
530

Notes on the exact solution of moist
updraught equations

Peter A.E.M. Janssen and Martin Köhler
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Notes on the exact solution of moist updraught equations

Abstract

The entraining plume model is at the center of most convection parametrizations in global climate and
weather prediction models. Entrainment can be formulated in terms of a relaxation time scale which makes
it inversely dependent on the parcel vertical velocity. The result is a rather complex system of equations
with a singularity for zero vertical velocity and infinite entrainment. This makes it impossible to numerically
solve the coupled equations. The determination of the top of convection or the boundary layer will therefore
be highly inaccurate. Here the system of equations is solved for dry, moist and cloudy situations.

1 Introduction

Cloud top height and cloud amount strongly impacts infra-red and solar radiative fluxes and therefore the
Earth’s energy budget. The simulation of cloud top height and cloud amount in global models is in many
atmospheric conditions related to the description of convective processes. A variety of mass-flux and higher-
order parametrization approaches have been proposed. However, even on the parametrization of convection
there is no consensus (Arakawa, 2004). Randall et al. (2003) postulated a parametrization deadlock motivating
them to circumvent the problem by attempting to resolve convection in global models at great cost. At the heart
of this frustration is the entraining plume model of convective updraughts. This paper solves two common sets
of plume models to allow a better understanding of these models and to simplify it’s application in numerical
models.

The concept of an entraining plume as a model for atmospheric convection was first proposed by Stommel
(1947). Interestingly, he based his thoughts on oceanic jet theory by Rossby (1936). As still customary today
he assumed that the updraught is well-mixed. The resulting horizontally discontinuous variables refer to a top-
hat distribution. This idea was revived in the sixties (e.g. Squires and Turner, 1962) and applied to general
circulation models (GCMs) in the seventies. Extensions are still operationally used such as the multi-plume
Arakawa and Schubert (1974) convection scheme or the bulk shallow and deep convection scheme by Tiedtke
(1989). More recently, mass-fluxes were shown to account for about 80% of the total fluxes in shallow convec-
tion (Siebesma and Cuijpers, 1995) and 60% in dry PBL and stratocumulus situations (Schumann and Moeng,
1991). Various approaches describe the remainder with K-diffusion or higher order terms (e.g. Siebesma et al
2007 and Lappen and Randall (2001).

Mass-flux schemes require knowledge of the updraught property φu in the mass-flux (M) term of the tendency
equation for the mean environmental property φ̄ , i.e.

∂ φ̄
∂ t � � 1

ρ
∂
∂ z

M
�
φu
� φ̄ ���

The fractional entrainment and detrainment are then defined as the exchange of environmental and convective
air masses,

1
M

∂M
∂ z � ε � δ �

Note that entraining plume models are not only used in mass-flux approaches but are also used to determine the
top of the planetary boundary layer (PBL) or convection, where the vertical velocity or buoyancy vanishes.
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Several basic entrainment formulations have been proposed, for example

ε � constant �
ε �

1
wτ
�

ε �
α
z
�

ε �
2β
R
�

Observations and models generally disagree with the first approach that assumes a constant ε but variations of
it are still used because of it’s simplicity and robustness. The second formulation postulates a time scale of
entrainment (Siebesma, 1998; Neggers et al, 2002). If one chooses the overturning time-scale of a cumulus
tower of height h (wτ � h) one finds typical values of ε � 10

� 3m
� 1 for shallow convection and � 10

� 4m
� 1 for

deep convection, which are close to observations. The third formulation ε � α
�
z postulates that the entrainment

at height z is dominated by eddies of size z. This formulation works well near the surface and can also be
adjusted for the top of the PBL (Siebesma et al 2007). The last entrainment formulation mentioned ε � 2β

�
R

with β � 0 � 1 is based on similarity arguments for plumes (Simpson et al 1965, Turner, 1973). It’s rational
though has been questioned (Siebesma and Cuijpers, 1995). A review of entrainment formulations is given in
Siebesma (1998).

A few theoretical and numerical problems were pointed out relating to the entraining plume model in particular
to the treatment at the parcel top. While investigating single column models with entrainment formulation
ε � const � , Warner (1970) found that entraining plume models cannot simultaneously predict values of liquid
water content and cloud depth in agreement with observations. Lock (2001) and Grenier and Bretherton (2001)
identified a common problem in the determination of PBL top, which is crucial to determine the height of
mixing and the resulting PBL top entrainment. They developed a technique called profile reconstruction in
which the PBL is assumed well-mixed and the free troposphere is assumed to have a fixed lapse rate. The
PBL top can then be reconstructed between model layers. Moeng and Randall (1984) documented a spurious
oscillation in higher-order single column models. A large artificial damping had to be applied to solve this
problem. At ECMWF we decided to adopt the ε � 1

�
wτ formulation as part of our Eddy-Diffusivity Mass-

Flux framework implementation for PBL parametrization. But we discovered a long-standing problem of over-
prediction of PBL height and related overestimates of PBL top entrainment. We found that this problem was
related to insufficient parcel entrainment near PBL top, where the parcel should slow down to w � 0. This
results in a singularity of infinite entrainment, which cannot be properly handled numerically.

We found a solution to this problem by obtaining the exact solution of the coupled plume equations (cf. e.g.
Siebesma and Holtslag, 1996) for ε � 1

�
wτ . Those equations describe the fate of the properties of an ’up-

draught’ fluid element when it moves around in a background atmosphere with a given liquid water potential
temperature θ̄l � z � , virtual potential temperature θ̄v � z � and total water mixing ratio q̄t . This paper derives this
solution and discusses it’s implications.

Before we write down the relevant equations first a remark on notation. The background quantities will be
denoted by a bar over the relevant character (i.e. θ̄ ), while the quantities for the fluid element do not have an
over-bar. Liquid and water vapour are denoted with subscripts l and v.

The equation for the updraught velocity w follows from the momentum equation:

∂w
∂ t
�

w
∂w
∂ z � ��� 1

τ
� ε 	w 	 
 w

�
g

θv
� θ̄v � z �
θ̄v � z � � (1)

which describes effects of entrainment and buoyancy on the vertical movement of a parcel. Here, the effects of
entrainment are represented by two terms. The first term has been proposed by Siebesma (1998) and Neggers
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et al (2002) and it is given by a relaxation term with constant relaxation time τ . The second term, ε 	w 	w,
is basically a turbulent drag with constant drag coefficient/entrainment rate ε � constant. As is common in
parametrizations of turbulence, the drag involves the product of the absolute value of the velocity and the
velocity vector.

