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Vortex dynamics
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Frmax: middle, bold curve

Romax: upper, thin curve

Romin: lower, thin curve



Depth anomaly, h̃
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Velocity divergence, δ/2ΩE
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NB: In the time mean,

δrms
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= 0.0373, 0.0466 and 0.0653



Acceleration divergence, γ/4Ω2
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Acceleration, |a|/4Ω2
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Meridional velocity, v, for the case
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Why another shallow-water model?

• Explicit potential-vorticity (PV) conservation

has never been implemented in spherical

geometry.

• Wave–vortex decomposition not well under-

stood even in this simple context.

• Accurate modelling of both the PV-controlled

balanced flow and the imbalanced flow is now

possible.



The shallow-water equations

Du

Dt
+ fk × u = −c2∇h̃

∂h̃

∂t
+ ∇ · [(1 + h̃)u] = 0

where h̃ ≡ (h−H)/H, c2 = gH, f = 2ΩE sinφ,

H is the mean depth, g is gravity, and u is

tangent to the sphere.

Dissipation and forcing terms are not included.

These equations may be combined to show

DΠ

Dt
= 0, where Π =

ζ + f

1 + h̃

is the potential vorticity (PV).

NB: ζ = k · (∇ × u).



New variables

The original equations hide PV conservation

⇒ numerically, PV is poorly conserved.

The distribution of PV largely controls the fluid

motion (u, h̃) through hidden balance relations

(PV inversion).

— Hoskins, McIntyre & Robertson (1985),

McIntyre & Norton (1999), Ford, McIntyre &

Norton (2000), etc.

⇒ numerically, a poor representation of the

PV leads to a poor representation of the fluid

motion.

⇒ The residual motion, the “imbalance”

(gravity waves), may be prone to large errors.



• Two distinct types of motion co-exist:

� Slow “balanced” vortical motions, and

� Relatively fast “imbalanced” wave motions

⇒ which however are deeply intertwined





A new approach

� Enforce PV conservation explicitly

(preserve its advective character)

⇒ use contour advection;

� Distinguish the PV-controlled balanced

motions and the residual imbalanced

motions, at least to leading order

⇒ use imbalanced prognostic variables.

— Dritschel & Mohebalhojeh (2000),

M & D (2000,2001,2004), D & Viúdez (2003),

V & D (2003,2004)



Explicit PV conservation

A particle representation for PV is natural:

each particle x = X conserves its value of Π

DΠ

Dt
= 0 ⇒

dX

dt
= u(X, t)

A contour representation is even more natural,

since exchanging any pair of particles on a

contour Π = constant does not alter

the distribution of Π



Numerics: an ideal algorithm?

The Contour-Advective Semi-Lagrangian (CASL)

algorithm (Dritschel & Ambaum, 1997) makes

direct use of this contour representation, and

deals with the non-locality (inversion) efficiently.

It represents the PV by a finite set of

contours

— the Lagrangian aspect —

represents the velocity by fixed grid points

— the Eulerian aspect —

and provides efficient means of communication

between the two representations

— interpolation, and its inverse, filling.



Each PV contour is represented by nodes,

connected together by cubic splines.

Shown also is the underlying grid.

Note that Π is permitted to have much finer

structure than u. This exploits the fact that u

is typically a smoother field than Π.



Balance relations

Having chosen the PV as one prognostic

variable, what is a sensible (accurate and

convenient) choice for the other two?

In a balanced model, the fluid motion (ub, h̃b)

is fully controlled by the PV. The balanced

motion is recovered by PV inversion,

i.e. by solving equations of the form

F(ub, h̃b) = 0, G(ub, h̃b) = 0, H(ub, h̃b) = 0

for ub and h̃b, given the PV Π.

One of these equations comes from the

definition of PV:

F = k · (∇ × ub) + f − Π(1 + h̃b) = 0

The other two come from imposing particular

relations between variables, e.g. as in geostrophic

balance.



For example, one may set two successive time

derivatives of the divergence δ = ∇ · u to be

zero, i.e.

G = δ(n) = 0, H = δ(n+1) = 0

generating the “δ hierarchy”. The forms of G

and H are found by recursively substituting the

original equations (M & D 2001).

Another example, used here, sets

G = δ(n) = 0, H = γ(n) = 0

where γ = ∇ · a and a = Du/Dt.

NB: a = −fk × u − c2∇h̃

It makes sense that the new variables should

represent what the PV cannot.

⇒ The new variables could be G and H

themselves.



Here, we use the simplest member, n = 0, of

the δ-γ hierarchy. In other words, we take

G = δ, H = γ

to be the other two prognostic variables.

On the f-plane, γ is proportional the

“ageostrophic vorticity”, ζ − c2∇2h̃/f .

Setting γ = δ = 0 then leads to geostrophic

balance (cf. M & D 2001). The variables γ and

δ thus represent the departure from geostrophic

balance.

On the sphere,

γ = fζ − βu− c2∇2h̃

where β = df/dφ = 2ΩE cosφ

and u is the zonal velocity component.



The prognostic equations for δ and γ are

∂δ

∂t
= γ − |u|2 − 2

[

∂u

∂φ

(

∂u

∂φ
+ ζ

)

+
∂v

∂φ

(

∂v

∂φ
− δ

)]

−∇ · (δu)

∂γ

∂t
= c2∇2{∇ · [(1 + h̃)u]} + 2ΩE

∂B

∂λ
− ∇ · (Zu)

where B ≡ c2h̃− 1
2|u|

2 (Bernoulli pressure),

Z = f(ζ + f), and λ is longitude.

However, the tendencies involve the original

variables u and h̃. These are recovered by a

kind of PV inversion analogous to what is done

in a balanced model.



