New variables in spherical geometry

David G. Dritschel

Mathematical Institute University of St Andrews

http://www-vortex.mcs.st-and.ac.uk

Collaborators:

Ali Mohebalhojeh (Tehran \rightarrow St Andrews) Jemma Shipton & Robert Smith (St Andrews)

Vortex dynamics

 $\Pi(\lambda,\phi,t)$

Froude number: $Fr = \frac{|u|}{c\sqrt{1+\tilde{h}}}$

Rossby number:

$$\mathsf{Ro} = \frac{\zeta}{2\Omega_E}$$

- Fr_{max}: middle, bold curve
- Romax: upper, thin curve
- Ro_{min}: lower, thin curve

Depth anomaly, $ilde{h}$

 $\Delta \tilde{h} = 0.02$

Velocity divergence, $\delta/2\Omega_E$

(0.002)

(0.005)

(0.010)

NB: In the time mean,

 $\frac{\delta_{\rm rms}}{\zeta_{\rm rms}} = 0.0373, \ 0.0466 \ \text{and} \ 0.0653$

Acceleration divergence, $\gamma/4\Omega_E^2$

(0.02)

(0.05)

(0.10)

NB: In the time mean,

$$\frac{\gamma rms}{\zeta_{rms}^2} = 0.767, 0.773 \text{ and } 0.847$$

Acceleration, $|\mathbf{a}|/4\Omega_E^2$

(0.001) (0.002) (0.005)

Meridional velocity, v, for the case $\frac{\varpi \text{rms}}{2\Omega_E} = \frac{1}{3}$

v_0 : velocity obtained for $\delta = \gamma = 0$

(0.20) (0.20) (0.01)

Why another shallow-water model?

• Explicit potential-vorticity (PV) conservation has never been implemented in spherical geometry.

• Wave-vortex decomposition not well understood even in this simple context.

• Accurate modelling of *both* the PV-controlled balanced flow and the imbalanced flow is now possible.

The shallow-water equations

$$\frac{\Box \boldsymbol{u}}{\Box t} + f\boldsymbol{k} \times \boldsymbol{u} = -c^2 \nabla \tilde{h}$$
$$\frac{\partial \tilde{h}}{\partial t} + \nabla \cdot \left[(1 + \tilde{h}) \boldsymbol{u} \right] = 0$$

where $\tilde{h} \equiv (h - H)/H$, $c^2 = gH$, $f = 2\Omega_E \sin \phi$, H is the mean depth, g is gravity, and \boldsymbol{u} is tangent to the sphere.

Dissipation and forcing terms are not included.

These equations may be combined to show

$$\frac{\mathsf{D}\mathsf{\Pi}}{\mathsf{D}t} = \mathsf{0}, \quad \text{where} \quad \mathsf{\Pi} = \frac{\zeta + f}{1 + \tilde{h}}$$

is the potential vorticity (PV). NB: $\zeta = k \cdot (\nabla \times u)$. The original equations hide PV conservation \Rightarrow numerically, PV is poorly conserved.

The distribution of PV largely controls the fluid motion (u, \tilde{h}) through hidden balance relations (PV inversion).

Hoskins, McIntyre & Robertson (1985),
McIntyre & Norton (1999), Ford, McIntyre & Norton (2000), etc.

 \Rightarrow numerically, a poor representation of the PV leads to a poor representation of the fluid motion.

 \Rightarrow The residual motion, the "imbalance" (gravity waves), may be prone to large errors.

Two distinct types of motion co-exist:
 Slow "balanced" vortical motions, and
 Relatively fast "imbalanced" wave motions

 \Rightarrow which however are deeply intertwined

A new approach

- ♦ Enforce PV conservation explicitly (preserve its advective character)
 ⇒ use contour advection;
- ◇ Distinguish the PV-controlled balanced motions and the residual imbalanced motions, at least to leading order
 ⇒ use imbalanced prognostic variables.

Dritschel & Mohebalhojeh (2000),
M & D (2000,2001,2004), D & Viúdez (2003),
V & D (2003,2004)

Explicit PV conservation

A particle representation for PV is natural: each particle x = X conserves its value of Π

$$\frac{\mathsf{D}\mathsf{\Pi}}{\mathsf{D}t} = 0 \quad \Rightarrow \quad \frac{\mathsf{d}X}{\mathsf{d}t} = \mathbf{u}(X,t)$$

A contour representation is even more natural, since exchanging any pair of particles on a contour Π = constant does not alter the distribution of Π

Numerics: an ideal algorithm?