In the absence of entrainment there are two invariants for moist air, namely the total water mixing ratio q t �
qv
�

ql and the liquid water static energy sl of the parcel, defined by

sl � cpT
�

gz � Lvql �
where cp is the specific heat at constant pressure, g is acceleration of gravity, and Lv is the latent heat of
vaporisation. Alternatively, one may introduce the potential temperature θ according to

θ � T � p0

p

 κ �

with κ � R
�
cp, R the gas constant, p the pressure at height z and p0 the reference pressure (1000hPa). For

hydrostatic balance, dp
�
dz � � ρg, and using the gas law p � ρRT it can be shown that invariance of liquid

water potential temperature θl follows from invariance of sl with

θl � θ � Lvθ
cpT

ql �

We use θl for convenience in the following.

In the presence of entrainment, the equation for θl becomes

∂θl

∂ t
�

w
∂θl

∂ z � � � 1
τ
� ε 	w 	 
 � θl

� θ̄l � z � � (2)

while the equation for the total water mixing ratio qt becomes

∂qt

∂ t
�

w
∂qt

∂ z � � � 1
τ
� ε 	w 	 
 � qt

� q̄t � z � � (3)

In this note we discuss exact, steady-state solutions of the moist updraught equations (1), (2) and (3). The case
of finite turbulent drag ε and infinite relaxation time τ is straightforward to solve and will not be discussed
in detail here (As a reference the relevant solution is given in Appendix C). On the other hand, the case of
finite relaxation time and vanishing turbulent drag (ε � 0) is by no means trivial because one deals with a
nonlinearly coupled system. Furthermore, this case is of particular interest because it has a singularity for
vanishing vertical velocity. Therefore, in this note the relaxation model for entrainment will be discussed
extensively, and it will be seen that the singularity for vanishing vertical velocity imposes a robust structure on
the solution. The Sections 2, 3 and 4 will discuss the exact solution for a dry atmosphere, a moist, non-cloudy
atmosphere and a cloudy atmosphere with constant background. In Section 5 we show how to deal with the
case of stratification in the atmosphere. In particular, we discuss the behaviour of a parcel near an inversion
for increasing inversion strength. For reasonable strong inversions the solution for vertical velocity will show
a cat’s-eye pattern, suggesting that, because a parcel may execute a ’damped’ oscillation around the inversion
for a long time, there could be a considerable amount of heat and momentum exchange between the parcel and
the background, which may lead to erosion of the inversion. In the final section we present for the case of a dry
atmosphere an exact solution which combines the effects of relaxation and turbulent diffusion.
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The buoyancy term in our main equation (1) is in some sense the difficult one because it depends on the vir-
tual potential temperature θv of the updraught and the background virtual potential temperature θ̄v � z � (which
is assumed to be given), while the relevant temperature equation is in terms of the liquid water potential tem-
perature θl . The virtual potential temperature θv can be written as a function of conserved variables liquid
water potential temperature θl and total water mixing ration qt (see App. B). This relationship depends on the
circumstances, and therefore we will distinguish between the cases of a dry atmosphere, a moist, non-cloudy
atmosphere and a cloudy atmosphere.

2 Exact solution for dry atmosphere

For a dry atmosphere, qv and ql vanish, hence the potential and virtual potential temperature are identical. The
relevant updraught equations become:

w
dw
dz � � w

τ
�

g
θ � θ̄ � z �

θ̄ � z � � (4)

w
dθ
dz � � 1

τ
�
θ � θ̄ � z � � (5)

In order to solve the above problem we assume that the background profiles are independent of height. Introduce
the dimensionless quantities T , W , and Z according to

T �
θ � θ̄

θ̄
� W �

w
gτ
� Z �

z
gτ2 �

then Eqns. (4-5) become

dW
dZ � � 1

� T
W
� (6)

dT
dZ � � T

W
� (7)

This is a second-order nonlinear problem and, at first instance, one might not be very hopeful in finding an
exact solution. Fortunately, however, this problem has an adiabatic invariant. This is readily seen by adding (6)
and (7) with the result

d � T � W �
dZ � � 1 �

hence we find the invariant

T
�

W
�

Z � α � (8)

where α is an integration constant to be determined by the boundary conditions. Elimination of W from (7)
then gives a first-order, nonlinear differential equation for T ,

dT
dZ �

T
T
�

Z � α
� (9)

This first-order problem may be integrated immediately (cf. Eq. (A21) of the Appendix), and the general
solution for X becomes the simple relation

T logβT � Z � α � (10)
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where β is another integration constant.

The integration constants α and β are now determined by means of the boundary condition on T and W at the
surface Z � 0,

T � 0 � � T0 � W � 0 � � W0 �
Using Eq. (8) one finds for α ,

α � T0
�

W0 �
while from the solution (10) one finds

β �
1
T0

e
� α

�
T0 �

The top of the boundary layer is now defined as that height ZT where the vertical velocity W vanishes. Hence,
from the condition W � Z � ZT � � 0 one finds from (8) that

TT � α � ZT � (11)

and using this in the exact solution (10) one finds for ZT

� ZT
� α ��� 1 � logβ � α � ZT ��� � 0 �

which gives two conditions on ZT , namely

ZT � α � or � ZT � α � 1
βe

� (12)

Substituting the first condition, ZT � α , in Eq. (11) immediately gives the vanishing of the buoyancy, whereas
according to the second condition of (12) the buoyancy remains finite. In other words, at ZT � α both buoyancy
and vertical velocity of the parcel vanish, and therefore one would expect a stable condition, while when
ZT � α � 1

�
βe the parcel still experiences a finite buoyancy TT � 1

�
βe, hence there is potential for instability,

i.e. the second condition is not an equilibrium point. Because of this stability consideration one would expect
that the top of the boundary layer or convection is given by ZT � α .

Now, using the expressions for α and β one finds that the first condition simply becomes,

ZT � T0
�

W0 �
In terms of dimensional variables one therefore finds that the height of the boundary layer is entirely determined
by the surface conditions in the following manner:

zT � gτ2 θ0
� θ̄
θ̄
�

w0τ � (13)

an extremely elegant and useful result indeed. Useful, because in practice the height of the boundary layer is
an important quantity to know ( In typical cases, by the way, the boundary layer height is mainly determined
by the buoyancy term).

It is remarked, however, that the result (13) only holds for positive boundary conditions. In general, one needs
to make a distinction between cases with different signs of T0 and W0 (or θ0

� θ̄ and w0). These cases will be
discussed during the graphical construction of the solution.
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Figure 1: All dry parcel solutions. See text for explanation.

2.1 Graphical construction of the solution

Although T is not given explicitely in terms of the height Z, the relation T � Z � is obtained from Eq. (10) by
determining Z for given T in a reasonable range for T .

As indicated in the previous section, there are several cases to be distinguished, depending on the sign of the
boundary conditions. All cases considered can be represented in one graph. Fig. 1 shows two solutions, one
branch corresponding to positive buoyancy, called T � , and one corresponding to negative buoyancy, T � . The
origin, where z � α and T � W � 0, represents the singularity where all parcels come to a permanent halt
(T � 0 means zero acceleration). This point therefore splits the two solution branches.

