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Comparisons of cloud fraction between the ICESat lidar and the ECMWF model cECMWF

Abstract

The performance of the European Centre for Medium-Range Weather Forecasts (ECMWF) model
in simulating cloud is evaluated using observations by the Geoscience Laser Altimeter System
(GLAS) lidar on the ICESat satellite. In order to account for lidar attenuation in the comparison,
we use model variables to simulate the attenuated backscatter using a lidar forward model. This
generates a new model cloud fraction that can then be fairly compared to the ICESat lidar. Lidar
forward model and ICESat comparison is performed over fifteen days (equivalent to 226 orbits
of Earth, or roughly 9 million km) of data. The model is assessed by cloud fraction statistics,
skill scores and its ability to simulate lidar backscatter. The results show that the model generally
simulates the occurrence and location of cloud well, but overestimates the mean amount when
present of the ice cloud by around 10%, particularly in the tropics. The skill of the model is
slightly better over the land than over the sea. The model also has some problems representing
the amount when present in tropical boundary layer cloud, particularly over land, where there is
an underestimate by as much as 15%. Calculations of backscatter reveal that the ECMWF model
predicts the lidar backscatter to within 5% on average, for a lidar ratio of 20 sr, apart from in
thick ice clouds. Sensitivity tests show that realistic variations in extinction-to-backscatter ratio
and effective radius affect the forward modeled mean cloud fraction by no more than 10%.

1. Introduction

Clouds play a major role in the Earth’s radiation budget and predictions of future climate (Stephens et al. 1990;
IPCC Intergovernmental Panel on Climate Change, 2007; Quante 2004), yet both ice and liquid clouds are often
poorly represented in general circulation models (Arking 1991), which is one of the major factors limiting the
accuracy of future climate predictions. In numerical weather prediction, clouds are important for a number of
reasons, including the model radiation scheme, surface temperature forecasts, visibility, aircraft icing forecasts
and their role in the formation of precipitation.

There have been a number of previous studies assessing the clouds within models. For example, Wetzel and Bates
(1995) compared measurements from the geostationary operational environmental satellites (GOES) to MM5
model clouds and found a negative bias of up to 30% in model cloudiness. Due to its global domain, many
comparison studies have been performed with the ECMWF model. Jakob (1999) compared ECMWF reanaly-
sis data to observations from the International Satellite Cloud Climatology Project for the period July 1983 to
December 1990. The reanalysis used the prognostic ECMWEF cloud scheme (Tiedtke 1993, modified by Jakob
1994) and it was found that the ERA data tended to underestimate cloud cover in the extra-tropical oceans, the
trade wind cumulus, the stratocumulus sheets off the west coast of subtropical continents and the summertime
convective cloud over Eurasia.

Previous active ground-based studies have also assessed the performance of clouds in the ECMWF model.
Mace et al. (1998) used a 35-GHz radar in Oklahoma to compare the frequency of cloud occurrence with the
ECMWEF model. They concluded that the ECMWF model layers were generally too deep and were predicted
within the model too early (by an unspecified time). Hogan et al. (2001) used data from 35-GHz and 94-GHz
radars, and a lidar ceilometer located at Chilbolton, Southern England to evaluate the ECMWF model mean
cloud fraction. Their results showed that the model tended to have too little cloud beneath 7 km and too much
cloud above 7 km. However, once the model cloud fraction was modified to account for precipitating snow and
to remove any thin ice cloud that cannot be detected by the radar, the comparisons were better, but the model
still had a tendency to overestimate the amount of high ice cloud by a factor of two. Illingworth et al. (2007)
took this to a new level in the Cloudnet project, combining radar, lidar and microwave radiometers from three
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sites in Europe to evaluate cloud fraction and water content in seven operational models (including ECMWF)
over a period of several years.

The use of active instruments in space offers the potential of both global coverage and high vertical resolution.
A lidar flew on board the space shuttle “Discovery” in September 1994 as part of the Lidar In-space Technology
Experiment (LITE; McCormick et al. 1993). Miller et al. (1999) used the 532-nm channel data from 15 LITE
orbits to evaluate the ECMWF model cloud frequency of occurrence using statistical skill scores of hit rate,
threat score, probability of detection and false alarm rate. They concluded that the model generally tended to
overestimate the total amount of cloud, but made no account for attenuation of the lidar signal through thick ice
cloud or liquid water cloud.

