Simulation of the tropical intraseasonal oscillation with a coupled GCM

Silvio Gualdi

<u>Istituto Nazionale di</u> <u>Geofisica e Vulcanologia</u>

<u>Bologna, Italy</u>

GEOFISICA e VULCANOLOGIA

OBJECTIVE

 $\boldsymbol{\cdot}$ assess and document the ability of a CGCM to simulate the MJO

DATA USED

- daily data from a 100-year coupled run
- NCEP/NCAR reanalysis and observed OLR (AVHRR-NOAA)
- northern extended winter (November-March)

ANALYSIS PERFORMED

- EOF analysis of intraseasonal (20-100 day) OLR anomaly
- \cdot EOF PCs used to define a MJO index
- composites of intraseasonal anomalies

PLANE OF THE TALK

the model and its climatology

- the simulated MJO:
- main features
- propagation mechanism
- T30 vs T106

• <u>summary</u>

The model (SINTEX)

NORTHERN WINTER MEAN (ndjfm)

observations

model

SST (HadISST)

NORTHERN WINTER MEAN (ndjfm)

observations

model

olr (NOAA)

prec (Xie-Arkin)

OLR STANDARD DEVIATION

observations

total anomalies

model

band-pass (20-100 days) anomalies

OLR EOF ANALYSIS

Nov-Mar intraseasonal (20-100 day) anomalies

OBSERVATIONS

MODEL

MODEL OLR EOF ANALYSIS

A MJO INDEX BASED ON THE EOF PCs

strong events: pc > 2 0

eastward propagation criteria as in Woolnough et al. (2000) and Innes and Slingo (2003)

OLR < 0. convection 45° to the east of the reference location for 10-19 days before OR 45° to the west of the reference location for 10-19 days after OR 25° to the west 3-14 days before AND 25° to the east 3-14 days after

> MODEL RUN: 42 MJO EVENTS IN 100 SIMULATED WINTERS OBSERVED OLR: 16 MJO EVENTS IN 24 WINTERS

MODEL MJO CYCLE PC1-INDEX COMPOSITE

Equatorial anomalies (10N - 105)

Propagation of the convective signal

MODEL MJO CYCLE

PC1-INDEX COMPOSITE

Equatorial anomalies (10N - 10S)

MODEL MJO CYCLE

PC1-INDEX COMPOSITE

Equatorial anomalies (10N - 105)

Q anomaly

Vertical structure of the Q anomaly at the reference location 125E

MODEL MJO CYCLE PC1-INDEX COMPOSITE Equatorial anomalies (10N - 10S) **OBS**. moisture convergence **MODEL** moisture convergence QDIV (sh) - OLR (cont) QDIV (sh) - OLR (cont) 25 20 15 -10 days days -5 -10 -10 -15 -20 -15 -20 -25 -25 -6 -6/(Kg -30 -30 30E 60E 90E 120E150E 180 150W120W 90W 60W 30W 30E 60E 90E 120E150E 180 150W120W90W 60W 30W 0 1.e ⁻⁶g/(Kg*s)

QDIV = DIV(uq,vq)

MODEL MJO CYCLE PC1 COMPOSITE

--- convection (OLR<0.)

→ (qu,qv)

shaded patters DIV(qu,qv)

MODEL MJO CYCLE PC1 COMPOSITE

→ (qu,qv)

shaded patters DIV(qu,qv)

MJO CYCLE T106 vs T30

observations

MJO CYCLE T106 vs T30

observations

model T30

-25 0 25 5 75

model T106

The model reproduces many aspects of the observed MJO, especially over the Indian Ocean-Indonesian region.

Low-level moisture convergence mechanism for eastward propagation seems to be active across the Indian Ocean, consistent with observational results.

Propagation into the West Pacific appears to be problematic.

Increased horizontal resolution (T30 \rightarrow T106) does not appear to have substantial beneficial impacts on the simulated MJO

MODEL MJO CYCLE PC1 COMPOSITE

Equatorial anomalies (10N - 10S)

MODEL MJO CYCLE PC2 COMPOSITE

Equatorial anomalies (10N - 105)

MODEL MJO CYCLE PC2 COMPOSITE

Equatorial anomalies (10N - 105)

MODEL MJO CYCLE PC1 COMPOSITE

Equatorial anomalies (10N - 105)

Vertical structure of the Q anomaly at the reference location 120E

moisture convergence

MODEL MJO ACTIVITY INDEX

Variance in 101-day sliding window U 200-hPa zonal mean (105-10N)

(Slingo et al. 1999)

MODEL OLR EOF ANALYSIS

Nov-Mar intraseasonal (20-100 day) anomalies