First, we follow parcels representing the T� branch. Note that those parcels are constantly accelerated upwards
while consuming and reducing their buoyancy. Depending on the initial conditions they can start at large
negative (downward) velocities W and large positive buoyancy T . They reach Z � α the first time at T �� W � 1

�
β . Later they pass through their lowest point at Z � α � 1

�
βe � � 0 � 368 where W � 0 and T � 1

�
βe.

The remaining buoyancy accelerates the parcels into an upward motion. Their maximum upward velocity is
reached at Z � α � 2

�
βe2 and T � W . Then entrainment destroys both T and W until the parcels come to a

rest at Z � α .

The negative buoyancy branch follows a path that is symmetric with respect to the positive buoyancy branch
with large upward motion first, reaching a maximum height and then moving downwards to come to rest at
Z � α .

Interestingly, in this graph Z, T and W are scaled with 1
�
β and Z is shifted by α . This means that it preserves

it’s shape and a table can be easily pre-calculated for the full range of values.

We now look once more at two typical scenarios of PBL parcels. First take a surface layer perturbed parcel with
excess temperature of 1K and an upward velocity of 1 m/s (T � � θ � θ̄ � � θ̄ � 1

�
300, W � w

�
gτ � 1

�
4000).

This initial condition is indicated by the yellow points on the T � branch. Buoyancy dominates that initial state
by a factor of 10. It is then converted into upward velocity until entrainment reduces both T and W towards
zero.

Second, take an upward moving parcel (1 m/s) that reaches into the stable entrainment zone on top of the PBL
with negative buoyancy � ∆T � � 10K;T � � θ � θ̄ � � θ̄ � � 1

�
30, W � w

�
gτ � 1

�
4000). Its initial conditions are
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indicated by the green dots on the T � branch in Fig. 1. It is quickly accelerated downward and reaches a resting
point below injection. This parcel trajectory is called overshoot. The last part of it represents a downdraught.

3 Exact solution for non-cloudy, moist atmosphere

For the non-cloudy case there is only water vapour and no liquid. In that event, according to Eq. (4) the virtual
potential temperature only depends on the vapour mixing ratio,

θv � θ � 1 � 0 � 61qv �
and the relevant equations become:

w
dw
dz � � w

τ
�

g
θ � 1 � 0 � 61qv � � θ̄v � z �

θ̄v � z � �
w

dθ
dz � � 1

τ
�
θ � θ̄ � z � � � (14)

w
dqv

dz � � 1
τ � qv

� q̄v � z � �
Now we are dealing with a third order nonlinear problem, but even this case can be solved exactly. To proceed
we introduce dimensionless quantities

T �
θ � θ̄

θ̄
� Q �

qv
� q̄v
q̄v
� W �

w
gτ
� Z �

z
gτ2

and for uniform background profiles the starting set of equations assumes the form

dW
dZ � � 1

� 1
W

� T � aQ � T � 1 ��� �
dT
dZ � � T

W
� (15)

dQ
dZ � � Q

W
� (16)

where

a �
0 � 61 q̄v

1
�

0 � 61 q̄v

is given.

As a first step towards the solution consider Eqns. (15) and (16) together and eliminate W between them. Then,
we find

1
T

dT
dZ �

1
Q

dQ
dZ

� Q
T � const � γ �

hence we may eliminate Q in the equation for the vertical motion with the result that we are left with the
second-order system

dW
dZ � � 1

� 1
W

�
A T
�

B T 2 � � (17)

dT
dZ � � T

W
� (18)
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where A � 1
�

aγ and B � aγ . Comparing this with the dry atmosphere case, Eqns. (6)- (7), it is seen that the
only essential difference is a T 2-term in the buoyancy term.

Once more, we can find an ’invariant’. To see this we eliminate the 1
�
W -term in (17) by using Eq. (18), hence

dW
dZ � � 1 � dT

dZ � A � B T � �
and integrating once one finds the ’invariant’

W � � Z � A T � B
2

T 2 � α � (19)

where α is an integration constant. This is the equivalent of Eq. (8), but now there is a quadratic relation
between vertical velocity and dimensionless temperature.

From Eq. (18) we now obtain a first-order equation for the temperature by eliminating W with (19) and the
result is

dT
dZ �

T
A T
�

B T 2
�
2
�

Z � α
�

which is the equivalent of Eq. (9).

The general solution of this problem is obtained in the Appendix (cf. Eq. (A22). It reads

� 1 � aγ � T log � βT � � aγ
2

T 2

� Z � α � (20)

which, because it is a third-order problem, involves three integration constants α , β and γ .

0 0.2 0.4 0.6 0.8 1 1.2 1.4
W or T

0

0.5

1

1.5

Z

W (dry)
T (dry)
W (moist; gamma=0.18)
T (moist; gamma=0.18)

Figure 2: Effect of moisture on the T� type solution for updraught (full lines, dry; dashed line, moist) for aγ � 0 � 18 The
temperature difference at the surface T0 � 1 while the vertical velocity W0 � 0 � 1.

The integration constants α and β are now determined by means of the boundary condition on T and W at the
surface Z � 0,

T � 0 � � T0 � W � 0 � � W0 �
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Using Eq. (19) one finds for α ,

α � W0
�

AT0
� B

2
T 2

0 � (21)

while from the solution (20) one finds

β �
1
T0

exp � � α � BT 2
0

�
2 �

AT0
� �

Finally, defining the top of the boundary layer as that height ZT where the vertical velocity W and temperature
perturbation vanish, one finds immediately from (19) that

ZT � α � (22)

In Fig. 2 the impact of moisture on the T� type solution is shown for the ’typical’ case of aγ � 0 � 18. 1 The
effects of moisture on the behaviour of a parcel are relatively modest. Moisture tends to increase buoyancy
and hence gives rise to an increase of vertical velocity as is evident from the increased maximum in Fig. 2.
Furthermore the boundary layer height increases as is also evident from the expressions of α (21) and ZT (22).

