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SUMMARY 

Estimates of climate change remain uncertain - hampering strategic decision making in many sectors. In large part this 
uncertainty arises from uncertainty in the computational representation of known physical processes. This model 
component of climate change uncertainty is increasingly being assessed using perturbed model experiments. Some such 
model perturbations have, for example, led to headline global warming estimates of as much as 12°C. These 
experiments consider many differently perturbed versions of a given base model and assess the likelihood of each 
perturbed model’s climate prediction based on how well it simulates present-day climate. In these experiments, the 
computational cost of the model assessment is extremely high unless one assumes that the climate anomalies associated 
with different model perturbations can be combined linearly. Here we demonstrate a different method that harnesses the 
power of the data assimilation system to directly assess the perturbed physics of a model. Data assimilation involves the 
incorporation of daily observations to produce initial conditions (analyses) for numerical weather prediction (NWP). 
The method used here quantifies systematic initial tendencies in the first few timesteps of a model forecast. After 
suitable temporal averaging, these initial tendencies imply systematic imbalances in the physical processes associated 
with model error. We show how these tendencies can be used to produce probability weightings for each model that 
could be used in the construction of p.d.f.s of climate change. The approach typically costs 5% of the cost of a 100-year 
coupled model simulation that might otherwise be used to assess the simulation of present-day climate. Importantly, 
since the approach is amenable to linear analysis, it could further reduce the cost of model assessment by several orders 
of magnitude: making the exercise computationally feasible. The initial tendency approach is only able to assess “fast 
physics” perturbations, i.e. perturbations that have an impact on weather forecasts as well as climate. However, recent 
publications suggest that the majority of present model parameter uncertainty is associated with fast physics. If such a 
test were adopted, the assessment of the ability to simulate present-day climate would then only be required for models 
that “pass” the fast physics test. The study highlights the advantages of a more seamless approach to forecasting that 
combines numerical weather prediction, climate forecasting and all scales in-between. 

KEYWORDS: Climate change, Perturbed model, Data assimilation, Initial tendency, Analysis increment, Model 
imbalance, Linearity 

 

1. Introduction 
Anthropogenic climate change is one of the biggest challenges faced by the world today. Decisions about 
global emissions of greenhouse gases are highly reliant on the perceived accuracy of climate forecasts. 
However the uncertainty in the prediction of global -mean surface temperature has remained little changed 
through the course of the first three Intergovernmental Panel on Climate Change (IPCC) assessment reports. 
The first assessment report (FAR) estimated a range for equilibrium warming due to a doubling of carbon-
dioxide (CO2) of 1.5-4.5K (Mitchell et al., 1990). The FAR was based on experiments with atmospheric 
general circulation models (AGCMs) coupled to rather simple mixed-layer ocean models. Much of the 
climate uncertainty was attributed to uncertainties in the representation of cloud radiative feedbacks. The 
second assessment report (SAR) estimated a range of 1.0-3.5K (Kattenberg et al., 1996) although this was 
based on transient CO2 experiments rather than equilibrium experiments and the models incorporated a 
dynamic ocean component. This range represented continued large model uncertainties as well as 
uncertainties in projected emissions of trace gases and aerosols. The general reduction in climate sensitivity 
relative to the FAR was attributed to the inclusion of the direct and indirect effects of sulphate aerosol. The 
third assessment report (TAR) estimated a range for global warming of 1.4-5.8K (Cubasch et al., 2001). 
Again this range was associated with model and emission uncertainty. The higher maximum value relative to 
the SAR was mainly due to lower projected sulphur-dioxide (SO2) emissions (Wigley and Raper, 2002). 
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Computational constraints make it difficult to reduce model uncertainty by substantially increasing model 
resolution. Hence forecasters must rely on improving the representation (parametrization) of sub-grid scale 
processes such as atmospheric convection or oceanic eddy heat fluxes. One would hope that there was a 
tendency, over the course of the first three assessment reports, for the representation of processes within 
climate models to begin to converge to the physical processes of the real world. However, it could be argued 
that there was also a possibility for climate models to converge for another reason: as modellers consciously 
or unconsciously attempted to make their own models come into better agreement with what may have been 
perceived to have been the better models of the day. There is a risk that the range of global warming 
estimates may be underestimated by this process. 

There are other potential sources of uncertainty that may be omitted in the above climate change estimates. 
For example, there is uncertainty in the degree to which the large-scale flow can constrain sub-grid scale 
processes (Buizza et al. 1999, Palmer 2001, Palmer et al. 2005). Also, uncertainty in the initial conditions of 
features such as the oceans and ice sheets may not have been fully represented. The uncertainty associated 
with a lack of knowledge of what processes have been left-out of models may be partially estimated by 
assessing a model’s ability to simulate recent climate variations (Tett et al.; 1999, Andronova and 
Schlesinger; 2001). However, the applicability of such an approach depends on whether the short 
observational record is sufficient to capture low-frequency variations of the oceans and ice-sheets and 
whether processes combine linearly and behave similarly in a warmer climate. 

In all three reports, the word “range” generally refers to the range of all possible climate sensitivities of a 
somewhat ad-hoc collection of climate models. Ideally, for each anthropogenic emission scenario, what is 
required is a probability distribution function (p.d.f.) of climate change that reflects uncertainties associated 
with deterministic chaos, non-deterministic sub-grid scale variability, and present-day uncertainties in our 
knowledge of the science. The importance to policy makers of improved p.d.f.s of climate change was 
underlined in the TAR, which called for the development of better methods of assessing uncertainty (IPCC 
Summary for Policymakers, Houghton et al., 2001). 

Murphy et al. (2004) investigated a “perturbed model ensemble” methodology that represents a first step 
towards a more systematic approach to assessing the present p.d.f. of climate change. They asked experts to 
estimate the range of uncertainty associated with a set of tuneable model parameters. They perturbed these 
parameters (one by one) in their model (AGCM coupled to a mixed-layer ocean model) to produce a 53-
member perturbed model ensemble. Present-day climate and 2xCO2 simulations were made to deduce each 
model’s equilibrium “climate sensitivity” to a doubling of CO2. By assuming that the climates of differently 
perturbed models combine linearly, they claimed an effective ensemble size of 4x106 model versions. By 
“combine linearly” we mean that, relative to some control climate, the anomalous climate of a model with 
perturbation “A” plus the anomalous climate of a model with perturbation “B” is equal to the anomalous 
climate of a model with both perturbations A and B. The anomalous climate of each of the 4x106 model 
versions was calculated from the 53 pairs of simulations assuming this linearity. A weighted p.d.f. was 
constructed by weighting the climate sensitivities of the 4x106 member ensemble by the accuracy of their 
(linearly combined) present-day climates. An unweighted p.d.f. was constructed by assuming that all 4x106 
model versions were equally likely. The authors found that weighting led to a shift in the peak of the p.d.f. of 
climate sensitivity from 2.5K to over 3.2K. There was also a modest narrowing of the p.d.f. with the 90% 
probability range being left at 2.4-5.4K. Clearly weighting is an important issue in the construction of p.d.f.s 
of climate change. 
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A present-day climate assessment involves long simulations of the full climate model, which ideally should 
incorporate atmosphere, dynamic-ocean, ice, vegetation, chemistry, etc., components. These simulations are 
computationally costly and, without Murphy et al’s linearity assumption, this cost will limit the number of 
model versions that can be assessed. Whether the climates of perturbed models do combine linearly is clearly 
a vital question for future research. 

Stainforth et al. (2005) used the “climateprediction.net” method of harnessing the idle processing capacity of 
personal computers throughout the world to make a similar study with 2017 perturbed versions of the 
Murphy et al. (2004) model. Importantly, the increased computing power allowed them to drop the climate 
linearity assumption. Although it may be a long while before personal computers are individually powerful 
enough to run high-resolution, coupled climate models, the distributed technique is a useful research tool and 
the public educational aspect of “climateprediction.net” should not be underestimated.  

Another potentially more efficient approach to the systematic assessment of model uncertainty was 
investigated by Annan et al., (2005b). They used an Ensemble Kalman Filter data assimilation scheme where 
some model parameter values were included as part of the model state space and where the cost function 
involved a test of the model’s simulation of present-day climate. In theory their method can produce a joint 
distribution for the parameter values. For a simplified atmospheric model they were able to reproduce 3 or 4 
out of 5 known parameter values in “identical twin” experiments where the model is assumed to be perfect 
(except for the few unknown parameter values). Further work is required to determine the efficiency of this 
approach when applied to more complex, more non-linear and less perfect models, with more tuneable 
parameters. 

