A new operational medium-range numerical weather forecast system of CHINA

NWPD/NMC/CMA
(Beijing,CHINA)

Organizational Chart of CMA

Role of NWPD: Research, development and support of the models meant for operational weather prediction

Operational Numerical Forecast Systems

- Main Numerical Forecast Systems
 - Global Forecast System (T213)
 - Regional Forecast System (HLAFS)
 - Typhoon Track Forecast System (MTTP)
 - Mesoscale Forecast System (MM5)
 - Ensemble Forecast System (T106)

- Environmental Meteorology Forecast Systems
 Based on Main Model Systems
 - Forest Fire Meteorological Condition Forecast System
 - Nuclear Contamination Dispersion and Transportation Forecast System
 - Ultraviolet Index Forecast System
 - Dust Devil Forecast System
 - Air Quality Forecast System

Structural Chart of the Operational NWP Systems

New Medium-range Forecast System T213

Put into full operation

in place of previous operational system (T106) on September 1st 2002.

Runs twice a day

from 00 UTC up to 72h range and from 12 UTC up to 10days range

New Medium-range Forecast System T213

Runs on the massive parallel computer

the first operational medium-range weather forecast system

Operational machine: IBM/SP with 88 processors and peak calculation speed up to 80 GFLOPs

New Medium-range Forecast System T213

Contituents of the New System

T213L31 global spectral model

Data preprocessing

Optimum Interpolation (OI) analysis

Post-processing

Job running watching

Field database, archiving, forecast verification, product making and distribution

Global data assimilation system flow chart

Data assimilation

- Operational: <u>optimized interpolation</u>
- upgrading the previous operational 3D-OI with a resolution of T106L19
- Optimized and Parallelized using MPI
- Using 8 CPU of IBM sp
- 10 minutes to complete each assimilation
- Test running: <u>3Dvar</u>

Global spectral model T213L31

- Based on global model contituent of IFS March, 1998 from ECMWF
- Optimizing subroutines
 with large quantity of computation (FFT, Legendre transformation)
- Using asynchronous and nonblocking message passing
 - increase the speed of communication
- Joint application of distributed memory and shared memory parallelization
 reduce communication and memory use

Using 6 nodes (48 CPUs), 10 days forecast can be finished in 2.5h

Global spectral model T213L31

- Dynamical Feature
- triangular truncation, resolving 213 waves around a great circle on the globe;31 levels (up to 10 hPa).
- Semi-lagrangian, semi-implicit temporal integration, time step 15minutes.
- use of a reduced Gaussian grid.
- Hydrostatic.
- Forth order linear horizontal diffusion.

Global spectral model T213L31

- Physical process
- orography (terrain height, US Navy data-set, 10 minutes of arc resolution)
- three surface and sub-surface levels (allowing for vegetation cover, gravitational drainage, capillarity exchange, surface and sub-surface runoff, deep-layer soil temperature and moisture),
- **clouds** (high, medium, low, convective)
- stratiform and convective precipitation,
- carbon dioxide (345 ppmv fixed), aerosol, ozone

- diffusion
- ground and sea roughness, ground and seasurface temperature, ground humidity, snowfall, snow-cover & snow melt
- radiation (incoming short-wave and out-going long-wave)
- **friction** (at surface and in free atmosphere)
- gravity wave drag
- evaporation, sensible and latent heat flux

Verification of T213 in last year

---parallel running of T213 and T106

500 hPa height monthly mean anomaly correlation coefficient comparision of T213/T106 in June-August, 2002

500 hPa height anomaly correlation coefficient evolution with day in North Hemisphere (April 7-September 20, 2002)

500 hPa height anomaly correlation coefficient evolution with day in East Asia (April 7-July 20,2002)

Verification Statistic of Precipitation

■ Threat Score

Forecasting Bias

B=(NA+NB)/(NA+NC)

Standard station: 400 **stations**;

• grid standard station; interpolation

rank:

- Light rain: $0.1 \text{ mm} \sim 9.9 \text{mm}$
- Moderate rain: $10.0 \text{ mm} \sim 24.9 \text{mm}$
- **Heavy rain:** 25.0 mm \sim 49.9mm
- **Storm rain**: 50.0 mm∼99.9mm
- Torrential rain: 100.0mm \sim

Rainfall forecast Comparision of T213 and T106 (12-36h) with observation (18-19, august, 2001)

Real SST Experiment

Real SST Experiment

- The main problems exist in forecasting precipitation of T213 in CHINA in July to August in 2001.
 - the typhoon rainfall often lies southerly to the main land of CHINA and lies on the sea.
- Case Experiment
 Five typhoon synoptic procedures which affected CHINA in July to August of 2001

sst difference(real-1997)-2001070412

T213:Mean Sea Level (MSL) Pressure [HPa] NMC/(T213:Mean Sea Level (MSL) Pressure [HPa] NMC/CM

Rainfall Verification in Summer of 2003

Comparision of rainfall verification for CHINA with different models (June, 2003)

Comparision of rainfall verification for CHINA with different models (July,2003)

Comparision of rainfall verification for CHINA with different models (August, 2003)

Prospects for development

Prospects for development

improvement to operational system

- Realization of SETTLS(Stable Extrapolation Two-Time_level Scheme): with the kindly help of Dr. Hortal of ECMWF
- Use of linear gaussian grid
- raise of resolution to T_L511L60(before 2008)
- More physical components in the models
- Improvement of assimilation algorithms, with more efforts put on satellite and radar observation data
- Development of surface analysis

Prospects for development

Development of a unified model

- Unified grid model
- Common dynamic frame used by multiply scale
 - global, mesoscale and climate model
- 4Dvar with stress on the use of satellite data
- Physical processes suitable to different sacles
- Suportive environment
 - program coding standards, graphic package, interface for research and development, product interpretation

The structure of the next generation numerical forecast system of CHINA

Illustration of multiple scale unified model

The unified model and assimilation system of CHINA

he increase of resolution of numerical forecast models as time goes on

year model	1999	2 0 0 1	2 0 0 5	2 0 0 8
mesoscale	1 5 K M	6 K M	3 K M	1 K M
regional	5 0 K M	2 5 K M	1 5 K M	5 K M
global	1 2 0 K M	6 0 K M	4 0 K M	2 0 K M
ensemble	2 0 0 K M	1 2 0 K M	8 0 K M	6 0 K M

