Status and needs for reanalysis: User views Chemical Transport Modelling

Beatriz Monge-Sanz

University of Leeds, Leeds, UK

With contributions from:

Martyn Chipperfield, Bram Bregman, Caroline Forster, Michael Gauss, Bjoern Knudsen, Kirstin Krueger, Mark Lawrence, Bernard Legras, Twan van Noije, Thomas Reddmann, ...

Outline

- > What are CTMs?
- > What are CTMs for?
- Past/present experiences with (re)analyses
 - Long term stratospheric O₃ loss
 - Polar O₃ loss
 - Strat-Trop Exchange
 - Tropical Tropopause Layer (TTL)
- Requirements for future (re)analysis

What are Chemical Transport Models (CTMs)?

Numerical models Use prescribed meteorology Calculate concentrations of species in the atmosphere

- 3D off-line. Eulerian and Lagrangian
- Winds from GCMs or analyses
- Analyses → direct comparison with observations
- Re-analyses \rightarrow direct comparison with obs into the past
- Reliance on (re)analyses quality → diagnostic tool for analyses
- Longer experience in the stratosphere

What do CTMs investigate?

What do CTMs investigate?

Bad news: No existing reanalysis seems to be good enough

Good news: We are on our way \rightarrow ERA-Interim

What do CTMs investigate?

Troposphere

Stratosphere-Troposphere Exchange

Tropical Tropopause Layer

Tropical convection

What CTMs need:

Realistic transport

• Certain parameters to make parameterisations in the CTM consistent with those in the meteo. model.

Stratospheric transport

Current (re)analyses (e.g. ERA-40, GEOS-4, UKMO):

- Too strong Brewer-Dobson circulation
- Not enough tropical isolation

Unrealistic distribution of chemical tracers

> CTMs for transport diagnostics: Age of air

Trajectories

Age of air: definition

➢ <u>Diagnostic</u> for stratospheric transport, <u>chemistry independent</u> → Assessment of stratospheric analyses and intercomparison of CTMs

> <u>Age spectrum</u>: distribution of transit times of an air parcel from a source to a certain location (in the stratosphere) G(x,t)

Mean age-of-air: first moment of age spectrum

$$f(x, x_0) = \int_0^\infty t \ G(x, x_0, t) \ dt$$

For a <u>conserved linear tracer</u>:

$$\Gamma(\boldsymbol{x}, \boldsymbol{x}_0) = \boldsymbol{t} - \frac{\boldsymbol{\gamma}(\boldsymbol{x}, \boldsymbol{t})}{\boldsymbol{\alpha}}$$

$$\boldsymbol{\alpha} : mixing \ ratio \ trend$$

Age of air: calculation

Age-of-air → chemistry independent transport diagnostic

Conserved linear tracer \rightarrow **mean-age ("observational")**

Age of air: cross-sections

Some strategies

- Isentropic vertical coordinate: σ - θ
- Derived vertical velocities: Heating rates
- Use of forecasts

What if we have better reanalysis?

ERA-Interim

ERA-Interim: TOMCAT/SLIMCAT v. observations

Ozone distributions

Total ozone in July and Dec 1990TOMSREPROBUS
ERA-40

Total O., TOMS N7 monthly avg 199012

Total O., Reprodus-E40E8h monthly avg 19901201 - 1991010:

Transport problems translated into unrealistic tracers

Too low O₃ over tropics
Too high O₃ over poles

Too strong Brewer-Dobson circ.:Removes too much from tropicsAccumulates too much over poles

Polar Temperatures

• ERA-40 oscillations

Randel et al., 2004 Manney et al., 2005

• Large differences between analyses

Unrealistic PSC areas \rightarrow unrealistic polar O₃ loss

from Bjoern Knudsen (DMI)

T_{RS}

STE T. van Noije (KNMI)

TTL Kirstin Krüger (IFM-GEOMAR/AWI)

Stratosphere-Troposphere Exchange

O₃ monthly STE fluxes with ERA-40 and OD

Stratosphere-Troposphere Exchange

Annual total O₃ STE flux with ERA-40 and OD: forecast length

Dependence on forecast range; merged forecasts are indicated by a line connecting begin and end time of the forecast range. Forecasts → reduction flux from van Noije et al. (2006) (KNMI)

Stratosphere-Troposphere Exchange

O₃ monthly STE fluxes with ERA-40: satellite observations

Comparison of ERA-40 first-guess fields (thin) and first-guess from ERA-40 run with **no satellite** radiance observations assimilated during Jan-Mar 1973 (thick)

from van Noije et al. (2006) (KNMI)

Tropical Tropopause Layer

Trajectories to study water vapour into the stratosphere
Vertical motion from heating rates to avoid noisy w field
Compare ERA-40 and ECMWF Operations

 T_{Min} in trajectories \approx dehydration points of strat. H_2O

from Kirstin Krüger (IFM-GEOMAR/AWI)

Tropical Tropopause Layer

T_{Min} in trajectories \approx dehydration points of strat. H_2O

→ Lower T_{Min} in op ECMWF (cold bias in tropical stratosp?)

from Kirstin Krüger (IFM-GEOMAR/AWI)

T_{Min} at 80hPa, Nov 2005 - Jan 2006

40°N 40N 192 192 192 192 192 20N 180 op ECMWF (T511/L60) EQ 180 192 20S 192 192 192 192 40°S 40S 180 6ÖE 120E 12⁰W 6ÓW 40N 204 40°N 204 192 192 192 192 192 20N op ECMWF 180 EQ -180 (T799/L91) 20S 192 192 192 192 40S 040°S 12'0W 60E 180 120E 60W 0°E 0° 180°E

\rightarrow cold bias in TTL reduced in new T799/L91

from Kirstin Krüger (IFM-GEOMAR/AWI)

Requirements for future reanalysis

Improvements needed

- > Keep improving Brewer-Dobson \rightarrow for long-term studies
- > Improve T over the poles (more radiosondes) \rightarrow PSCs
- > STE large uncertainties \rightarrow constrain analyses
- Less noise in vertical velocity?
- > Improve vertical motion and T \rightarrow positive impact on H₂O vapour
- > 3h winds?

Requirements for future reanalysis

Data availability

- Access to data
 - NCEP: ok

• ECMWF: would gain many "CTM clients" if easier access and NetCDF format for certain key fields

> Archived quantities:

- Heating rates \rightarrow consistency vertical/horizontal motion
- Eta-dot \rightarrow consistency vertical/horiz motion
- Convective parameters \rightarrow consistency of parametr.

Archived for ERA-40 but not operationally

BUT ERA-40 STOPPED IN 2002 !!!

Requirements for future reanalysis

Updates for trend studies

- Need also the most recent data
- Same model version is needed
- > ERA-40 updates every 6 months?

Example: Cl_v decrease, T and ozone (SLIMCAT)

Summary

> CTMs treat key atmospheric science issues

CTMs and (re)analyses: two-way road CTMs need accurate (re)analyses

> CTMs are helping ECMWF to spot problems (esp. in stratosphere)

> > ...so let's keep on working!

Acknowledgements

Steve Arnold, Paul Berrisford, Wuhu Feng, John Methven, Adrian Simmons, Sakari Uppala ...

IAS - University of Leeds