The Contour-Advective Semi-Lagrangian (CASL) algorithm (Dritschel & Ambaum, 1997) makes direct use of this contour representation, *and* deals with the non-locality (inversion) efficiently.

It represents the PV by a finite set of contours

— the Lagrangian aspect —

represents the velocity by fixed grid points

— the Eulerian aspect —

and provides efficient means of communication between the two representations

— interpolation, and its inverse, filling.

Each PV contour is represented by *nodes*, connected together by cubic splines. Shown also is the underlying grid.

++ + + + + + ++ + + +

Note that Π is permitted to have much finer structure than u. This exploits the fact that uis typically a *smoother* field than Π .

Balance relations

Having chosen the PV as one prognostic variable, what is a sensible (accurate *and* convenient) choice for the other two?

In a balanced model, the fluid motion (u_b, \tilde{h}_b) is fully controlled by the PV. The balanced motion is recovered by PV inversion, i.e. by solving equations of the form

 $\mathcal{F}(\boldsymbol{u}_{b}, \tilde{h}_{b}) = 0, \quad \mathcal{G}(\boldsymbol{u}_{b}, \tilde{h}_{b}) = 0, \quad \mathcal{H}(\boldsymbol{u}_{b}, \tilde{h}_{b}) = 0$ for \boldsymbol{u}_{b} and \tilde{h}_{b} , given the PV Π .

One of these equations comes from the definition of PV:

$$\mathcal{F} = k \cdot (\nabla \times \boldsymbol{u}_{\mathsf{b}}) + f - \prod (1 + \tilde{h}_{\mathsf{b}}) = 0$$

The other two come from imposing particular relations between variables, e.g. as in geostrophic balance.

For example, one may set two successive time derivatives of the divergence $\delta = \nabla \cdot \boldsymbol{u}$ to be zero, i.e.

$$\mathcal{G} = \frac{\delta^{(n)}}{\delta^{(n+1)}} = 0, \quad \mathcal{H} = \frac{\delta^{(n+1)}}{\delta^{(n+1)}} = 0$$

generating the " δ hierarchy". The forms of \mathcal{G} and \mathcal{H} are found by recursively substituting the original equations (M & D 2001).

Another example, used here, sets

$$\mathcal{G} = \delta^{(n)} = 0, \quad \mathcal{H} = \gamma^{(n)} = 0$$

where $\gamma = \nabla \cdot \boldsymbol{a}$ and $\boldsymbol{a} = D\boldsymbol{u}/Dt$.

NB: $\mathbf{a} = -f\mathbf{k} \times \mathbf{u} - c^2 \nabla \tilde{h}$

It makes sense that the new variables should represent what the PV cannot.

 \Rightarrow The new variables could be ${\cal G}$ and ${\cal H}$ themselves.

Here, we use the simplest member, n = 0, of the δ - γ hierarchy. In other words, we take

$$\mathcal{G} = \delta, \qquad \mathcal{H} = \gamma$$

to be the other two prognostic variables.

On the *f*-plane, γ is proportional the "ageostrophic vorticity", $\zeta - c^2 \nabla^2 \tilde{h}/f$.

Setting $\gamma = \delta = 0$ then leads to geostrophic balance (cf. M & D 2001). The variables γ and δ thus represent the *departure* from geostrophic balance.

On the sphere,

$$\gamma = f\zeta - \beta u - c^2 \nabla^2 \tilde{h}$$

where $\beta = df/d\phi = 2\Omega_E \cos \phi$ and u is the zonal velocity component. The prognostic equations for δ and γ are

$$\frac{\partial \delta}{\partial t} = \gamma - |\boldsymbol{u}|^2 - 2\left[\frac{\partial \boldsymbol{u}}{\partial \phi}\left(\frac{\partial \boldsymbol{u}}{\partial \phi} + \boldsymbol{\zeta}\right) + \frac{\partial \boldsymbol{v}}{\partial \phi}\left(\frac{\partial \boldsymbol{v}}{\partial \phi} - \boldsymbol{\delta}\right)\right] - \boldsymbol{\nabla} \cdot (\boldsymbol{\delta} \boldsymbol{u})$$

$$\frac{\partial \boldsymbol{\gamma}}{\partial t} = c^2 \nabla^2 \{ \boldsymbol{\nabla} \cdot [(1 + \tilde{\boldsymbol{h}})\boldsymbol{u}] \} + 2\Omega_E \frac{\partial \boldsymbol{B}}{\partial \lambda} - \boldsymbol{\nabla} \cdot (\boldsymbol{Z}\boldsymbol{u})$$

where $B \equiv c^2 \tilde{h} - \frac{1}{2} |\boldsymbol{u}|^2$ (Bernoulli pressure), $Z = f(\zeta + f)$, and λ is longitude.

