

# **Optimizing IO Performance** in ECHAM5-HAM

Mark Cheeseman



### Background

Swiss National Supercomputing Centre

### CSCS is Switzerland's national HPC resource

- provides resource and assistance to all educational institutions
- provide computer resource from MeteoSwiss
- support various disciplines (computational chemistry, CFD, climate)
- offer different project sizes (small, large, ALPS)

### Advanced Large Projects in Supercomputing

- Iarge amounts of computational and technical resource over 2 years
- 4 projects approved for January 2007 start
  - CFD
  - computational biology
  - computational chemistry
  - climate modelling



Background

Swiss National Supercomputing Centre

### **ALPS Climate Project**

"Climate change and the hydrological cycle from global to European/alpine scales".

Principal Investigator : Dr. Ulrike Lohmann (ETHZ)

Project goals include:

- development of high-resolution climate modelling system
- prediction of extreme weather events

Use of ECHAM5-HAM(Version 5.3.02)

- 500 years of integration at T63L31
- 100 years of integration at T106L31
- 2.35M CPUh (out of 3.75M CPUh allotted)
- Optimizing ECHAM5-HAM is HIGHLY desirable



ECHAM5-HAM

Swiss National Supercomputing Centre

### Code Specifics (at T63L31 on Cray XT3)

ECHAM5 with aerosol and atmos. chemistry modules added

36 additional tracers

normal domain decomposition used

- minimum of 32 single-core nodes (memory)
- maximum of 384 single-core nodes (discretization)

single IO node used with NetCDF output format

data nudging used for SST, VOR, STP and DIV

6-hourly output frequency









### ECHAM5-HAM

Swiss National Supercomputing Centre

### Performance Analysis Continued...

for 1 month integration on 128 CPU (no optimizations)

- → 34% walltime is IO activity
  - concentrated in output of large diagnostic files
    data nudging input not so significant
- → 17% walltime is MPI activity
  - barriers
  - synchronizations
  - collective communication calls

### Our Goal? - *Minimize the computational significance of IO*

### How do we proceed?

- find optimal NetCDF chunk size
- exploit Lustre filesystem
- use IOBUF



### **Default IO Design**

Swiss National Supercomputing Centre

### IO node strategy used

global domain is broken into number sub-domains that are distributed to worker nodes

At an "output event", IO node will

- collect worker sub-domains
- create corresponding global domain
- output data to hard disk

simple, efficient with little interruption to compute node workload

targeted for shared memory platform with small # of nodes

- concern for large distributed memory platforms
- could add additional IO nodes (complexity, development time)

### IO performance in default code

- Output per month is ~32.5GB data
  - translates to average output rate of ~32.5 MB/sec
  - system's maximum output rate is ~250 MB/sec



NetCDF Chunk

Diagnostic data output is the most computationally expensive

### Diagnostic data output consists of :

- output of approx. 32.5 GB
- data written to 12 principal NetCDF files (files over 0.1 GB)
- adding a time slice of a 3D array (~ 4.4MB for T63L31)
- high frequency of these writes

### Let's perform quick analytical test

- use IO pattern described above
- Include 124 writes (corresponds to 31-day month)
- add some NetCDF performance tuning
  - no pre-filling of variables
  - vary size of write "chunks"

measure average bandwidth of outputting 32.5GB in 12 files



NetCDF Chunk Size



### No CRAY XT-IOBUF

- output rate increases with chunk size
- 128MB optimal chunk size

## With CRAY XT-IOBUF

- huge performance increase
- inverse chunk size relation
- 0.5MB optimal chunk size

#### \*performed on a separate, dedicated system



### Lustre parallel filesystem

#### virtual high-speed file interface system. Composed of

- metadata server (MDS)
- object data servers (OŚS)
- object storage targets (OSTs)
- achieves high-throughput via
  - splitting of meta-data and "real" data operations
  - data striping
- optimal Lustre settings are important
  - application dependent
  - system dependent

### Conduct test

- I day of integration in ECHAM5-HAM on "PALU"
- vary stripe size from 64kB to 8MB
- vary OST number from 2 to 21



Lustre



Lustre - 32kB

Swiss National Supercomputing Centre



- possible 3-24% drop in average execution time using optimal settings
- performance drop between 4 and 8 OSTs
- 4 OSTs with 1MB stripes chosen



Lustre - 128MB

Swiss National Supercomputing Centre



Again best performance is with 4 OSTs

settings still significant (2-13% drop in average execution time)



#### Lustre - 512kB

Swiss National Supercomputing Centre



- IOBUF lessens impact of Lustre settings
- only 2-6% possible drop in average execution time



**IOBUF** 

Swiss National Supercomputing Centre

## **XT-IOBUF** Library

- Intercepts IO calls made on the compute nodes
- user can specify:
  - size and number of buffers
  - filetype to be buffered
  - shared/not shared
  - flush frequency
- INTENDED USE: Gather "small-block" writes to reduce flush frequency from compute nodes
- Imited value for "large-block" writes

## **Conduct tests**

- I model day of integration in ECHAM5-HAM
- vary number of buffers from 1 to 32
- vary buffer size from 5MB to 20MB each
- use 4 OSTs with 1MB stripes



90 -87.5 -85 -82.5 -80 -

2

Δ

# of buffers

8

16

32

### **IOBUF**

#### Swiss National Supercomputing Centre





#### **Observations**

- more virtual buffer space leads to better performance
- → only 2-5% change in average execution time



32kB chunk size

4 OSTs with 1MB stripes

 $\scriptstyle \checkmark$  thirty-two 20MB buffers for IOBUF

✓ 4 OSTs with 2MB stripes

✓ eight 5MB buffers for IOBUF

✓ 4 OSTs with 256kB stripes
 128MB chunk size
 ✓ no IOBUF for NetCDF output

\* IOBUF used to buffer STDOUT and input nudging data in all cases
\*\* 128 single-core CPUs used
\*\*\* 6-hourly output



### **FINAL RESULTS**

Swiss National Supercomputing Centre



| xecution times (32 day | /s, 128 CPU) |
|------------------------|--------------|
| no aggresive opt       | 149 min      |
| aggresive opt          |              |
| + Lustre config        | 51 min       |
| optimal chunksize      |              |
| + IOBUF                | 44 min       |
| remove NetCDF sync     |              |
| (add Massoc)           | 38 min       |

Results achievable with "user" or "vendor" approaches

1 month of integration takes ~112 min on NEC SX-6 (8 CPU) dedicated queue



**Final Performance** 

Swiss National Supercomputing Centre

#### Total execution time (32 days, 256 CPU) compiler opt + Lustre config optimal chunksize & IOBUF 35 min remove NetCDF sync 28 min (add Massoc) 26.5 min remove IEEE compliance IO Significance (1 month, 128 CPU) no optimizations 33% with compiler opt 21% in final configurations <11%



### **Final Performance**

Swiss National Supercomputing Centre

#### Communication costs are more important

no optimizations17%\*\*with compiler opt57%in final configurations~55%Barriers and collective communication calls are most significant(~17.5% and ~12% respectively)

#### Communication optimization is now vital

- barrier reduction
- removal of collective communication calls

\*\*of total wall time for run



many thanks to the following...

### CSCS

Dr. Neil Stringfellow Mr. Hussein Harake

#### Cray

Mr. Roberto Ansaloni Ms. Nina Suvanphim Ms. Tricia Balle

#### MPI

Dr. Luis Kornblueh

#### IES-Ispra Ms Silvia Kl

Ms. Silvia Kloster