioning techniques such as those described in
Fisher and Andersson (2001) offer considerable scope for further improving the minimization efficiency. The
outer iterations were clearly shown to be an essential feature of the algorithm. At present, however, it is not clear
how many outer iterations are needed for the solution of the incremental problem to be a good approximation
to the solution of the full problem. It is also not clear what combination of outer and inner iterations gives the
best convergence rate. These issues are a matter for further research.

4.4 Optimality properties

The formulation of the variational assimilation problem relies on a number of hypotheses on the statistics of the
background and observation errors. The validity of these hypotheses is an important factor in determining the
optimality of the analysis. One particularly simple diagnostic that can be used to check whether the statistics of
B and R are consistent with the innovation vector is the value of the cost function at its minimum (Jmin) which,
for a linear system, should, on statistical average, be equal to p�2 where p is the total number of assimilated
observations (Tarantola 1987; Talagrand 1999; Bennett et al. 2000). This is easily verified by substituting the
minimizing solution (12) into (10) to yield an expression for Jmin in terms of the innovation vector d;

Jmin �
1
2

dT �GBGT �R
�
�1

d� (30)

Under the linear approximation, the covariance matrix of d is E�ddT � � GBGT �R where E� � denotes math-
ematical expectation. It then follows from taking the expectation of (30) and using the identity dT Pd �
trace

�
PddT

�
, for any matrix P, that E�Jmin� �

1
2 trace �Ip� � p�2. If we assume further that the background

and observation errors are Gaussian then it can be shown (e.g., see section 4.3.6 in Tarantola 1987) that the
expected variance of Jmin is σ2

Jmin
� E��Jmin�E�Jmin��

2� � p�2. Therefore, providing B and R are correctly
specified and that the system is quasi-linear, the value of Jmin on each assimilation cycle should be p�2 within
a standard deviation of

�
p�2.

In order to compare the actual values of Jmin with its expected value, it is more convenient to consider the
normalized quantity γ � 2Jmin�p for which E�γ� � 1 and σ2

γ � E��γ�E�γ��2� � 2�p. σ2
γ scales with the inverse

of p so will be small when a large number of observations are assimilated. Figures9a and b (dotted curves)
show the actual values of γ as a function of the assimilation cycle in EX3D and EX4D. The expected value of
γ � 1 (solid line) is also plotted together with the expected error bars (dashed lines) at 1
σγ. The average of
the actual values of γ over all cycles in EX3D is very close to its expected value of one (γ � 0�97 where the
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overbar denotes cycle average) but in EX4D is somewhat too small (γ � 0�73). On average, the actual values of
γ exceed its expected value by 8σγ in EX3D and 29σγ in EX4D. The expected error bars are slightly larger in
EX3D than in EX4D since there were fewer observations assimilated during a 10-day 3D-Var cycle than during
a 30-day 4D-Var cycle (roughly 10000 observations were available every 10 days). Even so, the actual values
of γ nearly always greatly exceed the expected error bounds in both experiments.

From (30) it is clear that the value of Jmin (or γ) may be decreased (increased) if the variances of either B or
R are increased (decreased). The lower than expected value of γ in EX4D therefore could be a sign that either
the background- or observation-error variances have been overestimated. Our prior estimate of the observation-
error variances is very crude and in particular takes no account of possible representativeness error. For ex-
ample, the value of 0�5ÆC used for the standard error of TAO data is only slightly larger than the documented
estimate of TAO observation error which accounts only for the instrumental component of that error (McCarty
et al. 1997). The specified observation-error variances are thus probably underestimated and therefore acting to
increase the value of γ. This effect is clearly demonstrated by the dashed-dotted curve in Fig.9a which shows
the actual values of γ from a 3D-Var experiment in which the standard error for TAO data was increased to
1�0ÆC. This lead to nearly a factor of two decrease in the cycle average of γ (γ � 0�52).

It is more likely that the background-error variances, which have been specified from the climatology of a model
integration performed without data assimilation, are substantially overestimated. Whereas this specification
might yield a reasonable estimate of the background errors for the first cycle, it is probably too large an estimate
in later cycles, particularly in well-observed regions, where the data assimilated in previous cycles have acted
to reduce the innovation vector. Generally speaking, however, it is safer to overestimate than underestimate the
background-error variances to prevent the model from drifting too far from observations. It should be noted
that a misspecification of the background- and/or observation-error correlations could also change the value of
γ.

Another interesting feature in Fig. 9 is the rather large variance in γ between cycles. This is an indication that,
contrary to what has been assumed, the background-error covariances are not stationary, in addition to being
largely overestimated as already mentioned. From Fig. 9a, we see that the variability of γ is larger in EX3D
than in the sensitivity experiment where the standard error used for TAO data was larger. This is understandable
since the smaller standard error for TAO in EX3D means that γ will be more sensitive to the true variations in
the background-error covariances between cycles.

While the Jmin statistic gives some useful insight into the optimality properties of the system, it is not possi-
ble based on this information alone to correct unambiguously any misspecification of the background- and/or
observation-error covariances. If the actual value of Jmin is not equal to p�2 then this can be rectified sim-
ply by muliplying B and R by the factor γ � 2Jmin�p. This procedure will change the absolute values of the
background-, observation- and analysis-error variances, but will have no influence on the analysis increment
itself (e.g., as evident from the expression for the analysis increment in (12)). What is important then is the
relative magnitude of the variances in B and R (the absolute values can be obtained by post-multiplication
by γ). Adaptive procedures can be used to tune the variances in B and R using information on the mismatch
between the expected and actual values of sub-parts of the cost function at its minimum (Wahba et al. 1995;
Desroziers and Ivanov 2001). To compute the expected minimum value of sub-parts of the cost function is
more complicated but practical methods do exist (Bennett et al. 2000; Desroziers and Ivanov 2001). We have
not attempted to apply any of these methods in the present study but they do offer an interesting possibility for
improving the variance estimates in the future.

4.5 Flow-dependent background-error variances

It is well known that, in the limit of a perfect, linear model, variational assimilation is equivalent to the Kalman
filter in that, given identical input parameters, they produce the same analysis at the end of the assimilation
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window (e.g., see Courtier et al. 1994). Consider an assimilation window t0 � ti � tn in which a background
state wb, with error-covariance matrix B, is available at the beginning of the assimilation window and an
observation vector yo

n, with error-covariance matrix Rn, is available at the end of the window. Within the linear
approximation, the error-covariance matrix Pb�tn� for the background state wb�tn� � M�tn� t0��wb� is obtained
by evolving B using the linear model and its adjoint:

Pb�tn� � M�tn� t0�BM�tn� t0�
T (31)

where Pb�t0� � B. In an extended Kalman filter, (31) would be used explicitly to transport the covariances
forward in time. In incremental variational assimilation, on the other hand, this propagation is implicit in the
global minimization process. For the example above, the variational analysis increment at t0 is given by (12)
with G � HnM�tn� t0�, d � yo

n�Hn�wb�tn��, and R � Rn:

δwa � BM�tn� t0�
T HT

n

�
Hn M�tn� t0�BM�tn� t0�

T HT
n �R

�
�1

d� (32)

The analysis increment at tn can be obtained by applying M�tn� t0� to both sides of (32) to yield, after inserting
(31),

δwa�tn� � Pb�tn�HT
n

�
HnPb�tn�HT

n �R

�1

d (33)

where δwa�tn� � M�tn� t0�δwa. Equation (33) is the standard analysis step of an extended Kalman filter, which
weights the background state at tn using an error-covariance matrix predicted by (31).

The FGAT version of 3D-Var can be viewed as a limiting case in which M is taken to be the identity matrix.
This implies that Pb�tn� � B; i.e., that the background-error covariances at the end of the window (and at all
intermediate times) are identical to those specified at initial time. In incremental 4D-Var, on the other hand,
M is the TL operator so that Pb�tn� will be modified by dynamical processes acting within the window. In this
section, we focus on how the TL dynamics act to modify the prior estimates of the background-error variances
(the diagonal elements of Pb�tn�). The TL dynamics will also modify the background-error correlations but a
discussion of this feature is beyond the scope of the present paper.

Single observation experiments provide a practical way of computing the effective background-error variances
used implicitly in 4D-Var (Thépaut et al. 1993; Thépaut et al. 1996). For a single observation, d � d and
�σo�2 � R become scalars, and hT � Hn becomes a vector of the same length as w. The error variance of the
background equivalent of the observation is then given by the scalar product �σb

n�
2 � hT Pb�tn�h. If we assume

further that the observation is of one of the model state variables and that its location coincides with a model
grid-point then hT � �0� ����0�1�0� ���0�, where the entry equal to one corresponds to that grid-point, and �σb

n�
2

becomes an element of the diagonal of Pb�tn�. It is straightforward to deduce �σb
n�

2 by applying hT to both
sides of (33):

hT δwa�tn� � �σb
n�

2



d
�σb

n�
2 ��σo�2

�
(34)

which can be rearranged to give

�σb
n�

2 �



hT δwa�tn�

d�hT δwa�tn�

�
�σo�2� (35)

The term hT δwa�tn� is the value of the analysis increment at the time and grid-point location of the single
observation. Equation (35) thus provides the basis of an algorithm for systematically diagnosing the diagonal
elements of Pb�tn�.

Figure 10 shows vertical profiles of the background-error standard deviations (σb
n) for temperature at three dif-

ferent latitudes (equator, 5ÆN and 15ÆN) in the central Pacific (140ÆW). The dashed-dotted curves are the prior
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estimates of σb
n which, as discussed earlier, were computed from a control experiment without data assimila-

tion. In 3D-Var, the prior estimates are effectively used to weight the background state at all times within the
assimilation window, while in 4D-Var they are used for weighting the background state at the beginning of the
assimilation window. The prior estimates display maxima around the depth of the climatological thermocline
where variability is greatest (around 170 m at the equator and 5ÆN, 150 m at 15ÆN). The solid curves show the
profile of the effective σb

n used in 4D-Var at the end of the second 30-day cycle (03 March 1993) of EX4D (see
section 5 for a thorough description of this experiment). Panels a–c show that the flow-dependency in the σb

n
estimates is greatest near the equator, which is not surprising since dynamical effects have shorter time-scales
there. In 30 days, the ocean state can change significantly at the equator but much less at 15ÆN because eddies
are not resolved in this low resolution OGCM. Panels a–c also show that the TL dynamics tend to homogenise
and reduce the σb

n in the ocean mixed-layer, particularly in the upper 70m.