A good simulation of present-day climate is clearly an essential prerequisite for establishing faith in a 
model’s prediction of climate change. However, it would be very useful to develop additional 
complementary tests that may be more efficient or that may be able to assess more directly the underlying 
physics within a model. At present, much of the perceived uncertainty in model physics involves “fast” 
processes that are also important in numerical weather prediction (NWP). Table 1, for example, shows a 
representative sample of the physics parameter uncertainties that Murphy et al., (2004) assessed. Around 
80% of the model parameters that they perturbed (the first 8 out of 10 in Table 1) are associated with “fast 
physics”. Hence this raises the possibility that NWP techniques could be used to assess climate models. 

Phillips et al (2004) initialised a climate model with the European Centre for Medium-range Weather 
Forecasts (ECMWF) re-analysis dataset “ERA-40” (Uppala et al, 2005) and diagnosed the mean 
(“systematic”) error after the first 5 days of a forecast. They argued that since the initial conditions are close 
to the “truth”, this systematic error must be attributable to parametrization deficiencies.  Tests with a 
proposed change to the triggering of convection were shown to reduce this short-range error. It was argued 
that a reduction in systematic 5-day forecast error implies that a climate model is more physically realistic 
than its predecessor. 

Here, we take model physics assessment to its ultimate limit by considering systematic tendency errors over 
the first few forecast timesteps. At this timescale, we are able to demonstrate that the assessment is linear 
enough to estimate the impact of a set of perturbations to different parametrizations as the linear sum of their 
individual impacts. In this way, it becomes computationally feasible to incorporate a probability of the 
realism of each model’s fast physics into the p.d.f. of climate change. 
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Table 1 Some model parameters perturbed by murphy et al. (2004) 

Values Used Parameter Physical 
Process Low Middle High 

Droplet to rain conversion rate (s-1) Cloud 0.5x10-4 1.0x10-4 4.0x10-4 
Relative humidity for cloud formation Cloud 0.6 0.7 0.9 
Cloud fraction at saturation (free trop.) Cloud 0.5 0.7 0.8 
Entrainment rate coefficient Convection 0.6 3.0 9.0 
Time-scale for destruction of CAPE (h) Convection 1.0 2.0 4.0 
Effective radius of ice particles (μm) Radiation 25 30 40 
Diffusion e-folding time (h) Dynamics 6 12 24 
Roughness length parameter (Charnock) Boundary 0.012 0.016 0.020 
Stomatal conductance dependent on CO2 Land Off - On 
Ocean-to-ice heat diffusion coefficient (m2s-1) Sea Ice 2.5x10-5 1.0x10-4 3.8x10-4 

 A representative list of the model parameters perturbed by Murphy et al. (2004) together with the physical process   
they are associated with and the perturbed values used. 

As forecast lead-time increases, anomalies in an atmospheric state vector become increasingly constrained 
by the need for consistency. This consistency is imposed by, for example, synoptic organisation and 
planetary teleconnections. By concentrating on the first few forecast timesteps, these dynamical constraints 
are minimised, and allow the space of initial tendencies to have a very large dimension (perhaps as large as 
the number of grid-points or spherical harmonics in the model for example). With such a large dimension, it 
becomes very difficult to find two distinct model errors that can compensate each other. In this way the hope 
is that the initial tendency approach can be a very discriminating way of assessing model physics. 

Another difference with Phillips et al. (2004) is that initial states are not associated with some fixed "control" 
model, rather data is assimilated into each perturbed model in turn. We consider this to be essential aspect of 
our study because the analysed state used for forecast initiation and verification can be sensitive to the model 
used in the data assimilation process; we don't want to somehow bias our results to the choice of model used 
for data assimilation. Arguably, this is a more critical requirement for our study based on short-range 
tendencies, than in Phillips et al., where errors have, by day 5, probably grown to be much larger than the 
differences between analyses produced using different assimilating models. 

The structure of the paper is as follows. In section 2 we motivate and explain developments of the initial 
tendency methodology. In section 3 we discuss the perturbed models that we will analyse in detail. In section 
4 we discuss conventional measures of NWP forecast verification and suggest that these are not perfectly 
suited to model physics assessment. Section 5 highlights, for a particular region, the strong connection 
between physical changes to a model and changes in the initial forecast tendencies. In section 6, we define a 
single global score of a model’s physics based on initial tendencies. The linearity of the initial tendency 
approach is investigated in section 7 and the computational cost of the approach is given in section 8. Section 
9 discusses the practical implementation of an initial tendency test in order to produce p.d.f.s of climate 
sensitivity. In section 10 we demonstrate that a model that ‘fails’ our initial tendency test actually passes a 
conventional present-day climate test - further emphasizing the need for additional methods such as ours that 
specifically assess aspects of model physics. A discussion and conclusions are given in section 11. In 
particular we highlight the need for a more ‘seamless’ approach to weather and climate forecasting. 
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2. Methodology 
2.1 Motivation 
Numerical weather prediction involves the use of highly complex forecast models. As these models improve, 
we need continually to look for ever more precise ways of identifying remaining deficiencies and of 
comparing model versions. In this subsection, we give some motivation for one such method based on initial 
tendencies. 
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Figure 1 Schematic diagram showing the data assimilation and forecast integration aspects of numerical 
weather prediction. Tobs(t) represents an observed timeseries (e.g. of temperature at some specified 
location). For each i , Ti(ti) represents the model forecast initiated from analysis ANi. For the purposes of 
explaining our methodology, the role of systematic forecast error (in this case a cooling) has been 
emphasised over random error. See the main text for further explanation. 

NWP generally involves two main processes: data assimilation and forecast model integration. Fig. 1 shows 
a schematic diagram of these processes. The observation curve, TOBS, could represent the observed 
temperature at some fixed location as a function of time, t. (Here time is measured in units of forecast model 
timesteps). Observations are generally inaccurate, unbalanced and incomplete and so it is neither sensible nor 
possible to initiate a forecast model directly from the observations. Instead, a model “first guess” from a 
previous forecast T0(t0) is combined with the global observations over some time-window to produce a “best 
estimate” (or “Analysis”, AN) of the present state of the atmosphere. This process is known as data 
assimilation. The implications of this study are not thought to depend on the precise details of how the data 
assimilation is done and so further information on the ECMWF assimilation system (Rabier et al., 2000) is 
not given here. The forecast T1(t1) is initiated from the analysis AN1. In turn, T1(t1) is used as the first guess 
for the next analysis AN2, etc. Each first guess forecast could, of course, be extended to produce a longer-
range weather forecast. Note that for the purposes of explaining our methodology, we may have emphasised 
in Fig. 1 the systematic component of forecast error (i.e. a cooling if T represents temperature) over that of 
random error. Fig. 2 will show the relative magnitudes of tendencies associated with all processes using 
actual forecast data. 

An important measure of the quality of the forecast system is the “analysis increment”, INC. The analysis 
increment is the increment applied to the first guess state to get to the new analysis state. If there are n 
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forecast timesteps between the start of the first guess forecast and the new analysis then the increment for 
AN1 can be written as: 

  1 1 0

1 0

( )
(0) ( ) .

INC AN T n
T T n

= −

= −

More generally: 

  1(0) ( ) .i i iINC T T n−= −

If we had a perfect model and perfect observations then this should result in an analysis increment of zero. 
(Because the forecast curves would lie on top of the observation curve). In reality, observations do have 
errors but bias-correction prior to data assimilation should result in these errors being random with zero 
mean. Hence even for non-perfect observations, a perfect model should result in the mean analysis increment 
(averaged over many data assimilation / forecast cycles) being close to zero. If the mean increment is not 
zero, then this is indicative of “model spin-up”. Model spin-up is associated with errors in the model’s 
representation of the physics of the atmosphere (or the lack of representation of a physical process). Hence, 
subject to certain conditions (see below), it can be argued that the smaller the mean analysis increment, the 
closer the first guess is to the observations and the better is the forecast model. 

The mean analysis increment over m data assimilation / forecast cycles can be written as: 
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where an over-dot indicates a time-derivative (in units of K per timestep, for example) and an over-bar 
represents the mean over all assimilation/forecast cycles as indicated. Hence, for large m, the mean analysis 
increment is almost precisely the negative of the “systematic forecast tendency”, T . This link can be readily 
seen in the schematic diagram where the model is consistently moving to a cooler state and the analysis 
increment adjusts the state back to a warmer one. Hence systematic forecast tendencies can also be used to 
gauge the quality of a forecast model. 

Klinker and Sardeshmukh (1992), hereafter KS92, attempted to take the systematic tendency approach 
further by considering just the tendencies in the very first forecast timestep: 
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Implicit in their methodology was an accounting-for of the mean diurnal cycle by using a 6-hr data 
assimilation / forecast cycling period; see below. Justification for considering just the first timestep this is 
that if the systematic tendency in the first timestep is small (or even zero) then so should be the systematic 
tendencies in the subsequent timesteps. An advantage of considering only the first timestep is that the initial 
tendencies are evaluated at a state as close to the true state as possible and so errors in  should be more 
directly associated with deficiencies in the model processes and less associated with the application of these 
processes to erroneous atmospheric states. 