4 Exact solution for cloudy atmosphere

Finally, the cloudy case is the most complicated one. The mixing ratio qt is now the sum of liquid water and
water vapour mixing ratio,

qt � qv
�

ql

but since we are in a cloud the vapour mixing ratio is given by the saturation value,

qv � qsat � Rdry

Rvap

A
p

e
� B

�
T � (23)

This approximation follows from the Clausius-Clapeyron equation when assuming the latent heat as constant
and is accurate to about 1% within

�
25 � C (Rogers and Yau, 1989, Aliq � 2 � 54 � 1011Pa, Bliq � 5 � 42 � 103K,

Aice � 3 � 41 � 1012Pa, Bice � 6 � 13 � 103K). Therefore, the liquid water mixing ratio can be expressed in terms of
the total water mixing ratio qt temperature and pressure

ql � qt
� qsat � p � T � �

Yet temperature in return depends on condensation and therefore ql . An iterative solution is required to express
θ , ql and θv in terms of θl and qt : ql � ql � θl � qt � , which are required in the cloudy buoyancy term

B � g
θv
� θ̄v � z �
θ̄v � z � � g

θ
�
1
�

0 � 61qt
� 1 � 61ql � � θ̄v � z �

θ̄v � z �
The relevant equations become for the cloudy case:

w
dw
dz � � w

τ
�

B � θl � qt � � (24)

w
dθl

dz � � 1
τ
�
θl
� θ̄l � z � � (25)

w
dqt

dz � � 1
τ � qt

� q̄t � z � � (26)

1We find a � 0 � 006 for � qv ��� 0 � 01, while γ � 30 for a perturbation Q of 10% and a relative perturbation temperature of 1 	 300.
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Figure 3: Virtual potential temperature difference between an entraining parcel and the environment as a function of
mixing fraction between undiluted air and the environment (see also Kain and Fritsch, 1990). Both virtual potential
temperature formulations for cloudy (θv� cloud , dotted red line) and clear (θv� clear , solid red line) conditions are drawn. The
saturation threshold (blue line) indicates which virtual potential temperature formulation is applicable. On the right side
(environmental conditions) the first term in Eq. (B22) is diagnosed. The values for this typical example were chosen as
p=900 hPa, θl=286 K, θ̄l=290 K, qt=10 g/kg, q̄t=5 g/kg.

We proceed in a similar manner as in the previous section and introduce dimensionless quantities

T �
θl
� θ̄l

θ̄l

� Q �
qt
� q̄t
q̄t
� W �

w
gτ
� Z �

z
gτ2 � (27)

For uniform background profiles the set of equations becomes

dW
dZ � � 1

� 1
W

B � T � Q � �
dT
dZ � � T

W
�

dQ
dZ � � Q

W
�

Noting that by means of the last two equations it can be shown that Q and W are related to each other according
to

Q � γT � (28)

our set of equations reduces to

dW
dZ � � 1

� 1
W

B � T � γT � �
dT
dZ � � T

W
�

which has the same form as the problem we have solved exactly in the Appendix A.
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Figure 4: θv � const (red) as a function of conserved variables for clear (solid line) and cloudy (dotted line) conditions.
qt � qsat is denoted by the blue line where all cloudy points are above that line.

In Appendix B we have studied in detail the particular form of the buoyancy term for the stratocumulus case
and the cumulus case. The stratocumulus case is here defined as convection within a cloudy environment, while
the cumulus cloud is assumed to rise within a clear environment. In general we find the following form

B � T � Q � � a
�

bT
�

cQ
�

dQT
�

eQ2 � (29)

which upon using Eq. (28) becomes

B � T � � C
�

AT
�

BT 2 �
where C � a, A � b

�
cγ and B � dγ � cγ2. It is interesting to note that the only difference between the

stratocumulus and the cumulus case is the constant term C, which is the difference between the cloudy and
clear formulations of θv given the environmental conditions ( q̄t , θ̄l ). This term can be illustrated by drawing
the virtual potential temperature as a function of mixing fraction (see Fig. 3). This mixing fraction corresponds
to the convective mixing line in Fig. 4 (green line “convection”). Note that this term is always negative and
remains constant throughout the entrainment process because it only depends on the environment.

The constant term gives rise to a new structure of the solution because there is still finite, negative buoyancy for
vanishing potential temperature. In other words, the point W � 0 � T � 0 is not an equilibrium point anymore.
Rather, after the parcel reaches maximum height for zero velocity it will return to the earth’s surface because of
the negative buoyancy for small temperature T . The solution in this case is obtained in Appendix A and reads

Z � α � � C � 1 � logT � � AT log � βT � � B
2

T 2 � (30)

It is depicted in Fig. 5, which for a relatively small value of C � � 0 � 1 shows already dramatic differences
with the dry case. In the dry case there is an equilibrium point corresponding with the top of the boundary
layer, while in the cloudy, cumulus case the height of the boundary layer is considerably smaller and does not
correspond to an equilibrium point (as for vanishing velocity there is still negative buoyancy). As a consequence
the parcel returns to the earth’s surface.

The solution for the stratocumulus case (hence no constant term) is qualitatively similar to the non-cloudy,
moist atmosphere example of the previous section. The essence of the solution is therefore depicted in Fig. (2).
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Figure 5: Comparison of solution in case of cumulus convection with the T� type solution for updraught (full lines, dry;
dashed line, cumulus) for C � 0 � 1 The temperature difference at the surface T0 � 1 while the vertical velocity W0 � 0 � 1.

5 Effect of varying background profiles

It is difficult to obtain the exact solution for T and W for general background profiles, except when it is assumed,
as usually done in numerical models, that in a layer of thickness ∆z the potential temperature θ̄ is constant while
jumps are allowed from one layer to the next. Jump profiles can still be dealt with in the context of the full
nonlinear problem as inside the ith layer with mean height zi the general solution is still given by Eq. (30) but
now with integration constants αi, βi and γi, hence

Z � αi � � C � 1 � logT � � A � γi � T log � βiT � � B � γi �
2

T 2 � Z ��� � (31)

where T is the dimensionless temperature in the ith layer with mean dimensionless height Zi, and where the
domain � � � Zi

� ∆Z
�
2 � Zi
� ∆Z

�
2 � . The main problem then to solve is how to connect the integration constants

from one layer to the next. These connection formulae will be derived here from the equations for vertical
motion, potential temperature and mixing ratio.

Our starting point is the set of Eqns. (24)-(26), and we introduce the dimensionless variables T , Q and W
according to (27), but now we allow the background profile to be a function of height z. In stead of the set
(24)-(26) one now finds

dW
dZ � � 1

� 1
W

B � T � Q � � (32)

dT
dZ � � T

W
� � T � 1 � d

dZ
log θ̄ � Z � � (33)

dQ
dZ � � Q

W
� � Q � 1 � d

dZ
log q̄t � Z � � (34)

We solve this nonlinear set of equations for jump profiles in θ̄ and q̄t . Specifically, we write for θ̄ and q̄t near
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Zi � 1
�
2 � Zi

� ∆Z
�
2

θ̄ � θ̄i
� ∆θi H � Z � Zi � 1

�
2 � � q̄t � q̄i

� ∆qi H � Z � Zi � 1
�
2 � �

where H denotes the Heavyside function, ∆θi � θ̄i � 1
� θ̄i, and ∆qi � q̄i � 1

� q̄i. Clearly, the jumps in the
background profiles give rise to δ -function singularities in the equations for T and Q and therefore only ’weak’,
discontinuous solutions can be obtained, i.e. T and Q have jumps as well. However, as the equation for W does
not contain a singularity, the vertical velocity is found to be continuous (but the first derivative shows, of course,
jumps)

The connection formulae for αi, βi and γi now follow from the jump conditions for W , T and Q. For example,
the jump condition for T follows from an integration of Eq. (33) over the jump in θ̄ located at Zi � 1