The TL dynamics also tend to move the level of maximum background-error variance to the level of the ther-
mocline, as illustrated by comparing panels a–c with corresponding profiles of �∂Tθ�∂z� computed from the
30-day averaged background temperature state on the second cycle. This tendency is physically sensible since
the level of maximum variability of the thermal field, and thus of maximum likely error in the background
state, is located at the level of the thermocline. It can also be noted that the TL dynamics can substantially
increase the maximum value of the background-error variance near the equator. This is related to the fact that
the background trajectory in this experiment has already felt the influence of observations assimilated during
the previous cycle through a tightening of the thermocline. This tighter, well-defined thermocline, relative to
that of the control, leads to larger thermal signals and thus to an increase in the maximum value of σb

n by the TL
dynamics. In some 3D assimilation systems (e.g., Behringer et al. 1998; Alves et al. 1998), the background-
error variances have been parametrized by making them dependent on the vertical gradient of the background
temperature field. Figure 10 suggests that relating σb to the background temperature gradient is dynamically
sensible. Such a weighting could also be useful in 3D- and 4D-Var by introducing a flow-dependence in the
variances of B at the beginning of the window.

4.6 Fit to the observations

Statistics derived from the background-minus-observation vector (BmO�Hi�wb�ti���yo
i ) and analysis-minus-

observation vector (AmO� Hi�wa�ti���yo
i ) can yield useful information about the internal consistency of the

data assimilation system (Hollingsworth and Lönnberg 1989). Figures 11b and c show the 1993-98 averaged
statistics of the BmO and AmO as a function of depth for all the assimilated TAO data in EX3D and EX4D.
For reference, the average statistics of the difference between the control and TAO data are also shown, which
for convenience will be referred to as the BmO of EXCL. In panel b the BmO curve of EXCL displays a large
warm bias of about 2ÆC just below the thermocline (cf. with the average of the TAO data profile shown in
panel a). This bias is largely reduced in EX3D, the maximum of the averaged BmO and AmO being about
0�3ÆC at 50m. The bias is almost completely absent from EX4D: the average of AmO is very small, except at
250m where the analysis is about 0�1ÆC too cold.

In panel c the rms of BmO of EXCL shows large differences both just below the thermocline, where there
are large biases, and in the thermocline, where signals associated with the seasonal cycle and interannual
variability are largest. These differences are substantially reduced in EX3D and EX4D. The rms of BmO in
EX4D is similar to that of EX3D, with a maximum around 1�5ÆC at the level of the thermocline. On the other
hand, the rms of AmO in EX4D is very much reduced, being less than 0�5ÆC over the entire water column,
compared to the rms of AmO in EX3D which is hardly smaller than that of BmO. The fit to the TAO data in
EX4D is thus within the specified level of observation error (0�5ÆC), which is not the case in EX3D. The larger
AmO in EX3D is primarily an artifact of the gradual way the analysis increment is applied to the model. While
minimizing nonphysical adjustment processes, this procedure ultimately degrades the fit to the data achieved
by the linear analysis wb�ti��δwa�ti�.
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Figure 11 provided a time-averaged view of the BmO and AmO statistics for the assimilated TAO data. Fig-
ure 12 now provides a view of how these statistics change with time during the 1993-98 analysis period. On
the first assimilation cycle, the background is provided by the control and as a result the BmO is very large
(Fig. 12c). After the first assimilation cycle, however, the properties observed in Fig.11 begin to emerge: the
average of AmO is small in both EX3D and EX4D, and the rms of AmO is equal to about 1ÆC in EX3D and
0�5ÆC in EX4D. It is worth noting that, in both EX3D and EX4D, the statistics of BmO and AmO are approx-
imately stationary, and in particular do not seem to exhibit any obvious dependence on either the number of
assimilated observations (Fig. 12a) or interannual variability (Fig. 12b).

The cycle-average of the temporal evolution of BmO and AmO within the assimilation window is shown in
Fig. 13. For the background, which is not constrained by observations, the fit to the data degrades with time.
After 10 days in EX3D and 30 days in EX4D, the rms of BmO increases by 0�2ÆC and 0�5ÆC from initial values
of 1�0ÆC and 0�6ÆC, respectively. The rms of BmO at the end of the window is 1�2ÆC in both experiments,
compared to 1.9ÆC in EXCL. In both EX3D and EX4D, the fit of the analysis to the data is uniform over
their respective assimilation windows, apart from a very slight increase of the AmO at the window boundaries
in EX4D. When model error is important, and not explicitly accounted for in the assimilation method, it often
manifests itself as a U-shape in the fit to the data (Ménard and Daley 1996). Any signal of model error, however,
is more likely to be visible in the Jo residual (Hiδwa�ti��di) than in the AmO since the residual is the quantity
that is minimized objectively. The residual will contain information about linearization errors introduced by
the approximation (3) as well as errors in the nonlinear model itself.

Figure 14 shows the cycle-average of the Jo residuals in EX3D and EX4D. For EX3D, the U-shape is evident,
though quite weak, with a difference of about 0�2ÆC between the highest point at the window boundaries and
the lowest point in the middle of the window. If this is indeed a sign of model error then it would be consistent
with the results of section 4.2 which illustrated that the persistence model did have some limitations near the
equator. In contrast, in EX4D, the residuals are nearly flat over the whole window width and are very similar
to the AmO in Fig. 13. This result then suggests that model error is not a significant problem over the length
of the 30-day window used in 4D-Var. Furthermore, the similarity between the residuals and AmO in EX4D is
consistent with Fig. 8 of section 4.3 which showed that, after several outer loops, the full and incremental cost
functions converged to similar values at the end of minimization. That result was demonstrated for a particular
cycle (the second); Fig. 14 just confirms that this feature is consistent for all cycles of EX4D. Figure14 also
shows that the average of the residuals over the window width is consistent with the specified standard-error
deviation of TAO data (0�5ÆC) and is slightly smaller in EX4D than in EX3D. Therefore, the large AmO of
EX3D compared to that of EX4D does not stem from a poorer fit to the data after minimization but rather from
the manner in which the analysis increment is then applied in the nonlinear model. This point will be discussed
further in section 5.2.
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a) Initial perturbation (01/03/1993)
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b) Nonlinear perturbation after 10 days
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c) Nonlinear perturbation after 30 days
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d) TL perturbation after 30 days

 

0.5

0.5

d) TL perturbation after 30 days

 

20S 10S 0 10N 20N
Latitude

 

 

300

250

200

150

100

50

0

D
ep

th
 (m

)

Figure 4: a) Meridional-vertical section at 110ÆW of a temperature perturbation defined as the difference between a 4D-
Var analysis and the background state valid at the same time (01 March 1993). The perturbation after b) 10 days and c)
30 days evolution in the nonlinear model, and after d) 30 days evolution in the TL model. The contour interval is 0.5 ÆC.
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a) Initial perturbation (27/09/1993)
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b) Nonlinear perturbation after 30 days
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c) TL perturbation after 30 days
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d) Nonlinear - TL perturbation after 30 days
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Figure 5: a) Zonal-vertical section at 4ÆN of a temperature perturbation defined as the difference between the 4D-
Var analysis and the corresponding background state on 27 September 1993. The perturbations after 30 days in the
nonlinear model (panel b) and in the TL model (panel c). d) The difference between the perturbations in panels b and c.
The contour interval is 0.5ÆC.
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a) TL model validation (all scales)
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b) TL model validation (all scales)
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c) TL model validation (large scales)
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d) TL model validation (large scales)
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Figure 6: Validation of the linear approximation for the TL model in the TAO region. a) The spatial correlation between
the temperature perturbations in the linear and nonlinear models for two experiments starting in 01 March 1993 and
at the end of 27 September 1993. b) The rms difference between the linear and nonlinear perturbations (thin curve)
compared to the rms of the nonlinear (thick solid curve) and linear (thick dashed curve) perturbations. Panels c and d are
analogous to panels a and b, respectively, but the statistics have been recomputed using a filtered version of the increment
which retains only the large spatial scales (zonal scales longer than 400km, meridional scales longer than 200km, and
vertical scales larger than 20m).
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Figure 7: The value of a) the cost function (J) and b) the gradient norm
�
�∇vJ�T ∇vJ as a function of the minimization

iteration on the second cycle of EX3D. Both J and
�
�∇vJ�T ∇vJ have been normalized by their respective values at the

start of minimization and plotted on a logarithmic vertical axis.

Figure 8: The value of a) the cost function (J) and b) the gradient norm
�
�∇vJ�T ∇vJ as a function of the minimization

iteration on the second cycle of EX4D (solid curve). As a sensitivity test, the second cycle of the 4D-Var experiment
has been repeated with only one outer iteration (dashed curve), compared to five outer iterations used in the reference
experiment. The plus (asterix) symbol in panel a indicates the final value of the nonapproximated cost function ( 7) for the
experiment with one (five) outer iteration(s). Both J and

�
�∇vJ�T ∇vJ have been normalized by their respective values

at the start of minimization and plotted on a logarithmic vertical axis.
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Figure 9: The value of γ � 2Jmin�p plotted as a function of the assimilation cycle during the period 1993-98 in a) 3D-Var
and b) 4D-Var. On each cycle, Jmin represents the value of the cost function at the end of the minimization and p the total
number of observations assimilated through the Jo term. A total of 219 (73) 10-day (30-day) cycles were performed in
3D-Var (4D-Var). The expected value of γ � 1 (solid line) is plotted together with error bars (dashed lines) at 1�σ γ
where σγ �

�
2�p is the expected standard deviation of γ. The dotted curves in panels a and b correspond to the actual

values of γ computed on each cycle in the reference experiments EX3D and EX4D. The dashed-dotted curve in panel a
corresponds to the actual values of γ from a 3D-Var experiment in which the observation-error variance for TAO data is
set to twice the value used in EX3D.
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Figure 10: Vertical profiles of the background-error standard deviations (in ÆC) used in 3D- and 4D-Var, at three different
latitudes (a) equator, b) 5ÆN and c) 15ÆN) in the central Pacific (140ÆW). The dashed-dotted curves correspond to the
standard deviations specified at the beginning of the assimilation window. In 3D-Var, these are also the effective standard
deviations used at all future times within the window. The solid curves correspond to the effective standard deviations
used in 4D-Var at the end of the 30-day window of the second cycle in EX4D Panels d–f show the corresponding profile
of �∂Tθ�∂z� at each of these locations, computed from the 30-day mean of the background temperature state on the second
cycle. The values of �∂Tθ�∂z� have been multiplied by a factor of ten in order to be plotted with the same horizontal scale
as in panels a–c.
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Figure 11: Time-averaged statistics, plotted as a function of depth, of BmO and AmO for TAO data during the 1993-98
period. a) The average observation value; b) the average of BmO (thin curves) and AmO (thick curves); and c) the rms of
BmO (thin curves) and AmO (thick curves). In panels b and c, the dashed curve corresponds to EXCL, the dashed-dotted
curves to EX3D, and the solid curves to EX4D.
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Figure 12: Spatially-averaged statistics, plotted as a function of the assimilation cycle, of BmO and AmO for TAO data
during the 1993-98 period. a) The total number of TAO observations; b) the average observation value; c) the average of
BmO (thin curves) and AmO (thick curves); and d) the rms of BmO (thin curves) and AmO (thick curves). In panels c and
d, the dashed curve corresponds to EXCL, the dashed-dotted curves to EX3D, and the solid curves to EX4D. The statistics
for EX3D are displayed as an average over three cycles (30 days) in order to be compared with those from EX4D.
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Figure 13: Rms of the 1993-98 cycle-average of BmO (thin curves) and AmO (thick curves) for TAO data plotted as a
function of the day within the assimilation window. The dashed curve corresponds to EXCL, the dashed-dotted curves to
EX3D, and the solid curves to EX4D.
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Figure 14: Rms of the 1993-98 cycle-average of the Jo residual in EX3D (dashed-dotted curve) and EX4D (solid curve)
for TAO data plotted as a function of the day within the assimilation window.
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5 Evaluation of 3D- and 4D-Var: climatological mean and variability of the
analyses

In this section, the extended set of analyses (OI, 3D-Var, 4D-Var and control) is examined to assess the impact
of the in situ data assimilation on the model’s mean state (section5.1) and variability (section 5.2). The different
analyses are intercompared and validated against climatology and time-series from independent data sets.