(0)iT

We can write  as the sum of the individual tendencies associated with the model’s representations of the 
dynamics (dyn), radiation (rad), convection (con), large-scale precipitation (lsp), and all other processes as: 

(0)iT

  (0) (0) (0) (0) (0) ... .dyn rad con lsp
i i i i iT T T T T= + + + +

The “dynamical tendency” generally refers to the tendencies that are resolved on the model grid. The 
parametrized tendencies such as the “convective tendency” are often all referred to as tendencies associated 
with model “physics”. Here we will refer to the dynamics, convection etc as “physical processes”, or simply 
“processes”, with little distinction between whether they are resolved or parametrized. Other numerical 
adjustments can also occur within a model timestep. The tendencies associated with these adjustments should 
also be quantified but will probably not have a strong effect or change any conclusions (they do not in our 

studies). It can be seen that the “total systematic initial tendency”, (0)iT , is the (possibly small) residual of a 

balance between (large) physical processes. If (0)iT  is non-zero then, in a time-mean sense, these processes 
are “out-of-balance” at the analysis state. Since each individual process is initially acting on a state close to 
the truth, errors have not had time to interact or propagate and so it may be possible to identify which model 
process(es) lead to the erroneous total systematic tendency. For example, if the cooling seen in the schematic 

diagram only occurs in convective regions (i.e. if (0)con
iT  has a similar spatial pattern to (0)iT ) then this may 

indicate erroneously weak convective latent heat release for a given thermal and humidity profile. Clearly 
this initial tendency approach could potentially form the basis of an automated search for model error. By 
applying this search to the momentum budget, KS92 identified problems with the ECMWF gravity wave 
drag scheme. Experience shows that the search for thermodynamic model errors with this approach is more 
difficult; possibly because there is more scope for multiple independent thermodynamic errors to complicate 
a simple interpretation of the total initial tendency. In this paper, we do not attempt to identify model errors. 
Instead, we focus on the assessment of model physics after a model change has been made. This 
methodology has been very successful in demonstrating conclusively that a particular change to the model 
was physically justified (Rodwell and Jung, 2007). 

In the above discussion, it was stated that the smaller the mean analysis increment (or almost equivalently 
the smaller the systematic initial tendency), the better the representation of the dynamics and physics within 
the model. There are several important conditions and comments to attach to this statement. 

1. If no observations were used in the assimilation system then the analysis would be equal to the first 
guess and so, for a fully spun-up model, the mean analysis increment and systematic tendency would 
both be zero; even for an imperfect model. Hence it is clear that the observations are crucial to the 
success of the methodology. 

2. It is possible that there could be a “compensation of errors” within a model, so that two or more 
rather large physics errors produce tendency errors that cancel each other out. If this were to happen 
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then the systematic initial tendency could be small despite the physics being poorly represented. 
However, since we will be interested in initial tendencies world-wide, this cancellation would have 
to occur in a very high dimensional space; at every grid-point and every model level. This is highly 
unlikely because different physical processes (and therefore their tendency errors) are likely to be 
dominant in different regions and/or at different altitudes. Put another way, there would be no point 
for the inclusion in a model of a new process whose tendencies can be represented by the processes 
already in the model. Hence, from the very way models are developed, complete cancellation is 
precluded.  

3. Another possibility for compensation is if a single model error leads to inaccuracies in the analysis 
which, when other physical processes are applied to this analysis, lead to compensating tendencies. 
However, since the observations constrain the analysis, complete compensation via this route is also 
unlikely to occur. This constraint by the observations is fundamentally the reason why it is beneficial 
to use NWP to assess the fast physics of climate models. Over each assimilation cycle, the 
observations continually draw the atmospheric state towards the truth and thus shift an inaccurate 
model to a state of imbalance. 

The above points highlight the importance of the observations and the limits to which the initial tendency 
approach can be used to assess model physics. It is clearly worth experimenting with the application of the 
methodology to the assessment of fast physics (as done here) but these limits are one reason why other tests 
of climate models will remain essential. 

2.2 Accounting for the diurnal cycle 
There is a potential problem from only considering the first forecast timestep when estimating systematic 
tendencies. While averaging over many assimilation/forecast cycles should reduce the impact on the 
estimated systematic tendency associated with synoptic and longer-timescale variability, it may not remove 
the tendency associated with the mean diurnal cycle. For example, if the cycling period,   timesteps, is equal 
to one day with the analysis valid at, say, 6am local time, then the mean temperature tendency in the first 
timestep will reflect legitimate warming at sunrise as well as systematic tendency errors. KS92 used a 6-hour 
cycling period and averaging over the mean tendencies at 00, 06, 12 and 18 UTC should reduce the impact of 
the diurnal cycle. A sinusoidal diurnal cycle, for example, would be perfectly removed regardless of local 
time although more asymmetric diurnal cycles could cause problems. 

Using just the first timestep, KS92 were successful at identifying possible reasons for systematic momentum 
tendencies. Here, however, we will also be interested in thermal tendencies whose diurnal cycles may have 
larger amplitudes and be more asymmetric. In addition, 14 years have elapsed since the study of KS92 and, 
while forecast system improvements have reduced the size of systematic tendency errors, the magnitude of 
potential errors associated with a coarse accounting of the diurnal cycle will remain unchanged. Before using 
systematic initial tendencies to assess perturbed models, we first investigate the impact of the diurnal cycle. 

While systematic initial tendencies may combine a diurnal cycle effect with model spin-up, systematic 
tendencies later in the forecast (after the model has spun-up) will only include the diurnal effect. Because of 
this, we look at tendencies in the ECMWF model (see later for more details on the model) at a lead-time of 
around 5 days (D+5) to diagnose the diurnal effect. We focus on the Amazon/Brazil region (300°E-320°E, 
20°S-0°N) in southern summer because the South American monsoon has been historically problematic for 
the ECMWF model. Forecasts are started every 6 hours from 00 UTC on 27 December 2004 until 18 UTC 
on 26 January 2005 (31 days x 4 forecasts per day = 124 forecasts). The forecast timestep is ½ hour. Fig. 2a 
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shows temperature tendencies on a model level at approximately 353hPa (T353) averaged over the 
Amazon/Brazil region. The solid curve shows a concatenation of the tendencies between D+5 (actually 
timestep 241) and D+5¼ (actually timestep 252) for the first 20 forecasts. A strong and asymmetric diurnal 
cycle in tendencies is clearly visible with intense heating over a 6 hour window in the morning and more 
gradual cooling throughout the rest of the day. The circles in Fig. 2a show the diurnal average temperature 
tendency averaged over all 48 ½-hour timesteps (12 timesteps x 4 forecasts). These diurnal averages appear 
to be close to zero. The average over all 31 days is slightly negative (-0.06±0.05 Kday-1). The range of 
possible values (-0.11 to -0.01 Kday-1) represents the 70% confidence interval based on the Student t-
distribution taking autocorrelation into account, see von Storch and Zwiers (2001). This confidence interval 
is indicated by the right-hand bar in Fig. 2b. Hence when all 48 timesteps are taken into account there is, if 
anything, a very slight systematic cooling, possibly associated with the later stages of model spin-up and/or 
the gradual annual cycle. 
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Figure 2(a) The thin solid curve shows a 
concatenation of Amazon/Brazil temperature tendency 
timeseries at approximately 353 hPa ( ) based on 
timesteps 241 to 252 of forecasts initiated every 6 
hours from 00 UTC on 2004/12/27 (data from 20 
forecasts are shown). The dashed line shows the same 
timeseries sub-sampled at forecast timestep 249 only. 
Filled circles (squares) how the daily-mean values of 
the solid (dashed) curves. (b) 70% confidence 
intervals for the daily-mean tendency based on the 
forecast timestep(s) indicated on the x axis and using 
all 124 forecasts initiated every 6 hours between 00 
UTC on 2004/12/27 and 18 UTC on 2005/01/26. (c) 
The thin solid curve shows a concatenation of  
timeseries based on timesteps 2 to 13 of all 124 
forecasts. The thick solid curve shows the daily-mean 
of the thin curve. The Amazon/Brazil region is defined 
as 300° E-320° E, 20° S-0° N. 

