Analysis of the variability of African easterly waves in simulations with ARPEGE-Climat

> JF Royer, F Chauvin and H Douville Meteo-France CNRM

- Presentation of the simulations
- Methods of analysis (CEOF)
- Interannual variability of the mean mode patterns
- Intraseasonal modulation of AEW activity
- Conclusions and perspectives

Purposes of the present study

- To identify the propagation and variability of African Easterly Waves in analyses and simulations
- To extend the study of Céron and Guérémy (1999) and Céron et al (2001) by applying the same statistical analysis methods on more extensive sample of simulations and observations
 - Space-time spectral analysis (STSA)
 - Complex Empirical orthogonal function analysis (CEOFA)
- To document the capacity of the ARPEGE-Climat GCM in reproducing the main characteristics of AEW
 - Spatial structure
 - Intraseasonal fluctuations
 - Interannual variability
- To start an analysis of the mechanisms that can modulate the variability of the AEWs (MJO?)

Description of the AGCM

- ARPEGE-Climat AGCM version 3
 - Cycle 22a
- Uniform T63 spectral truncation
 - 128 x 64 reduced linear grid
- 31 vertical levels
- Physical parametrizations (Morcrette, Bougeault, Louis et al, statistical clouds, variable boundary layer height, etc..)
- ISBA land-surface scheme
- Forced by observed monthly mean sea surface temperatures (SSTs) from Reynolds analyses

Description of the simulations

• Seasonal forecast control experiments made by H. Douville for a study of the influence of soil moisture relaxation

(Douville, 2003, J. Hydrometeorology, in press)

- Seasonal cycle simulations June-September (JJAS)
- 15 years 1979-1993
- 10 member ensembles
 - Initialised from ECMWF reanalyses (27 May)
 - Random atmospheric perturbations in initial conditions
 - Identical initial land surface conditions
- Validation data: ECMWF 15 year reanalysis (ERA15)

Statistical methods of analysis

- Applied to daily times series over the period June-September (123 days)
- Relative vorticity at 850 hPa
- Spatial domain restricted to:
 - 40°W-40°E, 5°S-34°N (29 x 14 gridpoints)
- Space-time spectral analysis
 - Hayashi (1977, 1979, 1982)
 - Integration of the time cross-spectrum between real and imaginary part of a Fourier transform
 - Partition of variance between standing and travelling waves (eastward and westward)
- Time filtering by a Butterworth 4-th order lowpass filter
 - 3.5-6 day bandwith

Space-time variance

Distribution of the filtered intraseasonal variance

ERA15

Simulation

CNRM

Interannual variations of the propagative variance in the simulation

Interannual variations of the propagative variance in ERA15

Complex EOF analysis

- Appropriate for analysing travelling phenomena
 - Wallace and Dickinson (1972)
 - Céron and Guérémy (1999
- Computation of a complex covariance matrix
 - Computation of the imaginary part by Hilbert transform
 - Integration of the cross-spectrum matrix over frequency
- Classical EOF on the complex covariance matrix
 - Determination of the eigenvectors
 - Complex modes of variability
 - Gives information on amplitude and phase

Z(t,M) = X(t,M) + i Y(t,M) $Z(t,M) = \sum^{k} \lambda_{k} V_{k}(M) v_{k}(t)$ $V(M) = A(M) \exp\{i \Phi(M)\}$ $v(t) = a(t) \exp\{i \phi(t)\}$

Time variation CEOF-1 amplitude for 1979 in ERA15 and in the 10 simulations

CNRM

Time variation CEOF-2 amplitude for 1979 in ERA15 and in the 10 simulations

CNRN

First and second mean mode pattern (MMP)

ERA 15

2nd CEOF (x 100.)

Interannual variation of CEOF-1 amplitude in ERA15

Interannual variation of CEOF-1 amplitude in the GCM

Interannual variation of CEOF-2 amplitude in the GCM

15-year mean and sigma of mode amplitude in ERA15

e15 vo85 CEOF: VOR850 - Year glob Module of Eigen Vector 2 Mode 2 Mean (x 100.) 30N 25N 20N 15N 10N 5N EQ 3ÓW ZĠE záw 100 'n 1ÓE 3DE 2 8 6 Sigma (x 100.)

15-year mean and sigma of mode amplitude in the GCM

bbx vo85 CEOF: VOR850 - Year glob Module of Eigen Vector 1

Mode 1 Mean (x 100.)

Sigma (x 100.)

bbx vo85 CEOF: VOR850 - Year glob Module of Eigen Vector 2

Mode 2 Mean (x 100.)

Sigma (x 100.)

Sum of squares of annual MMPs and F factor (Significance > 95 %)

Interannual variability of total variance of the first two mean modes amplitude in ERA15 and in the GCM

Correlation between MMP1 anomalies over Sahel and Guinea and SST anomalies

METEO CNRM

intraseasonal evolution of CEOF-1 amplitude

Interannual variability of the intraseasonal evolution of **CEOF-1** amplitude in ERA15 and the GCM

Interannual variability of the intraseasonal evolution of CEOF-2 amplitude in ERA15 and the GCM

Interannual variability of the spectra of CEOF-1 amplitude in ERA15 and the GCM

Interannual variability of the spectra of CEOF-2 amplitude in ERA15 and the GCM

Conclusions ...

- Application of CEOF methods to analyse AEW has allowed to identify:
- Interannual variability of the spacial distribution of the wave activity
 - The two modes isolate significant interannual variability in different two separate areas (continent for CEOF-1, ocean for CEOF-2)
 - Correlations with SST patterns in the Atlantic
 - Warm anomalies in the Atlantic produce generally more southerly tracks of the AEW

... Conclusions

- The temporal distribution of the CEOF amplitude shows:
 - A seasonal variation with a maximum in August for CEOF-1
 - Considerable low-frequency intraseasonal modulation of the AEW variability
 - Interannual variability of the seasonal and intraseasonal evolution
- Spectral analysis of the intraseasonal variability confirms the very different spectra of CEOF-1 and CEOF-2
 - Red noise background with several peaks with periods in the range 20, 30, 60 days for CEOF-1
 - A broad maximum from 5-10 days for CEOF-2
 - Interannual variability of the spectra

CNR

Perspectives

- Developments and improvements of the analysis method
 - Rotation of the CEOFs ?
 - Different aggregation of the modes
 - Improved methods for spectral analysis
- Study of the intraseasonal variability of the modes
 - Associations between the monsoon circulation over Africa (AEJ, TEJ, ZCIT, precipitation) and CEOF variability
 - Possible links of CEOF-1 with the MJO?
 - Relationship of CEOF-2 with the 9-day mode of AEWs?
 - Impact of soil moisture on the AEW variability

Thank you !

For your attention

- Ackowledgements
 - Arpege-Climat team (M Déqué et al.)
 - JP Céron and JF Guérémy
 - PROMISE project from EU (J Slingo)
 - PNEDC project on African monsoon (S Janicot)
 - ECMWF (ERA15, workshop)