5.1 Mean field

Temperature analysis

Vertical sections of the 1993-96 average temperature along the equator and at 140ÆW are shown in Figs. 15 and
16 for EXCL, EX3D and EX4D. In section 4.6 it was shown that the 4D-Var analysis (EX4D) is very close to
observations in both an average and rms difference sense. The thermal field climatology from EX4D will thus
be considered as our best estimate of the true thermal field climatology. As noted by Vialard et al. (2001), the
thermocline structure in the control experiment (EXCL) is too diffuse compared to observations. To compensate
for this problem, the assimilation of in situ temperature data, in both EX3D and EX4D, produces a large mean
correction to the thermal field, which results in a colder thermocline with increased stratification. From the
meridional section, it can also be seen that the tilt of the isotherms in the North-Equatorial Counter Current
(NECC) region between 5ÆN and 10ÆN is considerably reinforced in both data assimilation experiments. The
thermocline tightness and tilt is stronger in EX4D than in EX3D (cf. Figs. 16a and b near 7ÆN). This is
consistent with the fact that, compared to 3D-Var, 4D-Var produces a closer fit to the assimilated data as seen
in section 4.6.

Figure 17 shows the average profile and the standard deviation of the 4D-Var temperature analysis increment
in the Nino3 (150ÆW–90ÆW, 5ÆS–5ÆN) and Nino4 (160ÆE–150ÆW, 5ÆS–5ÆN) regions. First, it can be noted
that, while the mean thermal profiles in EX3D and EX4D are very similar, the assimilation increments used
to produce them can be very different. Furthermore, the increments do not have an intuitive effect; e.g., they
do not necessarily tend to warm the model in the region where the control experiment is too cold. This is
particularly true for EX3D in Nino4, where the increments warm the deep ocean even though the control is
too warm, and cool the upper ocean which is too cold in the control. In contrast, in both regions in EX4D, the
analysis increment generally acts to systematically heat the upper part of the thermocline and cool its lower
part, thus counteracting the tendency of the model to make the thermocline too diffuse. In Nino3, EX3D does
not behave counter-intuitively as in Nino4, and cools rather strongly the thermocline in a region where the
control had a tendency to be too warm. This point will be considered further later in this section.

Figures 15 and 16 provide a strong indication that the assimilation largely acts to correct for a bias in the model’s
subsurface temperature structure. One of the assumptions implicit in the present formulation of the assimilation
problem is that the increment is unbiased. The long-term average of the temperature increment should be zero
and the increment should therefore act to reduce random errors rather than systematic errors. It can be seen in
Figs. 17b and d that, in both regions, the absolute value of the increment average is significantly smaller than
its standard deviation, suggesting that the assumption that the increment is unbiased holds reasonably well in
EX4D. In EX3D, however, this assumption seems to breakdown in Nino3, where the average of the increment
reaches �0�9ÆC at 75m depth compared to a standard deviation of 1�4ÆC. This is a large systematic increment,
especially so when considering that increments are applied every 10 days in EX3D (thus corresponding to
a -0.09ÆC day�1 systematic correction in EX3D compared to less than 0.01ÆC day�1 in EX4D). As will be
seen later, this strong systematic increment probably appears to counteract the effects of the spurious vertical
downwelling that develops close to the equator in the eastern Pacific in EX3D. Finally, it can be noted that the
standard deviation of the temperature corrections is largely concentrated at the level of the thermocline (around
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160m in Nino4 and 80m in Nino3), where the temperature variability is strongest.

Figure 18 shows the 1993-96 average depth of the 20ÆC isotherm (hereafter D20) for the various experiments.
The D20 provides another standard diagnostic for evaluating the impact of the assimilation on the mean thermal
field. Once again, EXCL displays an excessively warm thermocline and underestimated meridional gradients
between the equator and 8ÆN, when compared to the other experiments. EX4D displays undulations in the
D20 field near 8ÆN in the eastern Pacific, which are absent from the other analyses. These oscillations are
spurious and are the result of a noisy analysis at locations near 5Æ–8ÆN where there are few data in between
TAO moorings. This problem also appears in EX3D, but is weaker and is not seen clearly in the mean D20. This
problem might be the result of overfitting the data which can result in unrealistic oscillations being generated
between observation points (e.g., see Fig. 2.2 in Daley (1991)). Indeed, the rms of the 0–300m vertically-
averaged temperature increments along 5ÆN displays a maximum between the locations of TAO moorings
(Fig. 19), with peak-to-trough differences largest in EX4D, which is consistent with Fig.18. It also appears
that the rms is smaller when the TAO moorings have shorter longitudinal separation (10Æ rather than 15Æ).

The EXOI analysis is included in Fig. 18 to show how similar it is to EX3D. This result may be expected from
a theoretical point of view since OI and 3D-Var are just different numerical algorithms for solving the same
statistical analysis problem (Lorenc 1986). In the present case, however, there are some important differences
between the two systems (e.g., in the way the vertical analysis problem is solved, and in the observation-error
statistics) which justify the comparison. Both EX3D and EXOI exhibit a trough of D20 in the eastern Pacific,
near 2ÆS, which is absent from both the EX4D analysis and TAO data. This spurious trough in EX3D and EXOI
will be discussed in more detail below.

Velocity and salinity analysis

Up to this point, the impact of the data assimilation on the assimilated field (subsurface temperature) has been
examined. How the assimilation of this field influences the climatology of other fields will now be investigated.
Figure 20 compares the 1993-96 average surface zonal velocity from the various experiments to the Reverdin
et al. (1994) climatology. This climatology was derived from drifting buoys and TAO current meters over the
January 1987 to April 1992 period, so only a qualitative comparison can be made. Figure21 provides com-
plementary information, showing the vertical structure of the 1993-96 averaged zonal currents in a meridional
section at 140ÆW. As noted by Vialard et al. (2001), the control experiment reproduces the main features of the
equatorial circulation: the two branches of the westward Southern Equatorial Current (SEC) near 2ÆN and 3ÆS
and the eastward NECC near 7ÆN. The NECC and southern branch of the SEC, however, are underestimated
in the control experiment (Fig. 20). The intensity of the NECC is clearly improved in both EX3D and EX4D
(from 0.1ms�1 in EXCL to more than 0.2ms�1 in EX3D and EX4D, compared to 0.3ms�1 in the Reverdin
climatology). This improvement of the NECC intensity can be linked to the steepening of the meridional tem-
perature gradient between 5ÆN and 10ÆN noted in Figs. 16b,c, which results in a stronger geostrophic zonal
current. Likewise, the southern branch of the SEC is improved in EX3D.

More striking is the large error in EX3D and EXOI in the eastern equatorial Pacific, which is associated with
a surfacing of the Equatorial UnderCurrent (EUC) and unrealistic eastward currents of 0.3ms�1. This feature
is linked through geostrophy to the spurious D20 trough south of the equator in EX3D and EXOI that was
discussed earlier (Fig. 18). It also appears in other univariate data assimilation systems. Bell et al. (2001)
and Burgers et al. (2002) argue that this feature is associated with a disruption to the main dynamical balance
along the equator between the wind-stress and the pressure gradient, caused when ocean mass field data are
assimilated in order to correct for the effects of wind-stress error. In particular, Bell et al. (2001) show that this
results in a spurious downwelling in the eastern Pacific. This downwelling also appears in EX3D (Fig.22c)
and in EXOI (not shown), but not in EXCL and EX4D (Figs. 22a,b). It tends to warm the upper ocean in the
eastern Pacific in EX3D and probably explains the large negative increments needed there to keep the analysis
close to the observations (Fig. 17d). Burgers et al. (2002) have shown that these unrealistic currents in the
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assimilation experiments can be eliminated by applying velocity corrections in geostrophic balance with the
mass field corrections (the meridional derivative of the geostrophic relation being applied close to the equator).
In 4D-Var, the analysis increment is constrained to satisfy the dynamics of the TL model so that the velocity and
temperature corrections generated by 4D-Var will already be balanced to some extent. This possibly explains
why EX4D does not display the spurious reversal of surface currents and downwelling in the eastern Pacific.

At the equator, the impact of the assimilation on the climatology of the subsurface currents can be assessed by
comparing with current meter data from TAO. Figure 23 shows the 1993-98 average zonal current profiles, at
three different locations, from TAO data and from the various experiments. The zonal currents from the control
experiment are already quite close to observations in the west but the intensity of the EUC is underestimated in
the central and eastern Pacific (Vialard et al. 2001). In the western Pacific (Fig.23a), the currents in EX3D, with
an eastward bias of up to 0�2ms�1 between 50 and 150m, are further from the observations than the currents in
EXCL and EX4D, which themselves are quite similar. In the central and eastern Pacific, close to the surface, the
currents in EX4D have a 0.1 to 0.2 ms�1 westward bias, while those in EX3D have a 0.25 to 0.3 ms�1 eastward
bias. The intensity of the EUC is much closer to the observed values in EX3D than in either EXCL or EX4D.
It is not clear why the EUC intensity is degraded in 4D-Var. The EUC depends on both the zonal pressure
gradient and the vertical distribution of zonal wind-stress through vertical mixing processes (McCreary 1981).
Since the temperature field fits the observations, the zonal pressure gradient near the equator should be in close
agreement with the true gradient. The underestimation of the EUC in EX4D thus possibly stems either from
too strong easterlies or from a too deep penetration of the wind momentum in the ocean.