Inversion

Inversion here simply means finding u and h̃

from the prognostic variable set (δ, γ,Π).

This is accomplished as follows. Let

u = k × ∇ψ+ ∇χ

then the potentials satisfy

∇2ψ = ζ & ∇2χ = δ .

But ζ depends on h̃ through the definition of

PV:

ζ = (1 + h̃)Π − f .

So, we need to find h̃ before we can invert ζ.

But the definition of γ implies

c2∇2h̃− fΠh̃ = f(Π − f) − βu− γ ,

using ζ above.



While the inversion equations are coupled, they

are linear, an exceptional property.

Numerically, they are solved iteratively and

convergence is exponentially fast.

Solve ∇2χ = δ first ⇒ uχ.

Then iteratively solve

∇2ψn+1 = ζn = (1 + h̃n)Π − f ⇒ un+1

and

(c2∇2 − f2)h̃n+1 = f(ζn − fh̃n) − βun+1 − γ

⇒ ψn+1 and h̃n+1.



Numerics

� All fields represented on a regular lat-lon grid,

with ∆φ = ∆λ/2 (nφ = nλ)

� Semi-spectral approach: advantageous for

inverting c2∇2 − f2 (tridiagonal procedure)

� 2nd-order finite differences in φ

� Semi-implicit time stepping, but

∆t < ∆tCFL = ∆φ/c

� Minimal Robert-Asselin filtering: A = c∆t

� 2/3 spectral filter applied to nonlinear parts

of δ & γ tendencies:

m/ cosφ. nλ/2.

1.0

0.5

0

(D & V 2003)



Verification

� Standard Rossby-Haurwitz wave test and a

perturbed variation (cf. Thuburn & Li 2000)

t = 0 t = 5

Π

(0.6)

h̃

(0.02)

⇒ 0.22% energy variation over 5 days

⇒ 0.31% angular momentum variation

Note : nφ = nλ = 128

� Usual spatial and temporal resolution

variations



An application to turbulence

� Random PV anomaly $ = Π − f spatially

correlated over a length Lc = 1/10

$, polar view $, equatorial view

� Prescribed mean Rossby radius

LR = c/2ΩE = 1/3

� Planetary rotation ΩE = 2π

� nφ = nλ = 128, ∆t = 0.004 (∆tCFL = 0.0058)



Initialisation (V & D 2003, D & V 2003)

Generate initial fields of δ and γ (⇒ u and h̃)

by ramping up the PV anomaly $ from 0 to

its desired amplitude over a period ∆τI � 1:

∆τI .

T (τ).

τ .

1

0
0

Meanwhile, evolve δ and γ using the full model,

and advect the PV contours.

δ = γ = u = h̃ = 0 at τ = 0.

NB: the PV jump across each contour increases

like T (τ).

The state at τ = ∆τI is considered the initial

state, t = 0.



PV contours PV contours

at τ = 0 at τ = ∆τI

φ

λ

Note, Π = f on the left since T (0) = 0.

� Here ∆τI = 20 days in three cases:
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Gravity waves

It is common to call the residual imbalance

“gravity waves”, but this can be misleading.

The balanced flow can be defined in many

ways.

We could make use of the balance hierarchies

such as δ(n) = γ(n) = 0, but they prove

ineffective for highly nonlinear flows.

A new alternative, called the Optimal PV (OPV)

balance (V & D 2004), is to define the

PV-controlled balanced flow as

the flow which “evolves” into the current PV
distribution after a long ramp period ∆τD



That is, we seek the base configuration Xbase

of PV contours, at a time t − ∆τD, which

evolves into the current PV contours X

while ramping up the PV as in initialisation

— from a state of no motion.

t − ∆τD t

φ →

λ

The fields of h̃, δ, γ, etc. at the end of this

ramped evolution are called the balanced fields,

h̃b, δb, γb, etc.



In practice, Xbase and hence h̃b, δb, γb, etc.

are found iteratively in a cycle of forward and

backward integrations (V & D 2004).

X ⇔ Π

Xb ⇔ Πb

Xbase

h̃b

h̃resid

0
0 ∆τD

τ −→

h̃b, δb, γb, etc. depend only on Π and ∆τD.

The imbalanced fields are h̃i ≡ h̃ − h̃b,

δi ≡ δ − δb, γi ≡ γ − γb, etc.



Convergence
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Comparison

Balance
h̃i rms

h̃rms

δi rms

δrms

γi rms

γrms

|ui|rms

|u|rms

δ = γ = 0 0.1418 1.000 1.000 0.0740

∂δ

∂t
=

∂γ

∂t
= 0 0.0318 0.280 0.243 0.0186

OPV, ∆τD = 5 0.0174 0.114 0.214 0.0077

All results are for
$rms

2ΩE
= 1

3



Imbalanced depth h̃i at t = 5 for
$rms

2ΩE
= 1

3

δ = γ = 0
∂δ

∂t
=

∂γ

∂t
= 0

OPV, ∆τD = 2 OPV, ∆τD = 3

OPV, ∆τD = 4 OPV, ∆τD = 5

∆h̃ = 0.0005 except for δ = γ = 0 balance for

which ∆h̃ = 0.005.



Velocity divergence δ/2ΩE at t = 5
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Imbalanced depth anomaly, h̃i
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Imbalanced velocity divergence, δi/2ΩE
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Imbalanced acceleration divergence, γi/4Ω
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Frequency spectra
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Finalé

• Greater accuracy can be achieved by

explicitly distinguishing the vortical and

the wave components of a flow.

• Gravity waves are more clearly identified

when taking full account of the flow inertia,

as in the OPV balance procedure.

• Similar results have been found for both

spherical shallow-water flows and for

three-dimensional non-hydrostatic flows.


