
Optimizing IO Performance Optimizing IO Performance
in ECHAM5in ECHAM5--HAMHAM

Mark CheesemanMark Cheeseman

CSCS is Switzerland's national HPC resource
provides resource and assistance to all educational institutions
provide computer resource from MeteoSwiss
support various disciplines (computational chemistry, CFD, climate)
offer different project sizes (small, large, ALPS)

Advanced Large Projects in Supercomputing
large amounts of computational and technical resource over 2 years
4 projects approved for January 2007 start

CFD
computational biology
computational chemistry
climate modelling

BackgroundBackground

ALPS Climate Project
“Climate change and the hydrological cycle from global to

European/alpine scales”.
Principal Investigator : Dr. Ulrike Lohmann (ETHZ)

Project goals include:
development of high-resolution climate modelling system
prediction of extreme weather events

Use of ECHAM5-HAM(Version 5.3.02)
500 years of integration at T63L31
100 years of integration at T106L31
2.35M CPUh (out of 3.75M CPUh allotted)
Optimizing ECHAM5-HAM is HIGHLY desirable

BackgroundBackground

Code Specifics (at T63L31 on Cray XT3)
ECHAM5 with aerosol and atmos. chemistry modules added

36 additional tracers

normal domain decomposition used
minimum of 32 single-core nodes (memory)
maximum of 384 single-core nodes (discretization)

single IO node used with NetCDF output format

data nudging used for SST, VOR, STP and DIV

6-hourly output frequency

ECHAM5ECHAM5--HAMHAM

ECHAM5ECHAM5--HAMHAM

8 16 19 31 32
0

20

40

60

80

100

120

140

160

180

200

64
128
256
384

of days of integration

W
al

l t
im

e
(m

in
)

Performance Analysis Continued...
for 1 month integration on 128 CPU (no optimizations)

34% walltime is IO activity
concentrated in output of large diagnostic files
data nudging input not so significant

17% walltime is MPI activity
barriers
synchronizations
collective communication calls

Our Goal? - Minimize the computational significance of IO

How do we proceed?
find optimal NetCDF chunk size
exploit Lustre filesystem
use IOBUF

ECHAM5ECHAM5--HAMHAM

IO node strategy used
global domain is broken into number sub-domains that are

distributed to worker nodes

At an “output event”, IO node will
collect worker sub-domains
create corresponding global domain
output data to hard disk

simple, efficient with little interruption to compute node workload

targeted for shared memory platform with small # of nodes
concern for large distributed memory platforms
could add additional IO nodes (complexity, development time)

IO performance in default code
Output per month is ~32.5GB data

translates to average output rate of ~32.5 MB/sec
system's maximum output rate is ~250 MB/sec

Default IO DesignDefault IO Design

Diagnostic data output is the most computationally expensive

Diagnostic data output consists of :
output of approx. 32.5 GB
data written to 12 principal NetCDF files (files over 0.1 GB)
adding a time slice of a 3D array (~ 4.4MB for T63L31)
high frequency of these writes

Let's perform quick analytical test
use IO pattern described above
include 124 writes (corresponds to 31-day month)
add some NetCDF performance tuning

no pre-filling of variables
vary size of write “chunks”

measure average bandwidth of outputting 32.5GB in 12 files

NetCDF Chunk NetCDF Chunk
SizeSize

No CRAY XT-IOBUF
output rate increases with
chunk size
128MB optimal chunk size

With CRAY XT-IOBUF
huge performance
increase
inverse chunk size relation
0.5MB optimal chunk size

*performed on a separate,
dedicated system

NetCDF Chunk NetCDF Chunk
SizeSize

0.13 0.25 0.5 1 2 4 8 16 32 64 128
0

10

20

30

40

50

60

70

80

90

100

110

120

130

w/o IOBUF
w/ IOBUF

Chunk Size (MB)

A
ve

ra
ge

 B
an

dw
id

th
 (M

B
/s

)

Lustre parallel filesystem
virtual high-speed file interface system. Composed of

metadata server (MDS)
object data servers (OSS)
object storage targets (OSTs)

achieves high-throughput via
splitting of meta-data and “real” data operations
data striping

optimal Lustre settings are important
application dependent
system dependent

Conduct test
1 day of integration in ECHAM5-HAM on “PALU”
vary stripe size from 64kB to 8MB
vary OST number from 2 to 21

LustreLustre

possible 3-24% drop in average execution time using optimal settings
performance drop between 4 and 8 OSTs
4 OSTs with 1MB stripes chosen