Figure 24 shows the 1993-96 average of the salinity field at 140ÆW from Levitus (1982) climatology and from
the various experiments. All the experiments start from Levitus climatology, but drift away from it because of
model errors. In 4D-Var, because of the multivariate coupling induced by the TL dynamics, salinity corrections
are generated that can change the salinity content. Broadly speaking, the initial structures present in the Levitus
initial conditions are not lost. A closer examination, however, reveals that EXCL and EX3D display too fresh
water at about 12ÆN, whereas the EX4D salinity does not exhibit this drift. On the other hand, the salty waters
from the southern hemisphere gyre near 100m and 2ÆN spread too far north in EX4D compared to Levitus.

Figure 25 shows the logarithm of the average vertical diffusion coefficient in the whole TAO region (defined
here as 160ÆE to 80ÆW, 10ÆS to 10ÆN) for EX4D, EX3D, EXCL and EXOI. While EXCL has a physically-
sensible structure, with the vertical mixing coefficient decreasing toward very low values below the surface
mixed layer and shear zone of the EUC, both EX3D and EX4D display far too strong values of vertical mixing
below 100m. Closer inspection reveals that this behaviour is intimately linked to the background-error vertical
correlation scales. The vertical scales that were chosen (locally set to twice the thickness of the model level)
are sufficient to provide a smooth analysis in the vertical when the TAO profiles are complete, but when data
are missing at some levels, the smoothing provided by the vertical covariances is not sufficient to prevent
local instabilities which can generate strong spurious mixing over a time-scale of a few days. The missing
data are frequent enough to increase significantly the climatological value of the mixing at depth. This is one
illustration of the critical importance of the background-error covariances in both 3D- and 4D-Var. In EXOI, the
spurious convection is less intense in the TAO region, on average. This is probably linked to the fact that, in the
implementation of the OI that we are using, the analysis is done at each model level after vertical interpolation
of the observed profile to the model depths. While this is a poor approach when only a few levels are observed,
it is however less likely to produce statically unstable profiles than in our current implementations of 3D- and
4D-Var.

In this section, it was shown that the assimilation of in situ temperature data impacted significantly the ocean
mean state. The thermal structure is improved in the data assimilation experiments (tighter thermocline), with
4D-Var producing the closest fit to the assimilated data. However, the improvement of the climatology of the
assimilated variable relative to the control is not necessarily associated with an improvement in all of the model
parameters. In both 3D-Var and OI, the surface mean currents are clearly degraded in the western Pacific and
at the surface in the eastern Pacific. On the other hand, the structure of the NECC, of the southern branch of the
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SEC and of the EUC in the eastern Pacific are improved. In 4D-Var, the NECC is also improved, the currents
in the western Pacific are similar to those in the control, and the EUC is underestimated as in the control. Both
3D- and 4D-Var display excessive vertical mixing below the thermocline. This will be further discussed in
section 6.

5.2 Variability

In the previous section, the climatological mean structure of the analyses from the different experiments was
investigated. In this section, the variability of the analyses will be evaluated. Since the results from EXOI are
very similar to those from EX3D, they will not be discussed further in this section.

Interannual variability

Figure 26a shows the time-evolution of the monthly averaged temperature in the upper 300m (hereafter T300)
of the TAO region for the various experiments. It clearly shows that the heat content (which is proportional
to T300) in EXCL is too high when compared, for example, to the Levitus climatology. This is consistent
with the results of the previous sections which showed that the lower thermocline is too warm in EXCL. The
analysis increment acts to cool the upper ocean and restore the T300 to the level of the Levitus climatology.
While this takes about four months in EX3D (i.e., 12 assimilation cycles), this is achieved after the first 30-day
assimilation cycle in EX4D (in January 1993).

Figure 26b shows the temperature analysis increment from EX4D averaged over the same region, together with
its time-accumulated value. The analysis increment at the beginning of the first cycle cools the T300 by about
1.5ÆC over the TAO region which is approximately equal to the difference between the Levitus climatology
and the control at the beginning of 1993. After this abrupt initial cooling, the increment has a tendency in
EX4D to warm the ocean from 1993 to the end of 1996, clearly shown by the time-accumulated increment in
Fig. 26b. This means that, while the T300 of the model without assimilation has a tendency to be too warm,
the T300 at the end of each 4D-Var assimilation window has a slight tendency to be too cold. To compensate
for this tendency, a warm increment is then generated at the beginning of the next cycle. This illustrates how
the assimilation can change the basic balances in the model by changing the mean circulation and mixing. For
example, the increased vertical mixing in EX4D (Fig. 25) could be responsible for the tendency of EX4D to
become too cold, by increasing the exchanges of the upper ocean with the colder deep ocean. In EX3D, the
increments act to cool systematically the background, as shown in Fig.26c (note the difference in vertical scale
in panels b and c). It is probably largely due to the spurious downwelling in the eastern Pacific (Fig.22b) which
tends to warm the thermocline. The assimilation increments compensate for this by systematically removing
heat (the assimilation increment has contributed to cool the TAO region by 8ÆC by the end of EX3D). The
tendencies of the increments in EX4D to warm the model and in EX3D to cool it are interannually dependent,
as can be seen during the El Niño event in 1997-98.

In EX4D (and in EX3D, after April 1994), the T300 time-series of Fig.26a looks similar to that of EXCL with
a constant offset. This illustrates that, despite the large bias, the model is able to reproduce the phase of the
observed heat content variability from the specification of the observed wind. Closer examination, however,
shows that the variability has a larger amplitude in EX3D and EX4D than in EXCL (e.g., the T300 change
between the peak in November 1997 and the trough in August 1998 is 1ÆC in EXCL, compared to 1�6ÆC in the
assimilation experiments). This shows that the assimilation of in situ temperature data not only has an effect
on the mean state but also acts to correct the interannual variability of the heat content. This effect is, however,
more modest than the correction to the bias (e.g., the change in the variability is less than 0�6ÆC, while the
change in the T300 bias is about 1�4ÆC).

The assimilation thus mainly acts to correct for a bias in the temperature field which develops in the model
because of systematic model and/or forcing error. Of particular interest is the characteristic time it takes for this
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bias to develop. To determine this, experiments were performed in which the model was integrated freely (i.e.,
with the assimilation “turned-off”) starting from initial conditions given by the 3D- and 4D-Var analyses on
26 December 1993. These will be referred to hereafter as data retention experiments and denoted REX3D and
REX4D, respectively. Figure 27 shows the evolution of the mean and rms of the difference between the T300
of REX3D, REX4D and EXCL, with that of EX4D over the TAO region. EX4D is taken as reference here,
because we have seen that it is the experiment that fits the observed thermal data best (Fig.12). For the first two
months, the mean T300 of REX3D and REX4D stays very close to that of EX4D. However, the rms difference
with EX4D shows significant differences in their spatial patterns after the first month. These differences are
stronger in REX3D (about 1.3ÆC) than in REX4D (about 0.9ÆC).

Figure 28a,b shows a monthly average of the difference between the temperature field of the first month of
REX3D and REX4D, with that of EX4D. This shows clearly that, in REX4D, the model has not drifted far
from the observed equatorial thermal state. On the other hand, REX3D displays much larger errors in its
thermal state after one month (differences larger than 4ÆC). This is partly due to differences between the initial
thermal states of REX3D and REX4D (Fig. 28f), but also to the spurious downwelling in the eastern Pacific
which is present in the initial conditions of REX3D and which contributes significantly to warm the upper ocean
during the early stages of integration. After six months, REX4D has a mean error in the T300 which is slightly
larger than that of REX3D (Fig. 27a) , but an rms error which is smaller (Fig. 27b). This is not noticeable in the
equatorial section, which shows a very similar behaviour in REX3D and REX4D after six months (Fig.28c,d),
with both displaying some of the bias characteristics of EXCL such as an overly diffuse thermocline. After
1994, the mean error in T300 stabilizes at about 0.5ÆC for the period 1995-1997. Associated with the 1998 La
Niña, there is again a rise of the mean T300 error up to 1ÆC. The rms-error displays a steady rise from about
1.3ÆC at the beginning of 1995 to about 1.9ÆC at the end of 1998, but is always below that of EXCL (between
2.1ÆC and 2.7ÆC). The model is thus able to retain information about the improved initial thermal state for more
than 5 years. This suggests that, after the initial adjustment, the growth of error in the retention experiments
is linked to slow processes (e.g., horizontal and vertical mixing). The similarity between panels c, d and e of
Fig. 28 shows the tendency of the model to return to its own mean state when the assimilation is stopped.

Higher frequency variability

We have seen that the assimilation improves the thermal mean state and interannual variability. We will now
investigate how the assimilation affects higher frequency phenomena. TIWs are the largest contributor to
variability in the tropical Pacific at intraseasonal time-scales (e.g., see Baturin and Niiler (1997) for a description
of TIWs in observations). The impact of TIWs on the thermal field is strongest north of the equator in the
central and eastern Pacific. Figure 29a shows the daily D20 at 140ÆW, 5ÆN from TAO data and from the various
experiments, while Fig. 29b shows their difference. The TIWs manifest themselves as large oscillations (up
to 60m from peak to trough) at a 30- to 40-day time-scale. There is no TIW activity during the April-to-June
period.

EXCL and EX3D do not exhibit clear TIW variability. In EX4D, however, the TIWs are reproduced with
the correct phase and amplitude. The only significant misfit between EX4D and the data is observed in early
February and lasts only a few days. This implies that 4D-Var is able to fit variability in the data having a
time-scale shorter than the 30-day assimilation window. At first, this may seem to contradict the results of
section 4.2 which suggested that the TL model did a poor job of describing TIWs. However, it may point again
to the important role of the outer iterations in providing a feedback mechanism between the TL and nonlinear
models so that the model can eventually achieve a very close fit to the data.

The D20 trajectory of EX4D is smooth in the sense that there are no significant “jumps” at analysis time when
the increment is applied. This is also true of EX3D, because of the gradual way in which the increments are
applied in 3D-Var. Since this procedure acts as a low-pass time filter (Bloom et al. 1996), the smoothness of
the 3D-Var analysis is achieved at the expense of resolving TIW activity as illustrated in Fig.29. Whereas the
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(static) linear analysis wb�ti�� δwa�ti� of EX3D reproduces quite well the D20 variations associated with the
TIWs, the resulting nonlinear “analysis” trajectory wa�ti� fits these variations rather poorly.