�
2 �

Zi
� ∆Z

�
2. Assume that the vertical motion W is continuous across the jump. Then, integration of (33) over
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Figure 6: Exact solution for the vertical velocity in case the atmosphere has an inversion at dimensionless height Z � 0 � 1.
The different panels show cases of decreasing potential temperature, ranging from a strong inversion (∆θ � 0 � 025) to a
weak inversion (∆θ � 0 � 0035).

the jump at Zi � 1
�
2 from Zi � 1

�
2
� ε to Zi � 1

�
2
� ε , while taking the limit of small ε gives for the increment2

∆T � T � � ε � � T � � ε � in T

∆T � � � 1 ��� T � � ∆θi� θ̄ � � (35)

2For ease of notation the argument Zi � 1 � 2 � ε has been replaced by � ε , etc.
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Figure 7: Exact solution for the vertical velocity in case the atmosphere has an exponential potential temperature profile.
Shown are cases of increasing inverse decay rates, ranging from a realistic rate (λθ � 0 � 025) to a a far too large value
(λθ � 0 � 025).For comparison, the case of a constant background temperature is shown as well.

Here,
�
T � � � T � � ε � � T � � ε � � � 2 � T � � ε � � ∆T

�
2 which still depends on ∆T . Rearranging Eq. (35) one finds

explicitely for ∆T

∆T � � ∆θi

1
� ∆θi

�
2 � 1 � T � � ε � � �

where ∆θi is short-hand for ∆θi

� � θ̄ � . Similarly, the jump in Q is found to be

∆Q � � ∆qi

1
� ∆qi

�
2 � 1 � Q � � ε � � �

Since now the jumps in T and Q are known, while W is continuous, the integration constants in the ith-layer
follow from the values of W , T and Q at the bottom of the layer. For γ one finds

γi �
Q � � ε �
T � � ε � � (36)

while αi follows most easily from the invariant (A4),

αi � W � � ε � � Zi � 1
�
2
�

AT � � ε � � 1
2

BT � � ε � 2 � C log � 	 T � � ε � 	 � � (37)

Finally, βi is obtained from the solution (31) with the result

βi �
1

T � � ε � exp ��� C � 1 � log � 	 T � � ε � 	 � � � Zi � 1
�
2
� αi

� 1
�
2BT � � ε � 2 ��� � � AT � � ε � ��� (38)

By making use of (36)–(38) one may continue the solution from one layer to the next. As an example, we
show in Fig. 6 the case of a two-layer fluid where the increment in background potential temperature is chosen
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to decrease from ∆θi

�
� 0 � 025 to 0 � 0035 at a dimensionless inversion height Z � 0 � 1. For a small increase in

background temperature in the second layer, buoyancy is only slightly reduced giving a small modification to
the solution for W of the parcel. However, increasing the background temperature increment in such a way
that the parcel gets sufficient negative buoyancy in the second layer, there are dramatic consequences for the
solutions: in the second layer we now get a T � type solution while the equilibrium point starts to move towards
the inversion height . Increasing the temperature increment even more the parcel returns to the first layer
and starts executing a damped oscillation. However, the details of this damped cat’s-eye pattern depend to a
large extend on the resolution of the calculations. In these particular examples we have chosen a temperature
increment ∆T � 0 � 001, while in all other calculations in this paper we took ∆T � 0 � 03.

While the parcel is executing its oscillations around the inversion height there is ample time for exchange of
heat and momentum between the parcel and the background atmosphere and one would expect that because of
this interaction the inversion will be eroded. Clearly, this parcel-background interaction has not been taken into
account yet and it will be of interest to see what will happen to the fate of the parcel, for example whether the
oscillation gets more damped or not.

Finally, it is of interest to study the impact of a slowly varying background profile on the solution for the vertical
velocity of the parcel. To that end we took an exponential potential temperature and mixing ratio profile,

θ̄ � eλθ Z � q̄ � eλqZ �
and results for λq � 0 and increasing λθ from a realistic value of 0 � 025 to a highly unrealistic value of 2 � 5 are
shown in Fig. 7. Impact of stratification on the velocity profile is for realistic inverse decay rates marginal.
Only for very strong stratification the parcel will execute an heavily damped oscillation, similarly to the case of
a strong inversion.

6 Final comments

In this note we have studied properties of the moist updraught equations with an entrainment parametrization
that follows from a simple relaxation model with a constant relaxation time τ . The essential feature of the exact
solutions of this model for updraught is that, apart from the ’cumulus’ case, there exist a ’true’ equilibrium
point in the solution with vanishing buoyancy and vertical velocity. The reason for this is that the case of zero
velocity is a singular point. It is therefore possible to introduce in updraught conditions a well-defined boundary
layer height or top of convection.

It is clear from the examples that we have discussed that the case of a dry atmosphere gives already all the
essential features of the problem of the balance of entrainment and buoyancy. Moisture and saturation are
additional complications but they do not alter the essence of the solution - again apart from the ’cumulus’ case
as discussed above. This claim also holds when we add the effects of turbulent diffusion in the entrainment
parametrization. We can show this explicitely for the dry atmosphere case. Adding the effects of turbulent
diffusion we obtain in stead of (4-5)

w
dw
dz � � � ε 	w 	 � 1

τ

 w
�

g
θ � θ̄ � z �

θ̄ � z � �
w

dθ
dz � � � ε 	w 	 � 1

τ

 � θ � θ̄ � z � �

Note that the turbulence parametrization requires one to consider the cases of positive and negative turbulent
velocity separately. We will only consider the case of positive velocity and we note that the down-draught case
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can be obtained by simply replacing ε by � ε . Introducing the usual dimensionless quantities W , T and Z one
finds

dW
dZ � � εW � 1

� T
W
� (39)

dT
dZ � � εT � T

W
� (40)

In this case no invariant like the one in Eq. (8) is found. In stead, a differential equation for the quantity
W
�

T is obtained by simply adding (39) and (40). This differential equation can easily be solved allowing the
elimination of the vertical velocity from the T -equation. Hence, we find

d �W � T �
dZ � � ε �W � T � � 1 �

For the boundary condition W � 0 � � W0 � T � 0 � � T0 the solution becomes

W
�

T � αe
� εZ � 1

ε
�
e
� εZ � 1 � � (41)

where α � W0
�

T0. Elimination of W in Eq. (40) using (41) gives

P � Z � T � dT
�

Q � Z � T � dZ � 0 �
where

P � Z � T � � T � αe
� εZ � 1

ε
�
e
� εZ � 1 � � (42)

and

Q � Z � T � � T
�
ε
�
T � αe

� εZ � � e
� εZ � �

Note that in the limit ε � 0 we find that P � T
�

Z � α and Q � � T so that we rediscover the dry problem
(9). The effects of turbulent diffusion is a mere change of the height scale.

