## Monsoon variability in different versions of the Met Office Climate Model

What is the relative importance to the simulation of monsoon variability of improved dynamics and physics in the atmosphere model against coupling the atmosphere model to an ocean model?

Gill Martin
Hadley Centre, Met Office
FitzRoy Road, Exeter

## Models used in this study

- HadAM3 AMIP-II 5-member ensemble 1979-1995
- HadCM3 coupled model run; 60 years selected ("1979-2038")
- Prototype-HadGAM1 AMIP-II run 1979-1995
- Non-hydrostatic; semi-implicit, semi-Lagrangian advection; Charney-Phillips grid; changes to boundary layer, convection, microphysics and gravity wave drag schemes
- Proto-HadGEM coupled model run; 30 years ("1979-2008")
- All at "N48" horizontal resolution (3.75 by 2.5 degrees)
- HadAM3/CM3 with 19 levels
- HadGAM1/GEM with 38 levels

NOTE: HadGAM/GEM is currently under development; the prototypes used in this study do not represent the final version.

## Monsoon climatology - JJAS precipitation



## JJAS 850 hPa winds

Horizontal winds at $850 \mathrm{hPa}(\mathrm{m} / \mathrm{s})$ HadCM3 JJAS 60 year mean


Horizontal winds at $850 \mathrm{hPa}(\mathrm{m} / \mathrm{s})$ HadAM3 JJAS $1979-1995$


## GEM

Horizontal winds at $850 \mathrm{hPa}(\mathrm{m} / \mathrm{s})$ HadGEM JJAS 1979-1995


Horizontal winds at $850 \mathrm{hPa}(\mathrm{m} / \mathrm{s}$ )


## INTERANNUAL VARIABILITY

ERA EOF-1 24\% variance ERA EOF-2 21\% variance

$\rightarrow 0.5$
$\mathrm{PC}-1$ Rain Composite ( $\mathrm{mm} /$ day)



850 hPa winds

## HadAM3 EOF-1

## 38\% variance

EOF-1 of 850 hPa winds
HadAM3 AMIF-II ensemble 1979-1995


PC-1 Rain Composite (mm/day)


HadGAM EOF-1

## 49\% variance



Precip

HadCM3 EOF-1 $30 \%$ variance
$\mathrm{EOF}-1$ of 850 hPa winds
HadCM3 60 years JJAS



HadGEM EOF-1 $36 \%$ variance

EOF-1 of 850 hPa winds
HadGEM 30 years JJAS


850 hPa winds

Precip


Sea Surface Temperature Difference (K)


SST errors in the coupled runs

## HadCM3

Differences from 17year AMIP-II SSTs

HadGEM

HadAM3 EOF-1 (38\%)
$\mathrm{EOF}-1$ of 850 hPa winds
HadAM3 AMIF-Il ensemble 1979-1995

HadAM3 forced with HadCM3 SSTs EOF-1 (35\%)


## Coupling versus SST bias

- Test: Force HadAM3 with SSTs from HadCM3 [Hilary Spencer, CGAM]
- Impact on interannual variability is small.
- This implies that the atmosphereocean coupling is influencing interannual variability in HadCM3.

HadCM3 EOF-1 (30\%)


## HadAM3

850 hPa wind anomalies El Nino years


EOF-1 of 850 hPa wind
HadCM3
HadAM3



850 hPa wind and precipitation

## ERA/CMAP

 anomalies El Nino years


Composite rainfall anormalies (El Níno years)


## INTRASEASONAL VARIABILITY

## EOF-1 of daily 850 hPa winds



# INTERANNUAL VARIABILITY - Recap EOF-1 of seasonal 850 hPa winds 


$\rightarrow 1$ EOF-1 of 850 hPa winds
HadGAM JJAS 1979-1995


CM3





GEM 36\%

INIKASEASUNAL VARIADILIY: iN

## IAV

## EOFs of daily 850 hPa winds; Seasonal means subtracted



## Probability Distribution Functions of PC1 in El Nino and La Nina years

HadAm3 PC-1 of 850 hPa winds

AM3


HodCM3 PC-1 of 850 hPa winds


HadGAM1 $\mathrm{PC}-1$ of 850 hPa winds


HadGEM1 PC-1 of 850 hPa winds


## Probability Distribution Functions in El Nino and La Nina years

HadAM3 PC-2
HadAM3 PC-2 of 850 hPa winds


HadGAM PC-3
HodGAM1 PC-3 of 850 hPo winds


## Intraseasonal mode associated with All-India Rainfall variability



## PDFs in El Nino and La Nina years "AIR" intraseasonal mode

HadAM3 PC-3 of 850 hPa winds


HadCM3 PC-2 of 850 hPa winds


HodGAM1 $\mathrm{PC}-2$ of 850 hPa winds


HadGEM1 PC-3 of 850 hPa winds


GAM PC-2

## Lag/lead correlations of dominant intraseasonal mode with surface temperatures

HadCM3 Lag+30 days


Lag 30 to of (smoothed) PC-1


|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -0.8 | -0.4 | -0.2 | 0 | 0.2 | 0.4 | 0.8 |

HadGEM1 Lag+30 days


## Lag/lead correlations of two intraseasonal modes with surface temperatures in HadGEM1

Lag-15 days
Lag-15 te of (smoothed) PC-1


Lag+25 days
Lag+25 to of (smoothed) PC-1 with (detrended) SST; HadGEM1


Lag-15 te of (smoothed) PC-3 with (detrended) SST; HodGEM1


Lag+25 tc of (smoothed) PC-3
with (detrended) SST; HadGEM1


## Lag-10 correlation of HadCM3 PCs with surface temps



## Summary

- Despite the vast differences between the two atmosphere-only models, the dominant mode of interannual variability is very similar and explains $\sim 40 \%$ of the variance.
- The dominant modes in the coupled models are similar to those in the atmosphere-only versions, although there is an additional contribution from the equatorial Indian Ocean. This does not appear to be associated with coupled model SST errors.
- In HadAM3/CM3 the interannual variability is significantly linked to ENSO. In HadGAM/GEM, internal variability appears to dominate, although anomalies in ENSO years are realistic.


## Summary [cont.]

- The dominant mode of intraseasonal variability is very similar in all four models. This mode strongly resembles the dominant interannual mode, even when the interannual signal is removed.
- There is a realistic mode of variability in all of the models which is associated with variations in All-India Rainfall.
- Intraseasonal variability in HadAM3/CM3 appears to be chaotic.
- There is a lagged impact of monsoon intraseasonal variability on local SSTs in the coupled models.
- There is some evidence of intraseasonal SST forcing of variability in HadGEM1.


## HadGAM 5-member

## HadGAM 17 years

EOF-1 42\% variance
EOF-1 of 850 hPa winds HadGAM1 17 years 1979-1995

$\mathrm{PC}-1$ Rain Composite (mm/day)


## Ensemble

## EOF-1 47\% variance



- -1 kaln Lomposite (mmilday) NEWCONV [381] (whole ensemble)



## Teleconnections of PC-1 with SST

## HadAM3



HadGAM


HadCM3


HadGEM


## Observed monsoon climatologies



CMAP/O