Figure 30 shows the 15-day high-pass filtered time series of the D20 from the various experiments and TAO at
the same location as in Fig. 29. The TAO D20 exhibits clear variability at a time-scale close to 5 days. These are
most likely equatorially-trapped internal gravity waves (IGWs), with a peak-to-peak amplitude of about 10m.
The amplitude of these waves is very weak in both EXCL and EX3D. On the other hand, EX4D reproduces
these waves with both the correct amplitude and phase (the correlation of EX4D with the TAO time-series is
0.76 compared to 0.11 for EX3D and -0.04 for EXCL). With a 30-day assimilation window, 4D-Var is thus
able to fit phenomena at an approximately 5-day time-scale. This is an even more impressive demonstration of
the ability of the TL and adjoint models to carry information accurately through time. Such a close fit is not
necessarily a good feature, however. Indeed, as seen earlier, overfitting to the data in this region causes spurious
undulations in the analysed D20. Furthermore, energetic IGWs generally have small spatial scales, and are thus
not resolved correctly by the observation network. It may then be desirable to filter them out of the analysis.
This point will be discussed further in section 6.

Comparison with independent observations

We now turn our attention to a comparison of the analyses with independent observations. Figure31 shows
time-series of monthly-averaged equatorial surface currents from TAO moorings and the different experiments
at locations in the western (165ÆE�, central �140ÆW�, and eastern (110ÆW) Pacific. Because of gaps in the
TAO data record, the thick solid curves are not continuous. The systematic eastward bias of EX3D in the
central and eastern Pacific is again clearly apparent on these curves. Apart from this, all experiments have an
interannual variability which is in broad overall agreement with the observed one. A more quantitative estimate
of this agreement is provided in Table 1 which shows the correlation and rms-difference between the analysed
currents and TAO. The statistics show that all three experiments behave similarly in the western Pacific and are
in good agreement with TAO, with correlation and rms differences of about 0.9 and 0.13ms�1, respectively. In
the central Pacific, the strong eastward bias in EX3D shows up in the large rms difference (0.35ms�1). On the
other hand, the currents in EX4D are improved with respect to EXCL, with a correlation of 0.85 compared to
0.71. In the eastern Pacific, the currents in EX3D seem to have a good phase agreement with the observations
(correlation of 0.79), despite a strong bias that results in a large rms difference (0.4ms�1). EX4D and EXCL
behave similarly in the eastern Pacific.

Altimeter data provide another independent verification data-set for assessing the variability in the different
experiments. They give a measure not only of heat content but also of salinity content and thus will provide
complementary information to that in Fig. 26a. Figure 32 and Table 2 show a comparison of TOPEX/Poseidon
(T/P) sea-level data with the surface dynamic height field (relative to 2000m) computed from the different
analyses. The comparison is made on the interannual anomalies (with respect to the 1993-96 seasonal cycle)
averaged over the Nino3 and Nino4 regions. The statistics in Table2 show that, in both regions, EX4D compares
best with T/P, followed by EX3D and then EXCL as shown by decreasing correlations and increasing rms
differences in the two regions. In Nino3, in particular, EX4D is in very good agreement with the observed
sea-level for the whole period, while EX3D overestimates the sea-level rise during the 1997 El Nĩno and EXCL
underestimates the sea-level fall during the 1998 La Nĩna. In Nino4, EX3D and EXCL underestimate the sea-
level anomaly in 1993 and overestimate it in 1996. All three experiments tend to produce an overestimated
sea-level anomaly in Nino4 in 1997–98. Since Fig. 32 displays anomalies with respect to the 1993–98 period,
these discrepancies might be associated with a drift of the analysed dynamic height over the 1993–98 period. In
EXCL, these discrepancies are not surprising since Fig.26b already showed that the heat content variability in
EXCL was not fully consistent with one constrained by in situ temperature observations. For EX3D and EX4D,
whose heat content is well constrained by the observations in the TAO region, the inconsistency between the
dynamic height and T/P sea-level anomalies is largely due to inaccuracies in the salinity.
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Figure 33a shows the evolution of the average salinity in the top 300 metres (hereafter S300) of the TAO region
in the three experiments. All start from a value close to the Levitus climatology in January 1993. EXCL
drifts slowly towards fresher values (about 0.1 psu freshening after 6 years), probably due to a combination of
model and forcing error. This freshening is strongly accentuated in EX3D. In a separate study, using a different
OGCM, Troccoli et al. (2002) observed a similar freshening of the upper ocean in analyses produced with a
univariate OI scheme (the same one used as a reference in this study). They attributed this feature to spurious
vertical mixing and convection which was generated in regions where the density profile was destabilized
by making corrections for temperature while leaving the salinity field unchanged. The fact that the 3D-Var
system in this study is also univariate might suggest that the aforementioned problem is also responsible for the
excessive freshening seen in Fig. 33a. In the 4D-Var system, on the other hand, salinity corrections are induced
via the TL model constraint. The time-accumulated salinity increment in EX4D, averaged over the top 300
metres of the TAO region, is shown in Fig. 33b. During 1995, the 4D-Var increment adds an average of 0.2
psu in the top 300 metres of the TAO region, which is partially reflected in the average salinity time-series in
Fig. 33a. The tendency of the model to drift in EXCL seems to be partially corrected for in EX4D, except after
mid-1997 when EX4D exhibits a dramatic drop in the average salinity. This drop (0.2 psu of the S300 in one
year which corresponds to 5 mm day�1 of precipitation) is too large to be realistic, and is largely associated
with the 4D-Var salinity increments. This suggests that the constraints introduced by the TL dynamics are
probably not sufficient to constrain the salinity field fully, and that additional information may be necessary
(e.g., direct observations of salinity and/or T-S relationships).

In this section, we have shown that 3D- and 4D-Var improve the variability of the heat content; e.g., the
amplitude of the differences between the 1997 El Nĩno and 1998 La Niña are better reproduced in EX4D and
EX3D than in EXCL. 4D-Var is able to fit phenomena, such as TIWs and IGWs, which have characteristic time-
scales comparable to or much shorter than the width of the assimilation window. The sea-level variability is
also improved since it is very closely linked to the heat content variability. This improvement is most noticeable
in EX4D. The improvement of the variability of other variables (surface currents, salinity) is less spectacular,
however. The surface current variability is improved in EX4D in the central Pacific but very little in the eastern
and western Pacific. A salinity drift is introduced in both 3D- and 4D-Var, suggesting that additional constraints
on non-assimilated variables (such as salinity) are necessary in both 3D- and 4D-Var.
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Equatorial surface currents vs TAO

Longitude Experiment Correlation Rms difference
165ÆE EX4D 0.91 0.14
165ÆE EX3D 0.90 0.13
165ÆE EXCL 0.92 0.12

140ÆW EX4D 0.85 0.16
140ÆW EX3D 0.71 0.35
140ÆW EXCL 0.71 0.18

110ÆW EX4D 0.68 0.25
110ÆW EX3D 0.79 0.40
110ÆW EXCL 0.69 0.20

Table 1: Correlation and rms difference (in ms�1) between the 1993-98 monthly-averaged equatorial surface currents
from TAO and the different analyses.

Dynamic height vs T/P

Region Experiment Correlation Rms difference
Nino4 EX4D 0.87 2.49
Nino4 EX3D 0.83 3.55
Nino4 EXCL 0.54 4.80

Nino3 EX4D 0.98 1.30
Nino3 EX3D 0.97 2.01
Nino3 EXCL 0.94 2.57

Table 2: Correlation and rms difference (in cm) between the 1993-98 monthly-averaged sea level from TOPEX/Poseidon
and the model dynamic height from the different analyses.
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Figure 15: Zonal section along the equator of the 1993-96 average temperature in a) EX4D, b) EX3D, and c) EXCL. The
contour interval is 1ÆC.
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Figure 16: Meridional section along 140ÆW of the 1993-96 average temperature in a) EX4D, b) EX3D, and c) EXCL. The
contour interval is 1ÆC.
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Figure 17: 1993-96 average temperature profile in a) Nino4 and c) Nino3. Panels b and d show the average (thin curve)
and standard deviation (thick curve) of the increments in EX4D and EX3D. EX4D is displayed with a solid curve, EX3D
with a dashed-dotted curve and EXCL with a dashed curve.
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Figure 18: The 1993-96 average of the depth of the 20 ÆC isotherm from a) EX4D, b) EX3D, c) EXOI, and d) EXCL. The
contour interval is 20m, and the shaded regions indicate values shallower than 140m.
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 Figure 19: Root-mean-square value of the vertically-averaged temperature increments along 5 ÆN for EX4D (solid curve)
and EX3D (dashed-dotted curve). The thick vertical lines indicate the positions of the TAO moorings.
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a) Reverdin et al. climatology
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Figure 20: Surface zonal current climatologies. a) The Reverdin et al. (1994) climatology is representative of the January
1987 to April 1992 period. The climatologies from b) EX4D, c) EX3D, d) EXOI, and e) EXCL are averaged over the
1993-96 period. The contour interval is 0.1 ms�1, and the shaded regions indicate eastward currents.
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Figure 21: Meridional section of the 1993-96 average zonal current field at 140 ÆW from a) EX4D, b) EX3D, and c) EXCL.
The contour interval is 0.1 ms�1. Dashed contours indicate westward currents.
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Figure 22: The 1993-96 average vertical currents along the equator from a) EX4D, b) EX3D and c) EXCL. The contour
interval is 0.5 m day�1. Dashed contours indicate downwelling.
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Figure 23: Vertical profiles of 1993-98 monthly-averaged zonal currents at the equator from TAO (thick solid curve),
EX4D (thin solid curve), EX3D (dashed-dotted curve) and EXCL (dashed curve). The model values have been sampled
in the same way as the data (i.e., when there are gaps in the data, no model values are used).
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Figure 24: Meridional section at 140ÆW of the salinity climatologies from a) Levitus (1982), and the 1993-96 average
from b) EX4D, c) EX3D, and d) EXCL. The contour interval is 0.2 psu.
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 Figure 25: Vertical profile of the logarithm of the average vertical mixing coefficient in Nino3. The solid curve corresponds
to EX4D, the dashed-dotted curve to EX3D, the dotted curve to EXOI, and the dashed curve to EXCL.
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Figure 26: a) The averaged temperature analysis for EX4D (solid curve), EX3D (dashed-dotted curve) and EXCL (dashed
curve). The average is taken over the first 300m in the TAO region. The thick horizontal line indicates the Levitus cli-
matological value. b) The instantaneous (thin curve) and time-accumulated (thick curve) temperature analysis increment
from EX4D, averaged as in panel a. c) As in panel b but for EX3D. Note the difference in vertical scale between panels b
and c.
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Figure 27: a) Mean and b) rms of the difference between the average temperature of three experiments without data
assimilation with that of EX4D. EX4D is considered here as our best estimate of the true thermal state of the ocean. The
average is taken over the first 300m of the TAO region. The experiments without data assimilation are EXCL (dashed
curve) and two data retention experiments, REX3D (dashed-dotted curve) and REX4D (solid curve), initiated from the
EX3D and EX4D analyses on 26 December 1993.
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f) 3D-Var - 4D-Var on 26th Dec. 1993
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Figure 28: Vertical section along the equator of the difference between the temperature in the data retention experiment
REX4D (a free integration of the model starting from the EX4D analysis on 26 December 1993) and that of EX4D after
a) one month and c) 6 months. Panels b and d show the same quantities for REX3D (a free integration initiated from the
EX3D analysis on 26 December 1993). Panel e shows the difference between the 1993-96 averaged temperature of EX4D
and EXCL. Panel f shows the difference between the initial conditions of REX3D and REX4D. Note the tendency of the
models to return toward the mean state of the control experiment when the assimilation is stopped. The contour interval
is 1ÆC.
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a) D20 for TAO mooring at 140oW, 5oN
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b) Error in D20 at 140oW, 5oN
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Figure 29: a) Time-series of the daily averaged D20 during 1994 at 140 ÆW, 5ÆN. b) Time-series of the daily-averaged D20
error (difference from TAO) at each location. The thick curve in panel a is the (assimilated) TAO in situ data. In panels
a and b, the solid curves corresponds to EX4D, the dashed-dotted curves to EX3D, and the dashed curves to EXCL. All
time-series have been smoothed using a 5-day sliding average. The crosses in panel a indicate the D20 of EX3D computed
at the observation points from the linear (static) analysis wb�ti�� δwa�ti�. The dashed-dotted curve corresponds to the
nonlinear analysis trajectory wa�ti� obtained by applying the analysis increment gradually over a 10-day assimilation
window.