353T

353T

If just one timestep is used from each forecast then the diurnal cycle is sampled 4 times a day. Choosing 
timestep 249, the diurnal cycle looks like the dashed curve in Fig. 2a. In this case, the strong morning heating 
is not well sampled and this makes the estimated daily cooling too strong (squares in Fig. 2a). Fig. 2b also 
shows the diurnal-mean tendencies estimated using each of the timesteps 241 to 252 individually. The 
estimated tendencies show variations that reflect changes in the sampling of the diurnal cycle. The question 
is, are these variations small enough to be able to claim that the initial tendencies are predominantly due to 
model error and not due to errors in diurnal sampling? Fig. 2b also shows mean tendencies based on the 
individual timesteps 1 to 13. It is clear that these are comparable in magnitude to the tendencies based on the 
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single timesteps 241 to 252. We must conclude, therefore, that it is no longer sufficient to sample the diurnal 
cycle using just four points. 

Another problem is highlighted in Fig. 2b: the first timestep is very different from subsequent timesteps. This 
is a consequence of structural differences in the first timestep that are essential to allow the model to “cold 
start” from the analysis. For example, the semi-Lagrangian advection scheme in the ECMWF model 
ordinarily requires the model tendencies from the previous timestep. A different approach has to be taken in 
the first timestep as these tendencies are not available. This and other differences mean that the model in the 
first timestep is effectively a somewhat different model to that of subsequent timesteps. 

Because we really wish to diagnose the error associated with the model used after the first timestep (i.e. the 
model that is used in the climate forecast) and because a single timestep is not sufficient to account for the 
diurnal cycle, we average over timesteps 2-13. The mean temperature tendency for T353 over the 
Amazon/Brazil region based on steps 2-13 is -0.25±0.06 Kday-1 (also indicated in Fig. 2b). Since this is large 
in magnitude compared to the -0.06±0.05 Kday-1 cooling seen between timesteps 241-252, we can be 
reasonably sure that this represents a cooling due to systematic model error. 

To further emphasise the relative magnitudes of the typical signal we are trying to isolate and those of the 
other variations in the system, Fig. 2c shows the concatenated Amazon/Brazil T353 tendencies based on 
timesteps 2-13 from all 31x4 forecasts (thin) and the daily-averaged tendencies (thick). The negative mean 
tendency associated with model error (-0.25±0.06 Kday-1) is reflected in the fact that the thick line remains 
below zero for much of the month. It is clear, however, that we are looking (in the un-perturbed model at 
least) for small mean tendencies in relation to diurnal and, to a lesser extent, synoptic variability. Because of 
this, we will make use of confidence intervals to demonstrate that a signal has (or has not) been identified. 
Although Fig. 2c suggests that the trend due to the annual cycle is very small (for this region and time of 
year), any such trend would also be reflected in the confidence intervals. 

2.3 Summary of present methodology 
We define the “systematic initial tendency” as the mean forecast tendency averaged over the twelve ½-hour 
timesteps 2 to 13 for forecasts started every 6-hours. Using timesteps 2-13, our systematic initial tendencies 
is very similar to the mean analysis increment. Hence, while bearing in mind comments (1) to (4) in section 
2a above, the smaller the systematic initial tendency, the better the representation of dynamics and physics 
within the model. The hope is that ~6 hours is still short enough for there to be minimal interaction between 
the processes represented in the model. This will be seen as a crucial aspect of the methodology; making the 
estimation of climate change sensitivity to model error a computationally manageable problem. 

3. The models and integrations 
3.1 Control model 
The base model used here is the recently operational atmospheric model (version 29R1) from ECMWF. This 
control model is referred to as the “CONTROL”. 

3.2 Perturbed models 
Stainforth et al. (2005) made their present-day climate assessment of each model by calculating the average 
of the spatial root-mean-square errors in the simulation of 8-year-mean surface temperature, sea-level 
pressure, precipitation and surface sensible and latent heat fluxes (relative to those of their base model). The 
circles (all colours) in Fig. 3 show present-day climate error versus the climate sensitivity (global-mean 
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surface temperature change arising from a doubling of CO2) for each perturbed model. By comparing with 
the present-day climate errors of other coupled models, Stainforth et al. (2005) concluded that none of the 
perturbed models could be rejected. Hence, climate sensitivities of as much as 11K are possible within their 
framework. The blue circles in Fig. 3 correspond to all the perturbed models where, amongst other possible 
perturbations, the “entrainment rate coefficient” (which sets the rate at which moisture is turbulently 
exchanged between the convective plume and its environment) has been reduced by a factor 5 (see Table 1). 
It can be seen that the highest climate sensitivities come from these perturbed models. The climate 
sensitivities for the Murphy et al. (2004) models also show a similar relationship between climate sensitivity 
and the entrainment rate coefficient (personal communication James Murphy). If one could reject the low 
entrainment perturbation of Stainforth et al. (2005), then the uncertainty in the climate sensitivity associated 
with model parameter uncertainty would be greatly reduced. With this motivation in mind, we demonstrate 
our initial tendency method for the assessment of model physics using similar perturbations to the 
entrainment coefficient. It should be stressed, however, that we are using a different base model to that of 
Stainforth et al. (2005) and our aim is to demonstrate a methodology rather than to constrain their climate 
sensitivity range. As with Stainforth et al. (2005), we divide the entrainment coefficient by 5 for our low-
value experiments (termed “ENTRAIN/5”) and multiply by 3 for our high-value experiments (termed 
“ENTRAINx3”). 
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Figure 3 The root-mean-square error of various climate models plotted against their global-mean surface 
temperature sensitivity to a doubling of CO2. Circles represent the atmosphere/mixed-layer ocean models 
used by Stainforth et al. (2005). Blue circles represent perturbed models where the convective 
entrainment coefficient was reduced by a factor 5. Green circles represent perturbed models where the 
entrainment coefficient was increased by a factor 3. The red circles represent perturbed models where the 
entrainment coefficient was not altered. Diamonds represent two of the atmospheric models investigated 
in this study. Red diamond: the CONTROL model. Blue diamond: the ENTRAIN/5 model where the 
convective entrainment coefficient was reduced by a factor 5. The plotted error is actually the mean of the 
root-mean-square errors (RMSEs) for a number of different parameters, each normalised by the control 
model RMSEs for each parameter. See Stainforth et al. (2005) for further details. 

An additional model version (termed “CLOUD”) is tested alongside these perturbed models. CLOUD 
incorporates a structural change to the cloud scheme that is being tested at ECMWF for incorporation into 
the operational model (Tompkins et al. 2006). CLOUD is meant to represent here a “typical” modification 
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that may be made during NWP development. (It is possible to assess structural as well as parameter changes 
with the initial tendency methodology). 

Further perturbed models are discussed in section 7 where they are used to assess the linearity of the initial 
tendency methodology. 

 
3.3 Model integrations 
Because this work also needs to be relevant to the shorter-range forecasts made at ECMWF (the present 
study is a work of opportunity), the model resolution used here is T159 (approximately 1.125° latitude / 
longitude grid) with 60 levels and with a timestep of 30 minutes. In principle the method should also work at 
lower resolutions such as at T42. 

Analyses at ECMWF are created using 4 dimensional variational data assimilation (4D Var). 4DVar involves 
the use of the non-linear forecast model and its tangent-linear version to combine “first guess” information 
from a previous forecast with the new observations. Here a separate set of analyses is made for each model 
version. Analyses are produced every 6 hours from 00 UTC on 27 December 2004 to 18 UTC on 31 January 
2005. Note that the very first analysis (00 UTC on 27 December 2004) is based on a first guess from the 
operational forecast. Subsequent analyses are based on first guess forecasts using the consistently perturbed 
model. For some extra computational expense, the first few analysis cycles could have been discarded to 
reduce any influence of the initial operational first guess. However, any trends associated with the change in 
the analysis model should be reflected in the estimated confidence intervals and these are acceptably small 
for the present study. The computational costs involved in making the analyses and forecasts are discussed 
later. 

For each model version, five-day forecasts are started every six hours from 0) UTC on 27 December 2004 to 
18 UTC on 26 January 2005, using the corresponding analyses as initial conditions. (Thus the verification 
times for a D+5 forecast correspond to the whole of January 2005 exactly). 

For completeness, climate experiments are also run with the CONTROL and ENTRAIN/5 model. These are 
explained later. Note that for the initial tendency methodology to be useful, it is almost certainly vital that the 
initial tendency experiments are conducted at exactly the same spatial and temporal resolution as that used 
for the climate forecast experiments themselves. 

4. NWP skill 
Before assessing initial tendencies, we investigate how well these models perform in conventional NWP 
mode. Table 2 shows D+5 mean spatial anomaly correlation coefficients (ACCs) and root-mean-square 
errors (RMSEs) for northern hemisphere 500 hPa geopotential heights (Z500) and tropical 850 hPa 
temperatures (T850) based on the 12 UTC forecasts.  Also shown are corresponding values for the operational 
high-resolution (T511) forecast (termed “OPERATIONS”). It is clear that OPERATIONS produces the best 
weather forecasts (it is always statistically significantly better than CONTROL at the 5% level, as signified 
by the “+”’s in the table). CLOUD is not significantly different from CONTROL. ENTRAINx3 is not 
significantly worse than CONTROL in the northern hemisphere although it is worse in the tropics. 
ENTRAIN/5 is significantly worse than CONTROL for all scores shown. 