Lustre Lustre -- 32kB32kB

2 4 8 16 21
300

310

320

330

340

350

360

370

380

390

400

410

420

430

64kB
128kB
256kB
512kB
1MB
2MB
4MB
8MB

of OSTs

W
al

l t
im

e
(s

ec
)

Again best performance is with 4 OSTs
settings still significant (2-13% drop in average execution time)

Lustre Lustre -- 128MB128MB

2 4 8 16 21
90

92.5

95

97.5

100

102.5

105

107.5

110

112.5

115

117.5

120

122.5

64kB
128kB
256kB
512kB
1MB
2MB
4MB
8MB

of OSTs

W
al

l t
im

e
(s

ec
)

IOBUF lessens impact of Lustre settings
only 2-6% possible drop in average execution time

Lustre Lustre -- 512kB512kB

2 4 8 16 21
90

92.5

95

97.5

100

102.5

105

107.5

110

112.5

115

117.5

120

122.5

64kB
128kB
256kB
512kB
1MB
2MB
4MB
8MB

of OSTs

W
al

l t
im

e
(s

ec
)

IOBUFIOBUF

XT-IOBUF Library
intercepts IO calls made on the compute nodes
user can specify:

size and number of buffers
filetype to be buffered
shared/not shared
flush frequency

INTENDED USE: Gather “small-block” writes to reduce flush
frequency from compute nodes
limited value for “large-block” writes

Conduct tests
1 model day of integration in ECHAM5-HAM
vary number of buffers from 1 to 32
vary buffer size from 5MB to 20MB each
use 4 OSTs with 1MB stripes

IOBUFIOBUF

1 2 4 8 16 32
80

82.5

85

87.5

90

92.5

95

97.5

100

102.5

105

107.5

110

Performance with 5MB buffers

of buffers

W
al

l t
iim

e
(s

ec
)

1 2 4 8 16 32
80

82.5

85

87.5

90
92.5

95

97.5
100

102.5

105

107.5
110

Performance with 10MB Buffers

of buffers

W
al

l t
im

e
(s

ec
)

1 2 4 8 16 32
80

82.5
85

87.5

90

92.5

95

97.5

100

102.5
105

107.5

110

Performance with 20MB Buffers

32kB
512kB
128MB

W
al

l t
im

e
(s

ec
)

Observations
more virtual buffer space leads to

better performance
only 2-5% change in average

execution time

of buffers

Final ConfigurationsFinal Configurations

512kB chunk size

4 OSTs with 1MB stripes
thirty-two 20MB buffers for IOBUF

4 OSTs with 2MB stripes
eight 5MB buffers for IOBUF

4 OSTs with 256kB stripes
no IOBUF for NetCDF output

* IOBUF used to buffer STDOUT and input nudging data in all cases
** 128 single-core CPUs used
*** 6-hourly output

32kB chunk size32kB chunk size

128MB chunk size

FINAL RESULTSFINAL RESULTS

1 2 4 8 16 32
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

DEFAULT
32kB
512kB
128MB

Model Duration (days)

W
al

l t
im

e
(m

in
)

Execution times (32 days, 128 CPU)
no aggresive opt 149 min
aggresive opt
+ Lustre config 51 min
optimal chunksize
+ IOBUF 44 min
remove NetCDF sync
(add Massoc) 38 min

Results achievable with “user” or
“vendor” approaches

1 month of integration takes ~112
min on NEC SX-6 (8 CPU)

dedicated queue

Total execution time (32 days, 256 CPU)
compiler opt + Lustre config
optimal chunksize & IOBUF 35 min

remove NetCDF sync 28 min
(add Massoc)

remove IEEE compliance 26.5 min

IO Significance (1 month, 128 CPU)
no optimizations 33%
with compiler opt 21%
in final configurations <11%

Final PerformanceFinal Performance

Communication costs are more important
no optimizations 17%**
with compiler opt 57%
in final configurations ~55%
Barriers and collective communication calls are most significant
(~17.5% and ~12% respectively)

Communication optimization is now vital
barrier reduction
removal of collective communication calls

**of total wall time for run

Final PerformanceFinal Performance

many thanks to the following...

CSCS
Dr. Neil Stringfellow
Mr. Hussein Harake

Cray
Mr. Roberto Ansaloni
Ms. Nina Suvanphim
Ms. Tricia Balle

MPI
Dr. Luis Kornblueh

IES-Ispra
Ms. Silvia Kloster

AcknowledgementsAcknowledgements

	Optimizing IO Performance �in ECHAM5-HAM