High-passed filtered D20 at 140oW, 5oN
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Figure 30: a) Time-series of the high-pass filtered daily-averaged D20 during 1994 at 140 ÆW, 5ÆN. The high-pass filter
retains all the time scales shorter than 15 days and thus isolates equatorially-trapped internal gravity waves. The thick
solid curve corresponds to TAO, the thin solid curve to EX4D, the dashed-dotted curve to EX3D, and the dashed curve to
EXCL. For clarity, the curves for EX3D, EX4D, TAO and EXCL have been shifted by -15m, -5m, 5m and 15m, respectively.
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c) 110oW
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Figure 31: Time-series of monthly-averaged surface zonal currents along the equator at a) 165 ÆE; b) 140ÆW; and
c) 110ÆW from TAO (thick curve), EX4D (solid curve), EX3D (dashed-dotted curve), and EXCL (dashed curve). A
(0.25,0.5,0.25)-filter was applied to each curve.
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a) Nino4
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Figure 32: Time-series of the monthly-averaged sea-level interannual anomaly from TOPEX/Poseidon data (thick curve),
and dynamic height from the model referenced to 2000m in a) Nino4 and b) Nino3. EX4D is the solid curve, EX3D the
dashed-dotted curve, and EXCL the dashed curve. A (0.25,0.5,0.25)-filter was applied to each curve.
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b) 4D-Var S increment
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Figure 33: a) The averaged salinity analysis for EX4D (solid curve), EX3D (dashed-dotted curve) and EXCL (dashed
curve). The average is taken over the first 300m in the TAO region (defined as 160 ÆE to 80ÆW, 10ÆS to 10ÆN). The thick
horizontal line indicates the Levitus climatological value. b) The instantaneous (solid curve) and time-accumulated (thick
curve) salinity analysis increment from EX4D (averaged as in panel a).
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6 Summary and discussion

6.1 Summary

Three- and four-dimensional variational assimilation systems have been developed for the rigid-lid version of
the OPA OGCM (Madec et al. 1998). The assimilation problem is defined by a cost function that penalizes
departures from the data and from a background estimate which is the result of a previous assimilation. The
control variable of the cost function is the initial condition at the start of each assimilation window. The cost
function is minimized using an incremental approach by which the full minimization problem, involving the
nonlinear OGCM as a constraint, is approximated by a sequence of quadratic minimization problems involving
linear constraints. The control variable of each quadratic cost function is an increment to the initial condi-
tions. In the incremental 3D-Var, the increment is transported forward in time by a persistence model. In the
incremental 4D-Var, a linearised version of the full OGCM is used to propagate the increment. The adjoint
of the linear model propagator is used to compute the gradient of the cost function with respect to the initial
condition increment so allowing the solution to be found iteratively using a gradient descent method. Once
the analysis increment is found, it is applied at the beginning of the assimilation window to derive the 4D-Var
analysis trajectory. In the case of 3D-Var, it is applied as a constant 3D forcing to the model equations over the
assimilation window as a way of minimizing spurious adjustments.

The systems have been applied to assimilate in situ temperature data in the tropical Pacific Ocean. The version
of OPA used in this study is described in Vialard et al. (2001). The model has a horizontal resolution of 1Æ

(zonal) by 0�5Æ (meridional) near the equator, and a vertical resolution of approximately 10m in the upper 150m.
It has realistic coastlines and bathymetry, and uses an elaborate vertical mixing scheme (Blanke and Delecluse
1993). Tangent-linear and adjoint models have been developed for all relevant dynamics and physics. Only
changes in vertical mixing coefficients associated with perturbations of the ocean temperature, salinity and cur-
rents are neglected. The present formulation of the background-error covariance matrix is univariate (there
are no cross correlations between temperature and salinity, or between the density field and currents). Hori-
zontal and vertical correlations are modelled using a diffusion equation. The resulting horizontal correlations
are approximately Gaussian and have been made anisotropic to take into account well-known differences be-
tween zonal and meridional length scales in the equatorial waveguide. At the equator, a zonal scale of 8Æ and
meridional scale of 2Æ were chosen for the temperature field. The vertical correlations are also Gaussian and
anisotropic, with a depth scale taken to be a function of the vertical grid-spacing in the model. In the upper
150m, the depth scale is approximately 20m. The variances of the background-error covariance matrix are
derived from the model climatology. The observations consist of in situ temperature data (primarily TAO and
XBTs) from the GTSPP data-set, manually quality-controlled at ECMWF. The observation operator is a linear
interpolation in space and also includes a daily averaging for TAO data. The observation errors are assumed to
be uncorrelated in time and space and to have a standard deviation of 0.5ÆC for TAO and 1ÆC for all other data.

Four experiments were performed for the 1993-98 period: a control experiment without data assimilation; an
experiment using the ECMWF version of the Smith et al. (1991) OI scheme, cycled with a 10-day window; an
experiment using 3D-Var, also cycled with a 10-day window; and an experiment using 4D-Var cycled with a 30-
day window. The validity of the persistence model (3D-Var) and of the TL model (4D-Var) was investigated.
It was shown that persistence was a reasonable assumption over 10 days, and that the TL model provides a
good description of the large-scale oceanic state over several months. However, because of the nonlinear nature
of convective and vertical mixing processes, the validity of the TL model could be degraded at small vertical
scales. Tropical instability waves (TIWs) are nonlinear oscillations with a time-scale of about one month.
At their horizontal scale, the TL model is also less accurate. Nevertheless, in 4D-Var a very good fit to the
observed TIWs was achieved. This result points to the important role of the outer iterations in providing a
feedback mechanism between the TL and nonlinear models so that the model can eventually achieve a very
close fit to the data.
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The convergence properties of the 3D- and 4D-Var have been examined. 3D-Var converges more quickly
than 4D-Var. In the latter, trajectory updates with the nonlinear model contribute significantly to reduce the
final value of the full (nonincremental) cost function, which illustrates the importance of the outer loops in
the incremental 4D-Var algorithm. Furthermore, the final values of the incremental and nonincremental cost
functions are shown to be very close, which provides a good measure of the consistency and efficiency of the
incremental approach.

Single observations experiments have been performed to illustrate the effect of the TL dynamics in modifying
the prior estimates of the background-error variances. The TL dynamics were shown to modify the variances
in a physically sensible way. The variances were homogenised and diminished in the mixed layer, and the
maximum value of the variance in the profile could be increased and displaced to the level of the background
thermocline, where thermal variability (and background error) is greatest.

A detailed examination of the fit of the different analyses to the assimilated data has been examined. The control
experiment displays a large bias below the thermocline, which is strongly reduced in the 3D-Var analyses and
almost entirely absent from the 4D-Var analyses. The rms difference between the analyses and observations is
also very much reduced in the thermocline region. Whereas it is about 2.8ÆC in the control, it falls to 1.4ÆC in
3D-Var and to below 0.5ÆC in 4D-Var, which is less than the specified standard deviation of observation error.
Over the TAO region, the spatially-averaged rms difference between the observations and the 3D- and 4D-Var
analyses is stationary in time (equal to 1ÆC in 3D-Var and 0.4Æ in 4D-Var), and in particular does not exhibit
any dependence on the number of observations or interannual variability.

The 1993-98 climatologies of in situ temperature show that the overall effect of assimilation is to greatly reduce
a model bias. The lower thermocline is colder in the assimilation experiments, and the thermocline is tighter.
Experiments initiated with 3D- and 4D-Var analyses were performed to determine how long improvements in
the heat content could be preserved when the assimilation stops. After one month, the experiment starting from
the 4D-Var analysis was still close to the observed thermal state, whereas the one starting from the 3D-Var
analysis degraded more quickly especially in the eastern Pacific. At longer lead times, the two experiments
displayed similar behaviour, with a significant bias developing in the thermocline in both after about 6 months.
Even so, improvement of the heat content is retained for more than 5 years. This is in marked contrast to the
earlier studies of Moore and Anderson (1989) and Derber and Rosati (1989) where information obtained by
assimilation was lost quickly through the action of internal Kelvin waves.

The assimilation improved the mean analysed thermal state which in turn resulted in an improvement in the
intensity of the NECC. However, the assimilation did not result in a global improvement of the current field. In
4D-Var, as in the control, the EUC was underestimated by 0.4ms�1. The EUC was better reproduced in 3D-Var
and OI but, in those experiments, the surface currents exhibited a large eastward bias in the eastern Pacific, as
well as spurious downwelling.