However, the tendencies involve the original variables u and \tilde{h} . These are recovered by a kind of PV inversion analogous to what is done in a balanced model.

Inversion

Inversion here simply means finding \boldsymbol{u} and $\tilde{\boldsymbol{h}}$ from the prognostic variable set (δ, γ, Π) .

This is accomplished as follows. Let

$$oldsymbol{u} = k imes
abla \psi +
abla \chi$$

then the potentials satisfy

$$abla^2 \psi = \zeta \quad \& \quad
abla^2 \chi = \delta$$

But ζ depends on \tilde{h} through the definition of PV:

$$\zeta = (1+ ilde{h})\mathsf{\Pi} - f$$
 .

So, we need to find \tilde{h} before we can invert ζ . But the definition of γ implies

$$c^2 \nabla^2 \tilde{h} - f \Pi \tilde{h} = f(\Pi - f) - \beta u - \gamma,$$

using ζ above.

While the inversion equations are coupled, they are *linear*, an exceptional property.

Numerically, they are solved iteratively and convergence is exponentially fast.

Solve $\nabla^2 \chi = \delta$ first $\Rightarrow u_{\chi}$.

Then iteratively solve

$$\nabla^2 \psi_{n+1} = \zeta_n = (1 + \tilde{h}_n) \Pi - f \Rightarrow \boldsymbol{u}_{n+1}$$

and

$$(c^2 \nabla^2 - f^2) \tilde{h}_{n+1} = f(\zeta_n - f \tilde{h}_n) - \beta u_{n+1} - \gamma$$

 $\Rightarrow \psi_{n+1} \text{ and } \tilde{h}_{n+1}.$

Numerics

 \diamond All fields represented on a regular lat-lon grid, with $\Delta\phi=\Delta\lambda/2~(n_{\phi}=n_{\lambda})$

♦ Semi-spectral approach: advantageous for inverting $c^2\nabla^2 - f^2$ (tridiagonal procedure)

 \diamond 2nd-order finite differences in ϕ

- \diamond Semi-implicit time stepping, but $\Delta t < \Delta t_{\rm CFL} = \Delta \phi/c$
- ♦ Minimal Robert-Asselin filtering: $A = c\Delta t$

♦ 2/3 spectral filter applied to nonlinear parts of $\delta \& \gamma$ tendencies:

(D & V 2003)

Verification

♦ Standard Rossby-Haurwitz wave test and a perturbed variation (cf. Thuburn & Li 2000)

t = 0

t = 5

⇒ 0.22% energy variation over 5 days
⇒ 0.31% angular momentum variation

Note:
$$n_{\phi} = n_{\lambda} = 128$$

Usual spatial and temporal resolution
 variations

An application to turbulence

♦ Random PV anomaly $\varpi = \Pi - f$ spatially correlated over a length $L_c = 1/10$

 ϖ , polar view

 ϖ , equatorial view

- \diamond Prescribed mean Rossby radius $L_R = c/2\Omega_E = 1/3$
- \diamond Planetary rotation $\Omega_E=2\pi$

 $\diamond n_{\phi} = n_{\lambda} = 128$, $\Delta t = 0.004$ ($\Delta t_{CFL} = 0.0058$)

Initialisation (V & D 2003, D & V 2003)

Generate initial fields of δ and γ ($\Rightarrow u$ and \tilde{h}) by ramping up the PV anomaly ϖ from 0 to its desired amplitude over a period $\Delta \tau_I \gg 1$:

Meanwhile, evolve δ and γ using the *full* model, and advect the PV contours.

$$\delta = \gamma = \boldsymbol{u} = \tilde{h} = 0$$
 at $\tau = 0$.

NB: the PV jump across each contour increases like $T(\tau)$.

The state at $\tau = \Delta \tau_I$ is considered the initial state, t = 0.

Note, $\Pi = f$ on the left since T(0) = 0.