Comparisons like the one above are performed routinely at NWP centres to assess possible system 
developments. However comparison of NWP skill scores is not a very direct or reliable method of assessing 
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the physics of climate models. For example, CONTROL has exactly the same physics as OPERATIONS and 
may, therefore, produce an equally good climate even though it is worse at weather prediction. For models 
with the same resolution (e.g. CONTROL and ENTRAIN/5) there may be more justification in rejecting or 
down-weighting the model with the worse NWP scores. Nevertheless, the NWP skill test remains a very 
indirect method of assessing model physics and is computationally more costly than the initial tendency 
method that only requires the simulation of a few model timesteps. Importantly, it is unclear how the NWP 
forecast skill for two or more differently perturbed models could be combined to give an estimate of the skill 
of the model that includes both sets of perturbations. Without this “linearity”, the assessment of every 
differently perturbed model would require a new set of analyses and forecasts to be made and the cost of 
model assessment would be prohibitive. 

Table 2 Day+5 skill scores for each model 

N. Hem Z500 Tropical T850 
Model Resolution 

ACC RMSE (m) ACC RMSE (K) 
OPERATIONS T511 0.90 (+) 497 (+) 0.74 (+) 1.03 (+) 
CONTROL T159 0.87 552 0.69 1.19 
CLOUD T159 0.87 558 0.68 1.19 
ENTRAIN/5 T159 0.85 (-) 591 (-) 0.62 (-) 1.32 (-) 
ENTRAINx3 T159 0.87 560 0.65 1.48 (-) 

Mean day+5 spatial anomaly correlation coefficients (ACCs) and root-mean-square errors (RMSEs) for Northern 
Hemisphere 500 hPa geopotential height (north of 20oN) and Tropical 850 hPa temperature (between 20°S and 
20°N). “+” (“-“) indicates the mean score is statistically significantly better (worse) than the corresponding value 
for the CONTROL model at the 5% level using a paired 2-sided t-test taking autocorrelation into account. The 
climatology used in the calculation of the ACCs is ERA-40. 

 

5. The use of initial tendencies to assess model physics 
The systematic initial tendency is the sum of all the individual tendencies associated with the dynamical and 
physical processes represented in the model. Hence for simplicity and to avoid confusion, we refer to the 
“systematic initial tendency” (in a state variable) as the “total initial tendency” or simply the “total 
tendency”.  If the total tendency is not zero, there is an imbalance between the individual process tendencies. 
To illustrate how the initial tendency methodology can be used to understand model error we have calculated 
vertical profiles of the initial tendency budgets over the Amazon/Brazil region (300°E-320°E, 20°S-0°N). 
We could have chosen any region over-which the balance of the dominant physical processes is thought to be 
reasonably uniform. However, if we had accidentally chosen a region where CONTROL happens to 
represent this balance well, then our results could have been biased towards the CONTROL model. We 
chose the Amazon/Brazil region because the CONTROL model actually has a problem with the climate in 
this region at this time of year: the convection “spins-down” quite strongly so that even by D+5 the 
precipitation rate is on average about 80% of what it should be (see Table 3 later). Hence the choice of this 
region should not favour the CONTROL model in the present study (and is useful for future model 
development). Note that our final conclusions will be based on averages over the entire globe. 
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Figure 4 Vertical profiles of initial temperature tendencies for the Amazon/Brazil region based on 
January 2005 forecasts for (a) the CONTROL model, (b) the CLOUD model with modifications to the 
large-scale cloud, (c) the ENTRAIN/5 model with reduced convective entrainment and (d) the 
ENTRAINx3 model with increased convective entrainment. The initial tendencies shown are indicated in 
the key and correspond to each model’s dynamical tendencies, the tendencies from each of the dominant 
physical processes and the total tendency. Also shown are vertical profiles of the D+5 systematic error 
(bias) and the cloud fraction (right-hand profile in each panel). The bars indicate 70% confidence 
intervals. Mean tendencies are calculated on every 5th model level. The vertical coordinate is linear in 
pressure and represents the approximate pressure at these model levels. See the main text for more 
details. 

Fig. 4a shows the CONTROL total temperature tendency (thick red) and the individual tendencies from the 
dominant processes (thin variously coloured). The dominant balance is between convective warming due to 
latent heat release (blue) and dynamic cooling due to ascent (orange). The radiative destabilization of the 
profile (dark green) is crucial for triggering the convection and is also important in the overall balance. 
Evaporation in down-drafts leads to a net cooling by the large-scale cloud scheme (purple). The “vertical 
diffusion” scheme (light green), which includes the surface sensible heat flux, is important below 884 hPa. 
The total tendency (thick red) is small in comparison to the individual terms; suggesting that the model is in 
‘reasonable’ balance. Nevertheless, there is a net cooling below 884 hPa, a small net cooling at around 353 
hPa and a small net warming between about 202 and 96 hPa. 

For reference, Fig. 4b shows the corresponding profiles for CLOUD. The modifications that go into CLOUD 
tend to decrease high cloud cover and increase medium-height cloud cover (compare the cloud fraction 
profiles in Fig. 4a and 4b) and increase cloud ice (not shown). The main consequence is more radiative 
cooling above 539 hPa. The difference is most apparent at 202 hPa (compare the dark green curves in Fig. 4a 
and 4b). At 202 hPa the difference is -0.30 ±0.03 Kday-1. (Note that the uncertainty represents the 70% 
confidence interval using a ‘paired’ t-test applied to the difference timeseries: it is considerably smaller than 
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the individual 70% confidence intervals). The change is seen to improve the initial total temperature 
tendency (thick red) throughout the troposphere (except for at 539 hPa) and, at D+5, temperature biases 
(thick black) are also improved. Unfortunately there is a slight worsening of the initial total moisture 
tendencies (not shown). Table 3 shows the precipitation rate and total cloud fraction for each experiment at 
D+5. The increased thermal destabilization in CLOUD of the upper-tropospheric profile leads to a better 
mean precipitation rate: up from 5.8 to 6.6 mmday-1 ( +0.8 ±0.1 mmday-1), with the observed value for 
January 2005 being 7.1 mmday-1 (based on “GPCP” monthly precipitation analysis, Adler et al., 2003). 
However the total cloud fraction at D+5 is worse: down from 0.78 to 0.60 (-0.17±0.02), with an observed 
value of 0.77±0.04 (based on “MODIS” monthly cloud cover analysis, see e.g. Platnick et al., 2003). Hence 
the results may lead one to hypothesize that we need to improve the radiative impact of cloud rather than 
modify the total amount of cloud. 

These CLOUD versus CONTROL results demonstrate the magnitude of a change in model imbalance 
associated with a “typical” NWP development. One could argue that this magnitude is a measure of our 
uncertainty in the representation of the physical processes. As such, one would hope that climate model 
perturbations should result in roughly similarly-sized changes to the total tendencies. However, as we will 
see below, the perturbations used here result in much larger changes. 

Table 3 Precipitation and cloud fraction for each model 

Data source Precipitation (mmday-1) Cloud Fraction 
OBSERVATIONS 7.1 0.77±0.04 
CONTROL 5.8±0.9 0.78±0.07 
CLOUD 6.6±1.2 0.60±0.11 
ENTRAIN/5 6.1±0.4 0.75±0.06 
ENTRAINx3 8.6±2.3 0.75±0.06 

January 2005 observed and forecast (at D+5) precipitation rate and cloud fraction for the Amazon/Brazil region. 
Observed precipitation rate is based in GPCP data and observed cloud fraction is based on MODIS data. 70% 
confidence intervals are given for forecast values. The confidence interval for observed cloud is based on the 
difference between ISCCP (Rossow and Schiffer, 1991) and MODIS cloud fraction for January 2001. 