Not only was the mean thermal state improved by the assimilation, but also the variability, with the 3D- and 4D-
Var analyses showing a larger, more realistic interannual variability in heat content and sea level than the control
analyses. The fit of the 4D-Var analyses to the assimilated thermal data was also very close at time-scales of
the same order or shorter than the width of the assimilation window. The 4D-Var (nonlinear) analysis trajectory
closely followed changes in the thermal state associated with TIWs (30-40 day time-scale) and internal gravity
waves (IGWs) (5-7 day time-scale). The 3D-Var static (linear) analysis also captured variability associated
with TIWs. The 3D-Var (nonlinear) analysis trajectory, however, did not reproduce this variability because of
the temporal filtering properties of the procedure used to merge the analysis increment into the model. The
variability of the surface currents was also investigated. The current-field variability in 4D-Var was better than
the control in the central Pacific and as good in other regions. The salinity field displayed a strong drift toward
fresher values during the whole 1993-98 period in the 3D-Var analyses, and at the end of the experiment in the
4D-Var analyses.
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6.2 Discussion

In this paper, we have assessed the potential of incremental 3D- and 4D-Var in generating ocean analyses by
comparing them to more classical methods; e.g., a run without assimilation and OI. The strong points and
limitations of the assimilation systems are discussed below.

4D-Var, which has a 30-day window in our experiments, is able to fit the data at equivalent or shorter time-
scales: IGWs with periods near 5 days and TIWs with periods near 30 days are both well represented. While
fitting observations at the time-scale of IGWs is not necessarily a good feature, as will be discussed later, this
is nonetheless an impressive illustration of the ability of 4D-Var to fit data over an entire 30-day window. The
3D-Var analysis trajectory does not achieve such a close fit, mainly due to the gradual way in which the analysis
increment is fed into the model, which was done out of necessity to avoid spurious adjustment. The overall
effect is that 4D-Var fits the data within the specified standard error whereas 3D-Var does not. In this respect,
the introduction of dynamical constraints is very positive.

As recently pointed out by Fisher and Andersson (2001), it is not obvious if the better performance of 4D-Var
over 3D-Var can be attributed exclusively to the implicit flow-dependency of the background-error covariances
in 4D-Var. The close fit to the data obtained in 4D-Var can partly be explained by Fig.10 which suggests that,
in all regions, the TL dynamics acts to decrease the weight given to the background state near the thermocline
where the error variance is increased. However, this close fit is possibly also the result of another desirable
property of 4D-Var. Referring to the expression for the analysis increment in (12), we note that the model
dynamics can influence the 4D-Var analysis in two separate ways. First, through the adjoint model in GT

which is used to propagate the weighted innovation R�1d back to the analysis time at t0, and second, in the
weighting factor Pa �

�
B�1 �GT R�1G

�
�1

which corresponds to the analysis-error covariance matrix. In
4D-Var, the action of the TL and adjoint models is to introduce a flow dependency in the term GT R�1G of
Pa. Fisher and Andersson (2001) present a simple example in which 4D-Var produces superior results to
3D-Var even when the background-, analysis- and forecast-error covariance matrices are all stationary. This
superiority is attributed to the interpolation properties of the adjoint model which is used to propagate the
weighted innovations as mentioned above. They provide further experimental evidence from the ECMWF
meteorological 4D-Var system to suggest that covariance evolution is not the dominating effect. In our study,
the ability of 4D-Var to propagate information in time is demonstrated by the close fit to phenomena at the 5-
day time-scale (IGWs) over a 30-day window, which might suggest that it is also an important feature here. To
what extent these effects are responsible for the main differences observed between our ocean 3D- and 4D-Var
experiments is a matter for further research.

Whereas the assimilation methods improve the fit to the assimilated data, they can have a negative effect on
the other fields. This is particularly true for 3D-Var (and OI) which display spurious mean eastward currents
at the surface, downwelling in the eastern Pacific, and a salinity drift towards lower values. These problems
can be traced back to the absence of multivariate balance constraints, for example, in the background-error
covariance matrix (B). Since only the thermal field is corrected in 3D-Var and OI, and not salinity and currents,
this can lead to adjustment problems. These problems are reduced in 4D-Var. Despite a univariate B, the
dynamical constraint in 4D-Var results in salinity and current-field corrections that are partially in balance with
the thermal increments, leading to better surface currents and reduced salinity drift. However, there are still
some areas where 4D-Var is not as good as the control. In particular, the EUC is underestimated in 4D-Var and
the salinity content displays some unrealistic variations. This probably illustrates that, in 4D-Var, dynamical
constraints alone are not sufficient to transfer information across model variables. A multivariate B could
improve the analysis of the unobserved variables. In 3D-Var, this could alleviate problems associated with the
surfacing of the EUC in the eastern Pacific and salinity drift (Burgers et al. 2002; Troccoli et al. 2002)

It has been shown that overfitting might be a problem in our 3D- and 4D-Var experiments. Overfitting can
result in unrealistic oscillations being generated between observation points (e.g., see Daley 1991) and this
feature typically appears between TAO moorings at about 5-8ÆN in both assimilation experiments. The 4D-
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Var analyses reproduce, at the observation points, the variability in the thermal field associated with IGWs.
However, the TAO array is not dense enough to resolve these waves properly so it may be wiser to filter them
out altogether. For example, this could be done by treating them as representativeness error and modifying
the observation-error covariance matrix �R� accordingly. Furthermore, a better representation of R would al-
low more information to be extracted from the background-minus-observation and analysis-minus-observation
residuals for ultimately improving the estimate of B (Hollingsworth and Lönnberg 1989; Daley 1992). A pre-
cise tuning of B and R is essential to avoid overfitting. The introduction of additional (weak) constraints in the
assimilation method could also help to reduce the amount of “noise” in the analysis. Possibilities include the use
of a normal mode initialization scheme to restrict the analysis to the slow manifold of the system (Moore 1990),
or the inclusion of an additional term in the cost function to penalise short time-scales (Polavarapu et al. 2000).

The assimilation window that has been used in the 4D-Var experiments in the present study is 30 days. In prin-
ciple, we would like to use a longer assimilation window to allow greater dynamical propagation of information
(e.g., it takes a first baroclinic mode Kelvin wave two months to cross the Pacific Ocean basin). However, the
length of the assimilation window is limited by the validity of the TL model, and by the hypotheses that the
model and forcing are perfect. We have seen that the TL approximation was accurate at the large scales, but
somewhat limited in the small scales because of nonlinear processes associated with TIWs, convection and
vertical mixing. However, there is scope for improving the physics in the TL model. The assumption that the
model and the forcing are perfect is obviously not true, as illustrated by the bias that develops in the model
when data assimilation is “turned-off”. Diagnostics on the analysis increments and analysis-minus-observation
residuals suggest, however, that model and forcing error are not a major problem with a 30-day assimilation
window.

The background- and observation-error covariance matrices used in this study were derived somewhat heuris-
tically, with computational efficiency and simplicity being an important consideration. The structures are rea-
sonable for a first estimate but the statistical parameters have not been tuned objectively. We are currently in
the process of developing a more comprehensive background-error covariance matrix, including, for example,
multivariate constraints between temperature and salinity, and between density and currents. The correla-
tion model is also being extended to include non-Gaussian functions and flow-dependent coordinate surfaces
(Weaver and Courtier 2001). Furthermore, we are currently using TAO data to develop an improved estimate of
the observation-error covariance matrix which, in particular, accounts for IGWs as a source of representative-
ness error. The importance of model and forcing error should also be assessed. For example, in an equatorial
oceanographic context, where large spatial scales are deterministically related to the wind forcing, it might be
desirable to control forcing or model error as well as initial conditions. Some preliminary studies on these two
aspects are currently being undertaken with the present system.

The present 3D- and 4D-Var systems have been applied to the tropical Pacific basin. Global versions for a free-
surface version of OPA are being developed. This version will include some important new parametrisations to
the physics such as isopycnal and eddy-induced diffusion. The use of improved physics might extend the period
for which improvements brought by assimilation, such as a tightening of the thermocline, are retained. Sources
of information other than in situ temperature data are available (salinity, current meter data, altimetry,...). As a
first step towards assimilating more observation types, we will be introducing sea-level data from altimetry in
the global systems. Finally, one of the ultimate goals behind the development of the assimilation systems is to
provide improved ocean analyses for seasonal forecasting. The quality of the present analyses will thus have to
be assessed in terms of forecast skill using a coupled ocean-atmosphere model.
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Appendix A: Inner-outer loop configuration

We define a sequence, k � 1� ����K, of quadratic minimization problems where K is the total number of state-
trajectory updates (or outer) iterations to be performed. The sequence of minimization or inner iterations is
denoted by m � 1� ����Mk where Mk defines the total number of inner iterations performed on the k-th outer
iteration.

Let wk � wk�t0� denote the initial state vector on the k-th outer loop. The increment δwk � δwk�t0� on the k-th
outer loop is defined here as the difference between wk and the background: i.e., define wk � wb �δwk where
w0 � wb and δw0 � 0. The state wk�ti� is evolved according to the nonlinear model (2). A first-order expansion
of (2) about the previous estimate, wk�1�ti�1�, gives

wk�ti� � M�ti� ti�1��wk�1�ti�1�� � Mk�1�ti� ti�1� �wk�ti�1� � wk�1�ti�1��� (36)

which can be written as a function of δwk�ti�1� by adding and subtracting a factor Mk�1�ti� ti�1��wb�ti�1�� on
the right hand side of (36):

wk�ti� � M�ti� ti�1��wk�1�ti�1���Mk�1�ti� ti�1�δwk�1�ti�1��Mk�1�ti� ti�1�δwk�ti�1�� (37)

Note that the first two quantities on the right hand side of (37), being defined with respect to the previ-
ous outer iteration k� 1, are known and hence fixed on the k-th outer iteration. Both the known increment
δwk�1�ti� � Mk�1�ti� ti�1�δwk�1�ti�1�, and the unknown increment δwk�ti� � Mk�1�ti� ti�1�δwk�ti�1� which
is to be estimated on the current outer iteration, are propagated by the linear model operator, Mk�1, defined
with respect to the reference state wk�1�ti�. In a similar way, we can allow for a progressively updated linear
observation operator Hk�1

i . In this study, Hi is a linear interpolator so is equivalent to Hk�1
i .

On the k-th outer iteration, the preconditioned cost function (14) can be written as

J�vk� �
1
2
�vk�T vk �

1
2

�
Gk�1 δwk�dk�1

�T
R�1

�
Gk�1 δwk�dk�1

�
(38)

where
δwk � Uvk� (39)

and dk�1 � ������dk�1
i �T � ����T with

dk�1
i � yo

i � Hi�wk�1�ti���Hk�1
i δwk�1�ti�� (40)

Equation (38) has the same basic form as (14). The effective observation vector (40) now contains an additional
term Hk�1

i δwk�1�ti� which is nonzero when k � 1. At the beginning of each inner loop (m � 1), the first-guess
of δwk is taken to be the value of the increment obtained on the last inner iteration of the preceding outer loop
(k� 1). Thus, when m � 1, δwk and δwk�1 are identical and the extra term Hk�1

i δwk�1�ti� in (40) simply
cancels with the i-th element of Gk�1 δwk in (38) (i.e., Gk�1

i δwk � Hk�1
i δwk�ti�). These terms differ only after

the first inner iteration (m � 1).

