

GEMS 2006 Assembly

The Orbiting Carbon Observatory (OCO) http://oco.jpl.nasa.gov

David Crisp, OCO P (JPL/Callech)

February 2006

1 of 13, OCO Dec 2005

The Orbiting Carbon Observatory (OCO)

OCO will acquire the space-based data needed to identify CO₂ sources and sinks and quantify their variability over the seasonal cycle

Approach:

- Collect spatially resolved, high resolution spectroscopic observations of CO₂ and O₂ absorption in reflected sunlight
- Use these data to resolve spatial and temporal variations in the *column averaged CO2 dry air mole fraction, X_{CO2}* over the sunlit hemisphere
- Employ independent calibration and validation approaches to produce X_{CO2} estimates with random errors and biases no larger than 1 - 2 ppm (0.3 - 0.5%) on regional scales at monthly intervals

2 of 13, OCO Dec 2005

JPL *orbit*

OCO Fills a Critical Measurement Gap

Sundstrand

A United Technologies Company

OCO will make precise global measurements of X_{CO2} over the range of scales needed to monitor CO₂ fluxes on regional to continental scales.

JPL

Orbiža

Precise CO₂ Measurements Needed to Constrain Surface Fluxes

dstrand

Orbizal 🖠

Making Precise CO₂ **Measurements from Space**

- O_2 A-band and 2.06 μ m CO₂ band
 - Surface pressure, albedo, atmospheric temperature, water vapor, clouds, aerosols
- Why high spectral resolution?
 - Enhances sensitivity, minimizes biases

A United Technologies Company

OCO Sampling over a 16-Day Repeat Cycle

- OCO collects ~7-14 million soundings each 16-day cycle
- CO₂ column measurements complement surface measurement network.
 - Total column CO₂
 - Global coverage with 16day repeat cycle
- Sampling Rate/Coverage
 - 12-24 samples/second collected along track over land and ocean
 - Glint: <u>+</u>75° SZA
 - Nadir: <u>+</u>85° SZA, 3 km²
 - Longitude resolution 1.5°

Sundstrand

Observing Modes

OCO Will Fly in the A-Train

ilton Sundstrand

A United Technologies Company

OCO files at the head of the A-Train, 12 minutes ahead of the Aqua platform

- 1:18 PM equator crossing time yields same ground track as AQUA
- Near noon orbit yields high SNR CO₂ and O₂ measurements in reflected sunlight
- CO₂ concentrations are near their diurnally-averaged values near noon
- Maximizes opportunities of coordinated science and calibration activities

Mission Implementation Approach

Project Management (JPL)

- Science & Project Team Leadership
- Systems Engineering, Mission Assurance
- Ground Data System

Single Instrument (Hamilton Sundstrand)

• 3 high resolution spectrometers

Dedicated Bus (Orbital Sciences Corporation)

• Heritage: OrbView 4, GALEX, SORCE

Dedicated Launch Vehicle (Orbital Taurus)

• September 2008 Launch from Vandenberg AFB

Mission Operations (JPL)

• NASA Ground Network, Poker Flats, Alaska

The OCO Instrument

- Three bore-sighted, high resolution, grating spectrometers
 - CO₂ 1.61 μm band
 - CO₂ 2.06 μm band
 - O₂ 0.765 μm A-band

Similar optics and electronics

- Common 200 mm f/1.9 telescope
- Spectrometers cooled to <0 °C
- Resolving Power ~20,000
- Common Read-out Integrated Circuits
 and electronics for focal plane arrays

Existing Designs For Critical Components

- Detectors: WFC-3, Deep Impact (RSC)
- Cryocooler: TES flight spare (NGST)
- Provided by Hamilton Sundstrand Sensor Systems (Pomona CA)
 - Provided last 4 TOMS instruments

Orbital

Sundstrand

Calibration/Validation Program Assures Measurement Accuracy

Calibration

- Pre Launch
 - Instrument Subsystem
 - Observatory-level
- On-Orbit
 - Routine (Solar, Limb, Dark, Lamp)
 - Special (Stellar, Solar Doppler)
 - Vicarious

Validation

- Laboratory spectroscopy
 - Spectral line databases for CO_2 , O_2
- Ground-based in-situ measurements
 - NOAA CMDL Flask/Tower Network
- Solar-looking FTS measurements of X_{CO2}
 - Measure same bands as flight instrument

🖵 Orbižal

Space-based X_{CO2} Validation Strategy

- Validate space-based X_{CO2} using:
 - Measurements of X_{CO2} from a ground based network of Fourier transform spectrometers (FTS)
 - FTS and space-based X_{CO2} processed using same retrieval code
- FTS X_{CO2} compared to
 - Surface in situ CO_2
 - Tall tower in situ CO₂
 - Column CO₂ integrated from in situ aircraft + sondes
- FTS X_{CO2} performance tracked via continuous monitoring of:
 - Instrument Line Shape (HCI gas cell)
 - Pointing (Doppler shift, telluric vs solar features)
 - Surface pressure and temperature

373.11 ± 0.52 ppmv

Mission Schedule

OCO Schedule

- 7/2001: Step-1 Proposal Submitted
- 2/2002: Step-2 Proposal Submitted
- 7/2003: Selected for Formulation
- 7/2004: System PDR
- 5/2005: Mission Confirmed for Implementation
- 10/2005: Instrument CDR
- 2/2006: Spacecraft CDR
- 7/2006: System CDR
- 11/2006: Instrument Pre-Environmental Review
- 4/2007: Instrument Delivery
- 9/2008: Launch
- 10/2010: End of Nominal Mission