Fig. 4c and d show the corresponding profiles for ENTRAIN/5 and ENTRAINx3, respectively. In the 
ECMWF model version used here, entrainment of moisture into a convective plume and detrainment of 
moisture out of a convective plume are composed of an organized part and a turbulent part. Organized 
entrainment occurs in the lower part of the cloud and is proportional to the large-scale dynamic convergence 
of moisture. Organized detrainment is related to the vertical variation of the up-draught vertical velocity. The 
turbulent entrainment rate of environment air and detrainment rate of updraught air are both proportional to 
the up-draught mass-flux. In ENTRAIN/5 and ENTRAINx3, we perturb the constant of proportionality for 
the turbulent component. With these changes, there is (initially) deeper and more vigorous convective 
heating (blue) for ENTRAIN/5 (Fig. 4c) compared to CONTROL (Fig. 4a). This is consistent with reduced 
loss of moisture and buoyancy from the convective plume with decreased detrainment (assuming that the 
observations constrain the analysis sufficiently so that the analysis using the ENTRAIN/5 model is as moist 
as that using CONTROL). On the other hand, ENTRAINx3 initially shows weaker and shallower convective 
heating (Fig. 4d, blue) than CONTROL (Fig. 4a). This is consistent with increased loss of moisture and 
buoyancy from the plume with increased detrainment. Importantly, for both ENTRAIN/5 and ENTRAINx3, 
the changes in convective tendencies are reflected in larger magnitudes of the total initial tendencies (thick 
red) compared to CONTROL. The temperature of ENTRAIN/5, and to a lesser extent ENTRAINx3, is 
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clearly more out-of-balance at the analysis state. We argue, therefore, that these two perturbations represent a 
degradation of the physics of the base model for this particular parameter (i.e. temperature), region and time 
of year. 

Notice that the initial dynamical tendencies (Fig. 4, orange) differ greatly from one model to the next. 
ENTRAIN/5 (Fig. 4c) shows strong dynamical cooling in the mid-troposphere, consistent with strong large-
scale low-level convergence. On the other hand, ENTRAINx3 (Fig. 4d) shows much weaker dynamical 
cooling. This difference in initial dynamical tendencies indicates that the observations are not able to 
perfectly constraint even the large-scale analysed flow. Initiation of model ENTRAIN/3 with analyses 
generated using model ENTRAIN/5 would probably result in an initial “spin-down” of the large-scale flow. 
The tendency associated with this spin-down in the ENTRAINx3 forecast could not be totally attributed to 
physics errors in the ENTRAINx3 model. Similarly, the mean analysed specific humidity over the 
Amazon/Brazil region at about 728hPa, is 7.2 gkg-1 when the CONTROL model is used in the data 
assimilation (not shown) but only 6.0 gkg-1 when the ENTRAIN/5 model is used. Initiating ENTRAIN/5 
with analyses generated using CONTROL could result in an initial loss of moisture that may not be totally 
attributable to errors in ENTRAIN/5 physics. Such analysis differences do not invalidate the initial tendency 
approach (which simply requires that the observations are able to partially constrain the analysis) but rather 
emphasize the importance, for a fair comparison of models, of generating analyses with a consistent model. 

By D+5, balance is (nearly) achieved in ENTRAIN/5 and ENTRAINx3 (i.e. the model has “spun-up” so that 
the systematic total tendency at D+5 is approximately zero). However an explanation of the balanced 
budgets (not shown) is much more complicated than the explanation of those in Fig. 4 because other 
processes (including the large-scale dynamics) have had time to interact with the perturbed convection 
scheme. Hence, although D+5 biases (thick black) also clearly indicate model physics errors (there is a good 
agreement between the profiles of total initial tendency and D+5 bias), it would be difficult to identify the 
cause of this error based on the D+5 biases alone. Importantly in terms of this study, the D+5 precipitation 
rates and cloud cover fractions (Table 3) are very different from what one would naively expect from the 
initial tendencies and, in fact, not noticeably worse than that of CONTROL. This compensation suggests that 
considerable interaction between the various model processes has already occurred by D+5. 

6. Scoring climate models with initial tendencies 
Having demonstrated the power of the initial tendency method to assess model physics within a particular 
region, we now consider the global picture. Fig. 5 shows fields of vertically-integrated absolute initial 
tendencies of temperature (top) and specific humidity (bottom) for CONTROL (left) and ENTRAIN/5 
(right). We use the absolute values of the tendencies so that if oppositely signed tendencies exist at different 
levels, these will not cancel each other. It is clear that initial temperature tendencies for ENTRAIN/5 are 
much worse than for CONTROL throughout the tropics and subtropics and moisture tendencies are much 
worse in the Inter-Tropical Convergence Zone and monsoon rainfall regions (which are south of the equator 
in January). Globally-integrated absolute initial tendencies of T, q, u and v for each model are given in Table 
4. While ENTRAIN/5 is poor for T, q, u and v, ENTRAINx3 is only poor in terms of T when averaged over 
the globe. CLOUD shows little difference from CONTROL. Hence we can conclude that the physics of 
CONTROL are much better than those of ENTRAIN/5, better than those of ENTRAINx3 and approximately 
equivalent to those of CLOUD. 
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Figure 5 Vertically-integrated absolute total tendencies of (top) temperature and (bottom) specific 
humidity for (left) the CONTROL model and (right) the ENTRAIN/5 model with a reduced turbulent 
entrainment coefficient. Vertical integrals are mass-weighted integrals of the absolute values of the total 
tendency based on a subset of 11 model levels ranging from the surface to about 4 hPa. 

 
Table 4 Globally and vertically integrated absolute initial tendencies 

Model dT/dt (Kday-1) dq/dt (kgm-2day-1) du/dt (ms-1day-1) dv/dt (kgm-2day-1) 
CONTROL  0.378  1.03  1.26  1.23 
CLOUD  0.376  1.03  1.25  1.22 
ENTRAIN/5  0.608  1.73  1.52  1.48 
ENTRAINx3  0.454  1.02  1.25  1.24 

Vertical integrals are mass-weighted integrals of the absolute values of the total tendency based on a subset of 11 model 
levels ranging from the surface to about 4 hPa. Global integrals are area-weighted. 

A single (scalar) error score for each model would be very useful to assess each model’s representation of 
the physics. Various methods have been explored. A particularly simple score can be based on the mean 
absolute tendency. To place equal weight on each of the four parameters (T, q, u and v), the integrated 
absolute tendencies in Table 4 need to be first normalised (we do this by dividing by the mean value over all 
models because simple division by the values for CONTROL could lead to biases). After normalisation, the 
mean over all parameters is made. The scores for each model based on the absolute tendencies are 
CONTROL: 0.90, CLOUD: 0.89, ENTRAIN/5: 1.27, ENTRAINx3: 0.94. The lower this score is, the smaller 
are the initial tendencies, and the better is the model. The score tends to zero in the limit of a large ensemble 
of tests and a perfect forecasting system.  

7. Linearity of the initial tendency methodology 
Murphy et al. (2004) assumed that the anomalous climates from perturbed models can be combined linearly. 
This assumption was essential to make the computational overhead of the problem of producing a p.d.f. of 
climate change manageable. About 23 of their parameters were associated with fast physics. As indicated in 
the representative Table 1, these parameters either took low, medium and high values or were associated 
with on/off switches (or a combination of both). The total number of possible combinations of these 
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parameter perturbations is about 15 billion (=3522.4232.3123.3321.34). If we could assume that anomalous 
climates combine linearity, then just 24 models would be needed to span this combination space (23 single 
perturbations plus the control model). Whilst linearity of climates is an appealing concept, it is unclear 
whether it is a scientifically justified assumption to make; indeed, our D+5 climate and budget analysis casts 
doubt on this assumption. 

On the other hand, as discussed below, we believe that the initial tendency method is “linear enough” to 
allow major computational savings to be made. Further perturbations have been applied to the control model 
to reach this conclusion. One such perturbation involves a doubling of the ice particle radius (throughout the 
size distribution). We call this model ICEx2. Another model incorporates both the ENTRAINx3 and ICEx2 
perturbations. One could imagine that the doubling of the effective radius of ice particles in ICEx2 will 
primarily affect the initial radiation budget whereas a perturbation to the entrainment rate in ENTRAINx3 
will primarily affect the convection. Hence initially these two perturbations may not interact too strongly and 
thus their combined effect in a single model may be expected to be approximately the same as the sum of 
their effects when applied individually. If, for the initial tendency anomalies we write E = ENTRAIN/3 - 
CONTROL, I = ICEx2 - CONTROL and EI = (ENTRAINx3 and ICEx2 combined) - CONTROL, then the 
degree of linearity can be assessed by calculating the magnitude of the nonlinear residual: EI-(E+I). Vertical 
profiles of the anomalous tendencies have been calculated for the same Amazon/Brazil region but the 
magnitudes associated with E are so much greater than those for I that linearity is trivially true: EI-(E+I)≅E-
(E+0)=0. To find a region where both E and I are comparable in magnitude, the latitude circle at 60oS was 
chosen. During January, there is plenty of sunlight at 60°S which should favour I but there is less deep 
convection than in the South American monsoon region and this should reduce the impact of E. 

Figure 6 shows the vertical profiles of anomalous total initial temperature tendencies averaged around the 
60oS latitude circle for E, I, EI and EI-(E+I). Within the troposphere the non-linear component, EI-(E+I), is 
not significantly different from zero and generally has a smaller magnitude than the magnitudes of E or I 
alone. This suggests a reasonable degree of linearity. 