Rather than defining the increment to be the difference from the background state, we could have defined,
following Rabier et al. (2000) and Lorenc et al. (2000), the increment to be the difference from the previous
reference state as suggested by (36): i.e., define wk � wk�1 � δ�wk where δ�w0 � 0. In terms of δ�w, the cost
function on the k-th outer iteration reads

J�vk� �
1
2
�vk�T vk �

1
2

�
Gk�1 δ�wk��dk�1

�T
R�1

�
Gk�1 δ�wk��dk�1

�
(41)

where
δ�wk � Uvk� wk�1 �wb� (42)
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and �dk�1 � �������dk�1
i �T � ����T with �dk�1

i � yo
i � Hi�wk�1�ti��� (43)

The two formulations are formally equivalent. The alternative definition of the increment simply leads to differ-
ences in the expressions for the effective observation vector (43) and preconditioning transformation (42). The
second of the two formulations is slightly less costly, however, as it requires one less linear model integration
per outer iteration when k � 1. The extra linear model integration is needed in the first formulation to compute
the term Hk�1

i δwk�1�ti� in (40) at the beginning of each inner loop, except the first when δw0 � 0. In the second
formulation, δwk is always equal to zero at the beginning of each inner loop so the initial residual in (40) can be
computed immediately. Despite this slight computational advantage, for historical reasons, we have employed
the first of the two formulations.
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Appendix B: Treatment of the velocity control variables in 4D-Var

B.1: The independent velocity variables in a rigid-lid, volume-conserving ocean model

In a rigid-lid, volume-conserving model, the number of degrees of freedom in the horizontal velocity field
u� �u�v� is limited by the nondivergence constraint on the vertical integral of u. Let �u�v� � �ul �vl ; l � 1� ����L�
where L denotes the number of model levels. In each level l, �ul �vl� can be expressed as the sum of the vertically
averaged (barotropic) velocity �u�v� and the deviation from the vertically averaged (baroclinic) velocity �	ul �	vl�.
Since the vertically integrated velocity field is nondivergent, the barotropic velocity vector can be uniquely
determined from a two-dimensional (2D) streamfunction ψ. Furthermore, since the vertical integral of the
baroclinic components vanishes, the baroclinic velocity in one level, which for convenience is taken to be the
surface level (l � 1), can be determined from those in the remaining L�1 levels (l � 2� ����L); the independent
baroclinic components are then �	u�	v� � �	ul �	vl ; l � 2� ����L�. Formally, this results in the following system of
equations for computing the 2L components of �u�v� from the 2L�1 components of �ψ�	u�	v�;

�u�v� �

�
1
D
	k�∇ψ

�
h

(44)

�	u1�	v1� �

�
� 1

∆s1

L

∑
l�2

	ul∆sl �� 1
∆s1

L

∑
l�2

	vl∆sl

�
(45)

�ul �vl� � �u�v���	ul �	vl�; l � 1� ����L (46)

where ∇ is the 3D gradient operator, 	k � �0�0�1�, � �h denotes the horizontal component, D is the depth of
the ocean floor referenced to the surface z � 0, and ∆sl is the local depth element at the l-th model level. The
discretized version of (44)–(46) may be represented symbolically by

�ψ�	u�	v� S�I
u�� �u�v� (47)

where S�I
u is a rectangular matrix-operator, the superscript �I denoting generalized right inverse. (The reason

for introducing the generalized inverse will become clear shortly.)

Now, let Su denote a generalized left-inverse operator that maps �u�v� into �ψ�	u�	v�;
�u�v�

Su�� �ψ�	u�	v� (48)

Su may be interpreted as a simplification operator (Ide et al. 1997) since it acts to reduce the number of de-
grees of freedom in the state vector, in this case by transforming to a subspace in which the vertically inte-
grated velocities are nondivergent. The baroclinic components can be obtained immediately from (46), while
the streamfunction can be computed by taking the curl of (44) and solving the resulting 2D elliptic equation
(Bryan 1969): �

∇�



1
D
	k�∇ψ

��
z
� �∇� �u�v�0��z (49)

�	ul �	vl� � �ul �vl�� �u�v�; l � 2� ����L (50)

where �∇� �z denotes the vertical component of the 3D curl operator.

By construction, Su and S�I
u verify the following properties (Strang 1986);

Su S�I
u � Iu (51)

S�I
u Su � ΠΠΠu with ΠΠΠ2

u � ΠΠΠu� (52)
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where Iu is the identity matrix on the space of vectors �ψ�	u�	v�, and ΠΠΠu is a projection matrix on the space of
vectors �u�v�. The general expression for Su satisfying both (51) and (52) is

Su �
�

S�I
u

T
WuS�I

u


�1

S�I
u

T
Wu (53)

where Wu is an appropriate metric on �u�v�-space. Taking Wu to be a diagonal matrix of volume elements
at �u�v�-points and using the expression for S�I

u in (44)–(46), it is straightforward to verify that Su defined by
(49)–(50) is consistent with the properties (52) and (53). The explicit expression for the projection operator in
(52) is

�u�v�
ΠΠΠu��� �u�v��



�u�v��

�
1
D
	k�∇ψ

�
h

�
� (54)

with ψ being computed from the elliptic equation (49). The action of the operator (54) is first to compute the
divergent part of the vertically integrated flow (the term between large parentheses) and then to remove it from
the total velocity field in each level.

B.2: Role of the velocity projection operator

The operators Su and S�I
u are embedded within the model operator that acts each time step on the state vector

w. At the beginning of each time step, the right inverse S�I
u maps �	u�	v�ψ� into �u�v� which is the physical field

on which the sequence of model operations is performed. The final operation on each time step then consists
of computing the nondivergent part of the vertical integral of �u�v� by mapping �u�v� back into �	u�	v�ψ� with
the left inverse Su. On repeated time steps, this is equivalent to applying the projection operator at the end of
each time step. This allows us to express the ocean model (2) more conveniently in terms of the physical state
vector x � �u�v�θ�S�T since

x�ti� � ΠΠΠM�x��ti� ti�1��x�ti�1�� (55)

where M�x� denotes the model operator acting on x � S�Iw, which is related to the model operator acting on
the independent state vector w � �ψ�	u�	v�θ�S�T by M � SM�x�S�I . The upper diagonal of the block-diagonal
operators ΠΠΠ, S and S�I contains ΠΠΠu, Su and S�I

u respectively, while the lower diagonal is the identity matrix.
Similarly, the TL model (4) can be expressed as

δx�ti� � ΠΠΠM�x��ti� ti�1�δx�ti�1� (56)

where M � SM�x�S�I and δx � S�Iδw.

Using the projection operator, the preconditioned form of the minimization problem (14)–(15) can be recast
entirely in terms of the more practical variables δx. Introducing the operators Gi�x� � Hi�x�

�M�x��ti� t0� and

G�x� � �����Gi
T
�x�� ����

T , where Hi�x� � Hi S and �M�x��ti� t0� � ΠΠΠM�x��ti� ti�1� � � �ΠΠΠM�x��t1� t0�, and noting from

(22) that the preconditioning transformation can be written as U � SB1�2
�x� where B1�2

�x� � ΣΣΣΛΛΛL1�2 W�1�2, then
(14)–(15) become

J�v� �
1
2

vT v �
1
2

�
G�x� δx�d

�T R�1 �G�x�δx�d
�

(57)

where
δx � S�I Uv � ΠΠΠB1�2

�x� v� (58)

Since v � 0 initially, the action of ΠΠΠ in (58) is obviously redundant on the first iteration since δx � 0 is a
trivial member of the allowed subspace of vertically-integrated nondivergent velocities. The action of ΠΠΠT in
the adjoint counterpart of (58), however, must be retained to ensure that the gradient is projected onto the dual
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of the allowed subspace (Eq. (17)). Since the gradient descent routine adjusts v as a linear combination of its
first-guess and the gradient, the new estimate will also be in the allowed subspace, so that the action of ΠΠΠ in
(58) will actually be redundant on all iterations providing the gradient is always projected using ΠΠΠT .

Thacker and Raghunath (1994) argue that choosing �u�v� as control variables, and restricting the minimization
to the allowed subspace as discussed above, results in a much better conditioned minimization problem than
one in which �ψ�	u�	v� are optimized directly. In their examples, however, there was no background term and
a projection operator was designed explicitly for the gradient of the observation term. In our system, the
projection operator appears naturally as a result of the preconditioning transformation (58) and by using the
simplification operator S to formulate the background-error covariances of �ψ�	u�	v� indirectly in terms of those
for �u�v� (i.e., B � SB�x�ST �.

B.3: The elliptic solver in the tangent-linear and adjoint models

In OPA, the elliptic equation in (49) is solved iteratively using a preconditioned conjugate gradient method
(PCG). Each iteration of PCG involves the computation of scalar products of variables that depend on the
state vector. These computations render the numerical algorithm nonlinear even though the underlying elliptic
equation is linear. A brute-force derivation of the TL and adjoint of the PCG solver would be both complicated
and undesirable.

Two alternative procedures have been tested here. The first is to apply a linear elliptic solver, successive over-
relaxation (SOR), in the TL and adjoint, while retaining the more efficient PCG solver in the nonlinear model.
The exact adjoint of SOR is straightforward to derive and no extra memory (from nonlinear terms) is required.
The second procedure is to apply the PCG in the TL model and to exploit the self-adjointness property of ΠΠΠu,
the operator in which PCG is employed, to deduce the adjoint. The self-adjointness property follows from (52)
and (53);

ΠΠΠT
u � Wu ΠΠΠu W�1

u � (59)

Therefore, defining ΠΠΠT
u in the adjoint model to be the right hand side of (59) allows us to employ the same

projection operator �ΠΠΠu� in the adjoint model as in the nonlinear and TL models. In practice, the adjoint
will only be approximate because of the iterative nature of the algorithm. The adjoint can be made as accu-
rate as desired by adjusting the convergence threshold of the solver. In the 4D-Var experiments described
in this paper, a convergence threshold was chosen such that the adjoint had a relative error of ε � �1�
δuT ΠΠΠT

u Wu δu��ΠΠΠuδu�T Wu δu � � 10�5 for arbitrary horizontal velocity perturbations δu. Requiring higher
accuracy resulted in negligible differences in our experiments.

Of the two adjoint solvers, the second was preferred because of its better efficiency and vectorization properties.
In general, the 4D-Var experiments on the Fujitsu VPP700 required 40% less CPU time with PCG than with
SOR.
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