By multiplying Eq. (42) with the integrating factor µ � 1
�
T
� 2 one can show that the resulting equation is

exact. The general exact solution is given in (A13) and with the present choice of P and Q, the auxiliary
function φ � Z � � εZ, so that the general solution becomes

�
dT

P � Z � T �
T 2

� εZ
�

const � 0 �
The integral over P can be performed immediately and the resulting exact solution becomes

T logβT
� εZT �

1
ε
�
1 � e
� εZ � � αe

� εZ (43)

which for small ε obviously has a close relation to the solution for the dry atmosphere case in the absence of
turbulent diffusion, by noting that the height scale Z � α simply changes to the right-hand side of (43). The
effect of turbulent diffusion on the T� type solution for the dry atmosphere is illustrated in Fig. 8. Although
there are quantitative differences, e.g. the boundary layer becomes more shallow, it is clear that the essential
nature of the solution remains.

Note that in order to study the dominant contribution of the relaxation term in the entrainment parametrization
we have studied extensively the problem what happens when the effects of the relaxation term vanishes. Some
details are presented in Appendix C.
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Figure 8: Effect of turbulent diffusion on the T� type solution for updraught (full lines, dry; dashed line, dry+turb) for
ε � 0 � 5 The temperature difference at the surface T0 � 1 while the vertical velocity W0 � 0 � 1.

7 Summary of conclusions

We have presented the exact solution of the updraught equations in the relaxation approximation and we dis-
cussed the detailed cases of a dry atmosphere, a moist atmosphere and a cloudy atmosphere. In general the
buoyancy term will have the form given in Eq. (29), which we reproduce here for convenience

B � T � Q � � a
�

bT
�

cQ
�

dQT
�

eQ2 �
where in the dry case there are only terms linear in T and Q, while in the presence of moisture and cloudiness
there are additional nonlinear terms and possibly a constant term. In Appendix B it is shown for a typical case
that the size of the nonlinear terms is very small but for the cumulus case the constant term may be considerable.
Therefore, apart from the cumulus case, in good approximation the buoyancy term may be written as

B � T � Q � � bT
�

cQ �
which means that the updraught solutions have the structure of the dry solution (but, of course, the coefficients
may depend on the moisture and cloudiness properties). Therefore, Fig. 1 displays the essence of the updraught
solution.

It is emphasized that the exact solution only holds for constant background profiles. We have shown how one
can deal with the case of non-uniform profiles. We have shown that if the background profiles are approximated
by jump profiles (as is common in numerical models) an exact solution can be found as well. Inside the
layers the solution assumes the same form as in the constant background case, but the integration constants are
different from one layer to the next. Integrating the updraught equations over the jump, connection formulae
for the integration constants have been obtained, so that the solution is completely specified. In particular, we
studied the behaviour of the nonlinear solution near an inversion and under certain circumstances (which still
have to be obtained in analytical form) an interesting cat’s-eye pattern in the solution for the vertical velocity
profile is found, which suggests a parametrisation of momentum and heat transfer near the inversion.
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Preliminary work has been performed to use this exact solution of the entraining plume equations with ε � 1
�
wτ

in the PBL parametrization within the ECMWF single column model cy31r1. The results are very encouraging
and allow realistically growing boundary layers with little sensitivity to the parcel entrainment time-scale as
expected.
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A General solution of updraught equations.

Let us consider the following general updraught equations:

dW
dZ � � 1

� T
W

F � T � � (A1)

dT
dZ � � T

W
� (A2)

where F � T � is an arbitrary function of temperature. We use Eq. (A2) to eliminate 1
�
W from (A1) with the

result

dW
dZ
�

1
�

F � T � dT
dZ � 0 � (A3)

This can be integrated immediately so that we find the ’invariant’

W
�

Z
� �

dT F � T � � α � (A4)

We use the invariant to eliminate W from Eq. (A2) to obtain an ordinary, first-order differential equation for the
temperature T ,

P � Z � T � dT
�

Q � T � dZ � 0 � (A5)

where

P � Z � α � �
dT F � T � � and � Q � � T � (A6)

A general treatment to solve equations such as Eqn. (A5) is given by Davis (1962). Suppose that the general
solution can be written as �

� Z � T � � 0 � (A7)

The corresponding differential equation is then

∂

�

∂T
dT
� ∂

�

∂Z
dZ � 0 � (A8)

Comparing (A5) with (A8) and observing that

∂ 2

�

∂Z∂T �
∂ 2

�

∂T∂Z
(A9)
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we see that (A5) is immediately integrable provided P and Q satisfy the following condition

∂P
∂Z �

∂Q
∂T

� (A10)

In this case it is said that Eq. (A5) is exact and its solution is obtain by writing: ∂

� �
∂T � P and ∂

� �
∂Z � Q.

Integrating the first equation one finds �

�
�

dT P � Z � T � � φ � Z � � (A11)

and the unknown function φ is obtained by substituting (A11) in ∂

� �
∂Z � Q with the result

φ � Z � �
�

dZ

�
Q � Z � T � � ∂

∂Z

�
dT P � Z � T ��� � (A12)

When the solvability condition (A10) is used in the curly bracketed term of (A12) one would be inclined to
conclude that the curly bracketed term vanishes, but this is only true apart from a constant. This is easily seen
because if Q satisfies (A10) then Q

�
const satisfies the solvability condition as well. Hence, in general φ does

not need to vanish.

The general solution becomes �

�
�

dT P � Z � T � � φ � Z � � const � 0 � (A13)

Unfortunately, for the present case Eq. (A5) is not exact as ∂P
�
∂Z � 1, while ∂Q

�
∂T � � 1. If Eq. (A5)

is not exact, it is theoretically possible, and in some examples it is practical, to make the equation exact by
introducing as a multiplier a so-called integrating factor µ � Z � T � . This function must satisfy the equation

∂ µP
∂Z �

∂ µQ
∂T
� (A14)

or

Q
∂ µ
∂T

� P
∂ µ
∂Z
� µ � ∂Q

∂T
� ∂P

∂Z

 � 0 � (A15)

In general this partial differential equation for µ is more difficult to solve than the original problem, unless it
is possible that a special choice for µ satisfies the equation. In this case we are lucky because the choice that
the integrating factor is only a function of T , hence µ � µ � T � , works. For this choice of µ Eq. (A15) may
be solved with the result µ � 1

�
T 2. Furthermore, for this particular choice of P and Q it can be shown that φ

vanishes, and the general solution of (A5) becomes�

�
�

dT
P � Z � T �

T 2
�

const � 0 � (A16)

Making use of the expression for P in (A6) we obtain�

�
�

dT
T 2
� Z � α � � T

dT � F � T � � 
 � const � 0 � (A17)

The integration over the first term can be performed immediately and we obtain the main result

� Z � α
T
� �

dT
T 2

� T
dT � F � T � � � const � (A18)
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Let us consider the case of a power expansion of F in terms of T ,

F � T � � a � 1

T
� ∞

∑
n � 0

anT n � (A19)

where we have isolated a term proportional to 1
�
T , hence the buoyancy term T f � T � may remain finite for van-

ishing T (this case may arise when the parcel is cloudy while the environment is clear). It is now straightforward
to evaluate the double integral in (A18) and we obtain the solution

Z � α � � a � 1 � 1 � logT � � a0T log � βT � � ∞

∑
n � 1

an

n � n � 1 � T n � 1 � (A20)

where β is the second integration coefficient which follows by writing const � a0 logβ .