♦ Here $\Delta \tau_I = 20$ days in three cases:

$$\frac{\varpi \text{rms}}{2\Omega_E} = \frac{1}{6}, \quad \frac{1}{3}, \quad \text{and} \quad \frac{1}{2}.$$

Gravity waves

It is common to call the residual imbalance "gravity waves", but this can be misleading. The balanced flow can be defined in **many** ways.

We could make use of the balance hierarchies such as $\delta^{(n)} = \gamma^{(n)} = 0$, but they prove ineffective for highly nonlinear flows.

A new alternative, called the Optimal PV (OPV) balance (V & D 2004), is to define the PV-controlled balanced flow as

the flow which "evolves" into the current PV distribution after a long ramp period $\Delta \tau_D$

That is, we seek the base configuration X_{base} of PV contours, at a time $t - \Delta \tau_D$, which evolves into the current PV contours Xwhile ramping up the PV as in initialisation — from a state of no motion.

 $\begin{array}{c} t - \Delta \tau_D & t \\ \hline \phi & \overbrace{} \\ \hline \lambda & \end{array} \end{array} \rightarrow \begin{array}{c} t \\ \hline \phi & \overbrace{} \\ \hline \phi & \overbrace{} \\ \hline \lambda & \end{array} \end{array}$

The fields of \tilde{h} , δ , γ , etc. at the end of this ramped evolution are called the balanced fields, $\tilde{h}_{\rm b}$, $\delta_{\rm b}$, $\gamma_{\rm b}$, etc.

In practice, X_{base} and hence \tilde{h}_{b} , δ_{b} , γ_{b} , etc. are found *iteratively* in a cycle of forward and backward integrations (V & D 2004).

 \tilde{h}_{b} , δ_{b} , γ_{b} , etc. depend <u>only</u> on Π and $\Delta \tau_{D}$.

The imbalanced fields are $\tilde{h}_{i} \equiv \tilde{h} - \tilde{h}_{b}$, $\delta_{i} \equiv \delta - \delta_{b}$, $\gamma_{i} \equiv \gamma - \gamma_{b}$, etc.

Convergence

1st-order $\delta - \gamma$ balance is plotted along $\Delta \tau_D = 0$.

Comparison

$rac{ ilde{h}_{\sf irms}}{ ilde{h}_{\sf rms}}$	$rac{\delta_{ m irms}}{\delta_{ m rms}}$	$rac{\gamma_{i}rms}{\gamma_{rms}}$	$\displaystyle rac{ u_{i} _{rms}}{ u _{rms}}$
0.1418	1.000	1.000	0.0740
0.0318	0.280	0.243	0.0186
0.0174	0.114	0.214	0.0077
	<u><i>h</i>irms</u> <i>h</i> irms 0.1418 0.0318 0.0174	$rac{ ilde{h}_{i} rms}{ ilde{h}_{rms}}$ $rac{\delta_{i} rms}{\delta_{rms}}$ 0.1418 1.000 0.0318 0.280 0.0174 0.114	$\frac{\tilde{h}_{i} rms}{\tilde{h}_{rms}}$ $\frac{\delta_{i} rms}{\delta rms}$ $\frac{\gamma_{i} rms}{\gamma rms}$ 0.14181.0001.0000.03180.2800.2430.01740.1140.214

Imbalanced depth \tilde{h}_{i} at t = 5 for $\frac{\varpi \text{rms}}{2\Omega_{E}} = \frac{1}{3}$

 $\Delta \tilde{h} = 0.0005$ except for $\delta = \gamma = 0$ balance for which $\Delta \tilde{h} = 0.005$.

Velocity divergence $\delta/2\Omega_E$ at t=5

(0.002, 0.0002) (0.005, 0.001) (0.010, 0.005)

NB: All results are henceforth for $\Delta \tau_D = 5$

Imbalanced depth anomaly, $ilde{h}_{\mathsf{i}}$

(0.00005) (0.0005) (0.005)

Imbalanced velocity divergence, $\delta_i/2\Omega_E$

(0.0002) (0.001) (0.005)

Imbalanced acceleration divergence, $\gamma_i/4\Omega_E^2$

(0.002) (0.01) (0.05)

Finalé

- Greater accuracy can be achieved by *explicitly* distinguishing the vortical and the wave components of a flow.
- Gravity waves are more clearly identified when taking full account of the flow inertia, as in the OPV balance procedure.
- Similar results have been found for <u>both</u> spherical shallow-water flows and for three-dimensional non-hydrostatic flows.