 
Figure 6 Vertical profiles of total initial tendency anomalies at 60oS for the high convective entrainment 
model E, the model with increased ice particle size I, the model with both these perturbations EI and the 
non-linear term EI-(E+I). The bars indicate 70% confidence intervals. See the main text for more details. 

It should be noted however, that contrary to the speculation above, it is not just the initial convective 
tendency in E or the initial radiative tendency in I that are affected by the perturbations applied. For example, 
the upper tropospheric dynamical tendency anomalies in E and I are statistically significantly different from 
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zero. The tendency differences from processes other than the process which contains the perturbed parameter 
could arise through the analysis cycling or as a direct response in the 6-hour forecast to the applied 
perturbation. Whatever the reason, the degree of linearity displayed above suggests that these processes 
respond approximately linearly to the applied perturbation, and these responses are not strong enough to 
interact greatly during the first few timesteps. In the lower troposphere, large confidence intervals for some 
of the individual tendency anomalies (not shown) suggest that more than 31 days are required to adequately 
estimate these individual terms, at least in the extratropics. 

For a more general and global perspective on linearity, further initial tendency experiments have been made 
with a perturbation to the critical relative humidity for cloud formation. This perturbation is applied on its 
own and in combination with ICEx2 and with ENTRAIN/3. The corresponding anomalous tendencies and 
denoted R, IR and RE, respectively and the non-linear terms are calculated as IR-(I+R) and RE-(R+E). The 
globally and vertically integrated absolute values of the anomalous and non-linear tendencies are shown in 
Table 5. In general, the magnitude of the non-linear term for a given parameter is approximately the same for 
all sets of experiments and is generally equivalent to the magnitude of the smallest individually perturbed 
model. Given that there could be some inflation of the non-linear terms due to larger sampling errors than for 
the anomalous tendencies, it is clear that a useful degree of linearity is present throughout the globe in the 
initial tendency methodology. For example, although the linearity may not be perfect, we should be able to 
estimate the absolute tendency score for the combined perturbation models from those of the singly 
perturbed models. This is what we will mean by ‘linearity’ from now on. Note that the linearity found for 
these experiments is not a trivial consequence of the different perturbations affecting disjoint geographical 
regions since E, I and R all have their strongest anomalies in the same locations (the heavily convective 
regions). Nevertheless, it is possible that other perturbations not considered here may affect disjoint regions 
and the trivial linearity that would ensue would still be highly useful. 

Here, we have only assessed linearity for fixed perturbation values. Given the non-linearities inherent in 
some physical parametrizations, it is perhaps doubtful that the response to a single perturbation will vary 
linearly with the magnitude of that perturbation. For each of the (n) perturbable parameters, one could 
imagine determining the initial tendency response to a range of perturbation values (for example by making 
3 low/medium/high value simulations and fitting a curve through the three responses or by making 2 on/off 
simulations for switch-like parameters). The responses of these ~3n single-parameter perturbed models could 
therefore be used to predict (approximately) the initial tendency response for any linear combination of 
parameter perturbations. The vertical and global integration of the absolute values of the linear combination 
of initial tendencies could then be used to assess the physics of the corresponding model. A possible 
extension of this methodology may be required for the situation where two (or more) perturbations are 
applied within the same physical process if these perturbations can interact with each other in a single call to 
the routine. In the situation of m interacting perturbations in a given process, ~3m (rather than ~3m) 
perturbed models would require assessment, corresponding to all combinations of low, medium and high (or 
on/off) for each parameter. Even with this extension, the ‘inter-process linearity’ highlighted above would 
represent a considerable reduction in the effort needed to assess the model physics with the initial tendency 
approach. For example, the 23 parameters associated with “fast physics” used by Murphy et al (2004) are 
distributed over 5 physical processes and would require initial tendencies to be simulated for 1275 
(=3522+4232+3123+3321+34) perturbed models. This is very much less than the ~15 billion simulations 
required in the fully non-linear situation and, considering the importance of trying to reduce uncertainty in 
estimates of climate change, may not be out of the question computationally. 
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Table 5 Globally and vertically integrated absolute initial tendency anomalies 

Anomaly dT/dt (Kday-1) dq/dt (kgm-2day-1) du/dt (ms-1day-1) dv/dt (kgm-2day-1) 
E 0.19 0.36 0.25 0.20 
I 0.03 0.09 0.05 0.05 
R 0.02 0.09 0.04 0.04 
EI 0.20 0.36 0.26 0.21 
IR 0.03 0.09 0.05 0.05 
RE 0.19 0.36 0.25 0.20 
EI-(E+I) 0.03 0.13 0.06 0.06 
IR-(I+R) 0.03 0.12 0.05 0.05 
RE-(R+E) 0.03 0.13 0.06 0.06 

The mass-weighted vertical integration is between approximately 728hPa and 36hPa. See the main text for further details. 

8. Computational costs 
At the resolutions used in this study (T159 horizontal resolution, 60-level, 30-minute timestep), the cost of 
the data assimilation represents 98% of the cost of the initial tendency method. The total cost of a 31-day, 4-
times-a-day, 6-hour initial tendency analysis (including data assimilation and forecast) is equivalent to 4.7 
years of coupled model simulations at the same resolution. If only 100 years of simulations are required to 
spin-up a coupled model and assess its present-day climate, then the initial tendency method will cost just 
4.7% the cost of the present-day climate test. However, it is not unusual to discard the first 300 years of a 
coupled model simulation prior to assessing its climate. These relative costs should be approximately 
independent of model resolution as long as the number of observations ingested by the data assimilation 
system is proportional to the resolution. However, since the initial tendency method will be more 
discriminating at higher resolution, where more information from the available observations can be 
assimilated, the proposed technique should perhaps be considered in conjunction with the development of the 
next generation of higher-resolution climate models. 

9. Using initial tendencies within perturbed model climate ensembles 
The aim of the present study is to assess the representation of fast physics within climate models using a 
reasonably small number of data assimilation / forecast cycles and integrating tendencies over the diurnal 
cycle. The integrated absolute tendency score was introduced in section 6 as a means of assessing model 
physics. One may wonder whether this score could be used to weight models within an ensemble of model 
versions. For example, weights could be based on the reciprocal of the absolute tendency score 
(appropriately scaled so that the weights sum to 1). The weights for the models assessed in section 6 would 
be CONTROL: 0.27, CLOUD: 0.28, ENTRAIN/5: 0.19, ENTRAINx3: 0.26. If there were a perfect model 
within the ensemble then, as the number of assessment forecasts tends to infinity, its absolute tendency score 
should tend to (approximately) zero and its weight would tend to 1 with all other models’ weights tending to 
zero. This seems appealing although it is clearly somewhat arbitrary to attach a weight of 0.5 to a model that 
has twice the initial tendency. Why not base the weight on the reciprocal of the mean squared tendencies for 
example? 

It is intuitively appealing to try to estimate, for a given finite number of assessment forecasts, the probability 
that each model could be “perfect”. Although it is not trivial to construct such a probability, one possible 
method is outlined here. We have produced such a probability score by estimating for each grid-point, model 
level and parameter, the probability that a 31-day sampling of a perfect model could lead to a mean tendency 
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whose magnitude is as large as that of the actual mean tendency calculated from the assessment forecasts. 
Explicitly, if { }T  is the timeseries of daily-mean tendencies for a given model, grid-point, level and 

parameter and T is the mean of this timeseries,  its standard deviation and TS ρ  its lag-1 autocorrelation 

then, assuming normality, we can solve for the largest probability P  such that: 

 ' 1,1 2 1
'

,N P
TN

Tt
S− − ≥  

where − −' 1,1 2N Pt  represents the percentiles of the Student’s t-distribution with ' 1N −  degrees of freedom.  is 

at most the number of days in the sample (here 31) but can be smaller if 

'N

0ρ >  (see von Storch and Zwiers; 
2001, for further details). As with the absolute tendency score, we would like to produce some average 
probability that the sample means are consistent with a perfect model. To do this, we make a mass-weighted 
vertical average of  and then also average over the four parameters (T, q, u, v). Experimentation shows that 
an area-weighted global average tends to ‘dilute’ the impact of a poor representation of the tropical physics 
in ENTRAIN/5. It seems natural to assume that different physical errors may be dominant in the tropics 
(20°S-20°N) and the extratropics (beyond 20° latitude in both hemispheres) and so here we integrate over the 
tropics and extratropics separately to produce two area-mean probabilities: PTROP and PEXTR. Assuming 
independence of errors, the product PTROP × PEXTR can be considered to be the probability that the sample 
means in both regions are consistent with a perfect model. The probability scores derived in this way are 
CONTROL: 0.202, CLOUD: 0.198, ENTRAIN/5: 0.122, ENTRAINx3: 0.197. The probabilities for all 
models are low; indicating that none of the results is particularly consistent with a perfect model hypothesis. 
The probability for ENTRAIN/5 is considerably lower than the rest, which seems reasonable based on the 
results of sections 5 and 6. By scaling these numbers to sum to one, we obtain “probability weightings” for 
the models that could be used within a multi-model ensemble: CONTROL: 0.28, CLOUD: 0.27, 
ENTRAIN/5: 0.18, ENTRAINx3: 0.27. Although other choices could have been made in our definition of 
the probability weighting, it is interesting to note that these weightings are very similar to those of the 
reciprocal of the absolute tendency score (above). Because the probability assessment involves the standard 
deviation of the estimated mean, 

P

'NTS , the probability weightings will be dependent on the number of 

assessment forecasts made. The more computational time spent assessing model physics, the more 
discriminating the weights will be. As with the absolute tendency score, the probability weighting that would 
be attached to a perfect model (if one existed in the ensemble) should tend to 1 as the number of assessment 
forecasts increases. 