The dry atmosphere case now follows by letting all expansion coefficients an to vanish, except the first one
which is taken equal to one. Hence for the dry atmosphere we find

Z � α � T log � βT � � (A21)

Furthermore, the moist, non-cloudy case follows by choosing a0 � 1
�

aγ , and a1 � aγ , hence the solution
becomes

Z � α � � 1 � aγ � T log � βT � � aγ
2

T 2 � (A22)

Finally, the cumulus case follows by choosing finite coefficients for a0 � A, a1 � B and a � 1 � C, while all other
coefficients vanish. The solution becomes

Z � α � � C � 1 � logT � � AT log � βT � � B
2

T 2 � (A23)

Therefore, it is concluded that as long as the buoyancy term can be written as a function of temperature, an
exact solution of the updraught equations for a parcel may be obtained.

B Buoyancy term for cloudy situations as function of qt and θl

In the vertical velocity equation (24) the buoyancy term B is involved because the virtual potential temperature
depends on the saturation mixing ratio qsat (23), which itself depends on temperature. The derivation requires
the following standard equations.

θ � T � pS

p

 R

�
cp

� T Π � p � (B1)

θv � θ � 1 � 0 � 61q � ql � (B2)

θl � θ � L
cp

Π � p � ql (B3)

qt � q
�

ql (B4)

For clear situations with ql � 0 and θl � θ the virtual potential temperature θv� clear as a function of conserved
variables θl and qt simply reduces to

θv� clear � θl � 1 � 0 � 61qt � � (B5)
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Figure B1: qsat as a function of T (left panel) and as a function of p (right panel). The top line corresponds to p=600hPa
and the lowest to p=1000hPa (left) and T=290K and T=270K (right).

For cloudy situations T and q are linked through the condensation process. We will solve this interaction by
applying a linearisation in qsat and by assuming that the effects of the condensation on the temperature are
relatively small. First we write formally T as function of conserved variables θ l , qt and non-conservative qsat ,
where it is assumed that all supersaturation condenses into liquid water:

T �
θl

Π � p � � L
cp
� qt

� qsat � (B6)

By using the expression for qsat (Eq. 23) in Eq. (B6) it is straightforward to solve for the temperature T by
means of Newton iteration. However, a simple and accurate solution can also be found by linearising qsat in T
around an appropriately chosen reference temperature T0. Here,

∂qsat

∂T

�
�
�
�

p �
Rdry

Rvap

AB
pT 2 e

� B
�
T

�
B
T 2 qsat (B7)

and to a good approximation (cf. Fig. B1) we have

qsat � T � � qsat � T0 � � ∂qsat

∂T

�
�
�
�

p
� T � T0 � (B8)

Assuming a non-condensation reference state (ql � 0 � 0), temperature T0 follows from Eq. (B6) as

T0 �
θl

Π � p � � (B9)

Substitution of Eq. (B8) into B6 gives an equation for the temperature T which can be written as

T � T0
� L

cp

qt
� qsat � T0 �
1
� γ0

� (B10)

where

γ0
� L

cp

∂qsat

∂T

�
�
�
�

p � T0

� (B11)
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Substitution of Eq. (B10) back into (B8) gives for qsat the result

qsat � T � � qsat � T0 � � γ0qt

1
� γ0

(B12)

Results from Eq. (B12) and (B10) were found to be remarkably close to the results from solving (B6) by means
of Newton iteration.

The virtual potential temperature θv� cloud can be written as

θv� cloud � � θl
� L

cp
Π � p � � qt

� qsat � 
 � 1 � 1 � 61qsat
� qt � (B13)

and eliminating qsat by means of (B12) the virtual potential temperature can be written in terms of conserved
variables

θv� cloud � qt � θl � �
�

θl
� L

cp
Π � p � � qt

� qsat � T � � γqt

1
� γ


 � � 1 � 1 � 61
qsat � T � � γqt

1
� γ

� qt 
 � (B14)

or, written explicitely

θv� cloud � qt � θl � � � 1
1
� γ

 2 �

a
�

b θl
�

c qt
�

d qtθl
�

e q2
t � (B15)

with

a � � L
cp

Π � p � � 1 � γ � 1 � 61qsat � T � � qsat � T � � � 44 � 5K

b � � 1 � γ � � 1 � γ � 1 � 61qsat � T � � � 5 � 25

c � � 1 � γ � � 2 � 61 � 0 � 61γ � qsat � T ��� L
cp

Π � p � � 5890K

d � � 1 � γ � � 0 � 61γ � 1 � � � 0 � 494

e �
L
cp

Π � p � � 0 � 61γ � 1 � � � 553K

Approximate values for the constants a to e were added assuming L � 2 � 5 � 106J
�
kg, cp � 1005J

�
kgK, p=900hPa,

θl=290K, Π=1.03, qsat � T � = 7.55 g/kg, γ � 1 � 29 K
� 1 and 1

� � 1 � γ � 2 � 0 � 191. For convenience qsat � T0 � and γ0
were written as qsat � T � and γ respectively.

To determine the buoyancy B one needs to distinguish between cloudy and non-cloudy environments such as
encountered in stratocumulus and cumulus respectively. This is because the functional form of the environmen-
tal virtual potential temperature θ̄v is Eq. (B15) for cloudy environments and Eq. (B5) for clear environments.
As will be seen later, having different formulations for θv in parcel and environment introduces a constant
term in the buoyancy term. This leads to qualitative differences in approaching parcel rest. The behaviour of
these θv’s as a function of conserved variables θl and qt is illustrated in Fig. B2 for clear and cloudy cases
respectively. Both cases can be combined in one figure (4) for the regime below and above the saturation line
respectively. Here, the red line connects all states that are neutrally buoyant with respect to the environment.
All states above that line are therefore buoyant. Three typical cases can now be distinguished:

(1) the dry PBL or sub-cloud layer with a dry parcel and a dry environment,

(2) the stratocumulus with a cloudy parcel and a cloudy environment, and
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(3) the cumulus with a cloudy parcel and a clear environment.