The practical application of the initial tendencies methodology to climate sensitivity may, therefore include: 

1. Initial expert opinion on reasonable maximum magnitudes for each parameter perturbation.  

2. Estimation of the probability weightings for each perturbation using the initial tendency approach. 

3. Possible reduction in some perturbations if they are very unlikely (i.e. have very low probabilities). 
Possible increase in some perturbations if their probabilities remain too high (so that parameter space 
is adequately sampled). Return to (2) if necessary. 

4. Calculation, using approximate linearity, the probability weightings for multi-perturbed models. 

As discussed in section 2, the initial tendency approach focuses only on ‘fast physics’ errors and additional 
tests are required to assess other aspects of the physics. Subsequent weights such as from tests dedicated to 
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assessing the salient ‘slow physics’, and from present-day climate tests, low frequency variability tests, 
palæoclimate tests (Annan et al., 2005a) and from tests of the physics most directly related to the greenhouse 
effect would need to be combined with the weights from the initial tendency test. Just how this combination 
is done is an important question but is not explored fully here. One pragmatic possibility might be to make 
the ultimate weight a suitably normalised minimum of all these weights but other combination methods or 
Bayesian approaches could be explored. After the combined weights have be decided on, the climate 
forecasts can be made and a p.d.f. of climate change constructed. 

10. Climate experiments 
It is interesting to check whether ENTRAIN/5 would pass or fail a standard present-day climate test. To do 
this 39 17-month simulations were made with CONTROL and ENTRAIN/5 starting from 1 October for the 
years 1962-2000. The initial data coming from the ECMWF reanalysis project (ERA-40). The models were 
forced with prescribed (observed) sea-surface temperature (SST). Comparison of months 3-5 with months 
15-17 (both corresponding to the December - February season) indicated that the models were well “spun-
up” by month 3. For each simulation, the last 12 months (months 6-17) were then used to assess the model 
climate. Our present-day climate assessment is similar to that used by Stainforth et al. (2005). The 
assessment was based on the simulation of ERA-40 MSLP and T850 for the years 1962-2000 and GPCP 
precipitation for the years 1979-2000. T850 was used instead of 2m temperature (T2m) because T2m is likely to 
be too closely related to the prescribed SST. The present-day climate error for ENTRAIN/5 was 1.39 (blue 
diamond in Fig. 3), relative to the value of 1.00 for CONTROL (red diamond in Fig. 3). It is evident from 
Fig. 3 that the present-day climate error of ENTRAIN/5 is less than the errors of some of the models 
accepted by Stainforth et al. (2005) and in this respect we can conclude that ENTRAIN/5 passes the present-
day climate test. The passing of a present-day climate test by a model that represents the physics of the 
atmosphere so poorly, highlights the importance of having other means (such as the initial tendency method) 
of down-weighting or removing bad models from climate forecasts. 

The climate sensitivity of CONTROL and ENTRAIN/5 to a doubling of CO2 is also indicated by the 
diamonds in Fig. 3. For both models, the climate sensitivity is very small and of little interest due to the 
prescribed nature of the SSTs. Nevertheless it is interesting to note that the top-of-atmosphere fluxes of heat 
associated with the enhanced greenhouse effect are similar to those of other (coupled) models. The pattern of 
surface warming, with largest temperature increases over the northern hemisphere continents, is also in 
agreement with coupled model forecasts. The effectively-infinite heat capacity of the oceans means that 
considerable heat is removed from the system at the surface, particularly in the northern hemisphere 
stormtrack regions. The representation of these surface fluxes is likely to be critical to the climate sensitivity 
of transient CO2 experiments and could also be assessed with the initial tendency methodology. 

11. Discussion and conclusions 
Forecasts of anthropogenically-forced climate change remain highly uncertain. Recent attempts to 
systematically account for the uncertainty associated with model error (using perturbed model ensembles) 
have, if anything, increased this uncertainty. New approaches are required to constrain our p.d.f.s of climate 
change in order to guide strategic decision making on mitigation and adaptation. 

This study has developed an approach that can be used to quantify better the uncertainty in climate change 
forecasts due to model error. The methodology uses very short-range numerical weather prediction (NWP) to 
calculate the imbalance of the climate model about a realistic atmospheric state (the analysis). This 
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imbalance is a manifestation of errors in the model’s “fast physics” and can therefore be used to produce 
weightings that reflect how well each model represents this physics. Note that these fast physics errors 
include not only errors in represented physics but also errors due to unrepresented processes. The 
methodology would actually result in reduced (not just more accurate) climate change uncertainty if the 
models with the poorest representation of the physics have the highest (or lowest) climate sensitivities. 
Indeed, the model perturbation that led to the highest climate sensitivity in Stainforth et al. (2005) and which 
was the basis for “plausible” global warming quotes in the press of 12°C (see e.g. Pearce 2006) is rejected as 
unrealistic by the present methodology (although it must be stressed that we use a different base model and 
cannot, therefore, use our result to constrain their range of climate sensitivity). 

The methodology involves the calculation of tendencies over the first few timesteps of a model forecast. 
Computationally, the methodology is more efficient than assessing a model’s ability to simulate present-day 
climate. Importantly, it has been demonstrated that these initial tendencies combine in a near linear fashion 
(due to linearity and/or spatial orthogonality in the effects of different perturbations). Hence it is possible that 
the fast-physics of a model with any combination of parameter perturbations can be approximately assessed 
from the initial tendencies associated with each individual perturbation alone. This approximate linearity 
could further reduce the computational expense of assessing model fast physics by several orders of 
magnitude and thus help greatly in the quantification of climate change uncertainty. 

The initial tendency methodology as presented here has strong similarities with the simple quantification of 
“analysis increments”. The main advantage of the initial tendency approach is the availability (for a 2% 
increase in cost) of the tendencies from each individual physical process: a feature that is essential for 
demonstrating physically the utility of the approach. The initial tendency approach also has the advantage 
(important here) that the first timestep of the forecast can be disregarded whereas it is used implicitly in the 
calculation of the analysis increment. Clearly the precise approach that is most applicable may be dependent 
on the base climate model under investigation. 

By fitting a set of simple climate models (each with differing physics packages) to the observational record, 
Andronova and Schlesinger (2001) also found that the climate sensitivity was highly dependent on the 
physics represented in the model. They found very high climate sensitivities (over 10K) were possible but 
only if the total effect of anthropogenic sulphate aerosol emissions has strongly offset greenhouse warming 
up until now. The present initial tendency methodology has also been used successfully to discriminate 
between different model aerosol climatologies (Rodwell and Jung 2007) although the focus was on the direct 
effect of desert aerosol. If the initial tendency methodology could be used to assess the direct and indirect 
effects of anthropogenic sulphate aerosol emissions (in regions where these emissions are high) then this 
could represent an important step forward in climate change forecasting.  

Other applications of the initial tendency methodology may be in assessing ocean-atmosphere interactions in 
atmospheric models and the representation of slower oceanic processes in coupled models. Both these 
applications would be relevant to seasonal forecasting as well as to climate forecasting. 

Above all, this study highlights the importance of developing a seamless approach to weather and climate 
forecasting, where we glean as much information as we can from our daily weather observations in order to 
better predict the climate for centuries ahead. (A seamless approach could be a two-way process with the 
identification and correction of ‘slow-physics’ errors in long-range forecasts also leading to improvements at 
shorter timescales). This seamless approach is consistent with the strategic plan of the World Climate 
Research Programme (WCRP COPES 2005). In a truly seamless system in which a climate model can be run 
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in data assimilation mode, uncertainty in climate sensitivity, one of the long-standing problems in climate 
change research, may be reduced significantly. By contrast, if seamless systems are not developed, it will not 
be possible to use the results of the proposed method in any quantitative way. 
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