Case (1) and (2) are rather similar because the formulation of buoyancy is identical between parcel and environ-
ment. Therefore, the parcel continually approaches the environment through entrainment in terms of conserved
variables as well as buoyancy until it comes to rest. Case (3) - the cumulus case - is rather different because
of the difference of formulation in θv between parcel and environment. As can be seen in figure 4, the entrain-
ment process towards the environment involves three stages: (3a) The buoyant parcel slowly looses it’s buoyant
character. (3b) The parcel becomes moderately negatively buoyant but remains cloudy. This stage could lead
to creating an anvil and it’s length in phase space depends on how cold and dry (!) the original parcel is. And
(3c) the dry downdraught.

Figure B2: Virtual potential temperature θv (red lines) for clear (solid) and cloudy (dotted) conditions as a function of
conserved variables. The blue line represents saturation with cloudy conditions above. A pressure of 900hPa is used.

B.1 Cloudy parcel - cloudy environment: stratocumulus

We now write the buoyance term for the stratocumulus case in terms of normalised conserved variables:

T �
θl
� θ̄l

θ̄l

� (B16)

Q � qt
� q̄t
q̄t

� (B17)

The result is

Bstrcu � qt � θl � � g
θv� cloud

� θ̄v� cloud

θ̄v� cloud

�
g

θ̄v� cloud � 1 � γ � 2 � �
bθ̄l
�

d q̄t θ̄l � T
� �

c q̄t
�

d q̄t θ̄l
�

2e q̄t
2 � Q
�

d q̄t θ̄lQT
�

e q̄t
2Q2 �

(B18)

Note that this function has only linear and quadratic terms in the perturbations of conserved variables Q and T .
Therefore buoyancy vanishes when the parcel perturbations approach zero.

Following the example case started above and using θ̄l � 290 and q̄t � 10g
�
kg we get explicitely

Bstrcu � qt � θl � � g
�
0 � 991 T

�
0 � 0374 Q � 0 � 000933 QT � 0 � 0000361 Q2 � � (B19)

Taking parcel perturbations of T and Q of order 1/300 and 1/10 we conclude that both linear terms are of the
same order ( � 0.003), but the quadratic terms are 4 orders of magnitude smaller (3 � 10

� 7).
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B.2 Cloudy parcel - clear environment: cumulus

The buoyancy for the cumulus case is constructed by using

Bcum � qt � θl � � g
θv� cloud

� θ̄v� clear

θ̄v� clear

The result is

Bcum � qt � θl � � g

θ̄v� clear � 1 � γ � 2 �
a
�

bθ̄l
�

c q̄t
�

d q̄t θ̄l
�

e q̄t
2 � θ̄l

� 0 � 61 q̄t θ̄l�
T
�
bθ̄l
�

d q̄t θ̄l � � Q
�
c q̄t
�

d q̄t θ̄l
�

2e q̄t
2 � � QTd q̄t θ̄l

�
Q2e q̄t

2 �
(B21)

or

Bcum � qt � θl � � g

θ̄v� clear � 1 � γ � 2 � θ̄v� cloud
� θ̄v� clear�

T
�
bθ̄l
�

d q̄t θ̄l � � Q
�
c q̄t
�

d q̄t θ̄l
�

2e q̄t
2 � � QTd q̄t θ̄l

�
Q2e q̄t

2 �
(B22)

The constant term in Bcum is particularly interesting as it changes the shape of the solution. This term can be
written as θ̄v� cloud

� θ̄v� clear , the difference between the cloudy and clear formulations of θv given the environ-
mental conditions ( q̄t , θ̄l). This term can be illustrated by drawing the virtual potential temperature as a function
of mixing fraction (see Fig. 3). This mixing fraction corresponds to the convective mixing line in Fig. 4 (green
line “convection”). Note that this term is always negative and remains constant throughout the entrainment
process because it only depends on the environment.

To get an impression of the orders of magnitudes of the individual terms in Bcum we use the typical example of
cumulus values as in Eq. B19 (see also Fig 3). Eq. (B22) then becomes

Bcum � qt � θl � � g
� � 0 � 00142

�
0 � 998 T

�
0 � 0376 Q � 0 � 000940 QT � 0 � 0000363 Q2 � � (B23)

When taking parcel perturbations of T and Q are of order 1/300 and 1/10 we see for the cumulus case that
the unique constant term is around -0.001, both linear terms are of the same order ( � 0.003), but the quadratic
terms are 4 orders of magnitude smaller (3 � 10

� 7). Interestingly, the buoyancy in the cumulus case differs
from the stratocumulus case purely due to the first constant term, that describes the difference between virtual
potential temperature formulations in clear and cloudy conditions.

C Limit of Eqns. (39-40).

We wish to study the limiting behaviour of the set of Eqns. (39-40) for small effects of the relaxation term. In
order to do so, consider the boundary value problem

dW
dZ � � εW � δ � T

W
� (C1)

dT
dZ � � εT � δT

W
� (C2)

subject to the boundary conditions

T � 0 � � T0 � W � 0 � � W0 � (C3)
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Here, δ measures the strength of the relaxation term. Let us first consider the case of vanishing δ from the start.
Using the boundary condition, one then finds immediately for T

T � Z � � T0e
� εZ � (C4)

This is substituted in Eq. (C1) which we write as an equation for the ’energy’ E � W 2 � 2 because in terms of E
the problem becomes linear. We find for E

E � Z � � 2T0

ε
e
� εZ � � E0

� 2T0

ε

 e
� 2εZ � (C5)

where E0 � W 2
0

�
2.

Let us now try to obtain this limiting behaviour from the exact solution to Eqns. (C1-C2). By introduction of
new dependent variables

T � � T
δ 2 � W � � W

δ
� (C6)

one obtains the set of equations

dW �
dZ � � εW � � 1

� T �
W � � (C7)

dT �
dZ � � εT � � T �

W � � (C8)

which are identical to (39)-(40). Therefore, the exact solution becomes in terms of the original variables

T logβT
� εZT �

δ 2

ε
�
1 � e
� εZ � � � T0

� δw0 � e � εZ � (C9)

where

β �
1
T0

e
� 1 � δw0

�
T0 � (C10)

Elimination of β in (C9) and rearrangement of the terms gives

T � 1 � log
T
T0

� εZ 
 � T0e
� εZ

� δW0
� e � εZ � T

T0

 � δ 2

ε
�
1 � e
� εZ ��� (C11)

In the limit of vanishing δ the left-hand side of Eq. (C11) vanishes. It turns out that this happens for T �
T0 exp � � εZ � . In fact, for this choice of temperature profile, the term proportional to δ vanishes as well, hence
from (C11) we find

T � T0e
� εZ ��� � δ 2 � � (C12)

Using (C12), the vertical velocity profile then follows from integrating (C1) in the limit of δ � 0 and the result
is, of course, identical to (C5).

On the other hand, if one takes the limit of vanishing ε in Eq. (C9) one rediscovers for δ � 1 the exact solution
for the dry problem, Eq. (10). Therefore, we have checked that the exact solution (43) has the correct limiting
behaviour for small ε and small δ , giving confidence in the correctness of the solution.
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