Launched in 2003, the Ice, Cloud and Land Elevation Satellite (ICESat; Zwally et al. 2002) is a polar-orbiting
satellite upon which is mounted the Geoscience Laser Altimeter Survey (GLAS) instrument. It consists of a
nadir-pointing lidar which, although intended primarily to measure the height of the polar ice sheets, is also
able to make measurements of ice cloud and thin liquid water clouds. These data can be used to evaluate
the performance of general circulation models (GCMs), and unlike LITE is capable of showing the seasonal
variation of global cloud profiles.

ICESat lidar data have been available long enough to be used to observe clouds and perform model comparison
studies. Palm et al. (2005), took one orbit of ICESat data and compared it to cloud fraction from the ECMWF
model. By making direct comparisons between cloud fraction and using skill scores from Miller et al. (1999),
they deduced that the ECMWF model was capable of representing low clouds quite well, but often produced
too much high cloud, particularly evident from long (48 hour) forecasts. Model skill scores also decreased
with increasing forecast length. However, one must be very careful when comparing observations made by
lidar instruments directly to clouds as there will be a loss of signal power (attenuation) as the beam passes
through clouds, and often there will be a total extinction of the signal in liquid water clouds. Palm et al. (2005)
estimated that this occurs around 10% of the time. However, to achieve a fair comparison between lidar and
model, a method of accounting for the attenuation of the signal must be found. In addition, we should be careful
in comparing models directly to observations, as sometimes, two different variables are being compared.

This study attempts to make a fair comparison between the ICESat lidar and the ECMWF model by following
a similar approach to that of Chiriaco et al. (2006) and Chepfer et al. (2007), and using model variables are to
simulate the lidar signal rather than trying to use the lidar observations to retrieve model variables. This means
that we account for the attenuation that occurs as the lidar passes through thick cloud. Simulation also has
applications for data assimilation, as it allows model variables to be used to predict observations. In this case,
it could form the basis of a cloud assimilation scheme within the model.

Section 2 describes the methodology used to derive the lidar signal from the ECMWF model variables. Pro-
cessing of the ICESat lidar signal is necessary to remove noise and to place the data upon the ECMWF model
grid; this is described in section 3. Once processing is complete, various statistical tests can be performed to
judge the model’s performance, which are described in section 4, with the associated results. A summary is
presented in section 5.

2. Processing of ECMWF Model Data

This section describes the lidar forward model. The ECMWF model versions used were IFS cycles 26r1 and
26r3. The model analyses were taken every 12 hours with intervening 3 hour forecasts. The grid spacing is 40
km in the horizontal.
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a. Lidar Equation

Following the method of Platt (1973), the lidar equation may be written as the following approximation:

2lid

B = "Cexp | -an [aar |, M

where B'(z) (st—! m™') is the attenuated backscatter at altitude z (m) above the Earth’s surface and z;;; is the
orbit altitude (m) of ICESat. The dimensionless extinction-to-backscatter ratio or “lidar ratio” is denoted by s
and multiple-scattering is represented by the inclusion of the dimensionless multiple-scattering factor, 1. This
will be explained further in section 2d. The visible extinction coefficient is ¢ (m~"). At the ICESat 532 nm
wavelength, there is only scattering by particles and molecules and hence o/(z) inside the integral in (1) is due
to scattering and not absorption. Collectively the ¢ (z) /s term represents the unattenuated backscatter while the
terms within the exponential represent the attenuation of the lidar signal.

The principle of the lidar forward model is to first use ECMWF model variables to predict the value of the
visible extinction coefficient, &, at each vertical grid box within the model. If we can obtain an estimate of the
lidar ratio, s, and the multiple-scattering factor, 7, then the attenuated backscatter (8’) can be predicted at each
level of the model and then compared to ICESat data.

b. Converting Model Variables to Extinction Coefficient

To calculate the value of the visible extinction coefficient, &, from model variables at each individual grid box,
we use the following expression (after Foot 1988 and assuming a scattering efficiency of 2, which is a valid
assumption for cloud particles observed at 532 nm):

3IWC 3LWC
o= + = ,
2 TeiPi 2 TelP1

2

where IWC (kg m~?) is the model ice water content and LWC (kg m ) is the model liquid water content at that
particular grid box. The values p; and p; are the densities (in kg m~3) of liquid water and solid ice, respectively.
The calculation uses the ECMWF model parameterizations of the effective radius of ice, r,; (m), which is taken
as a function of temperature following Ou and Liou (1995), but setting the constraint that r,; can only vary
between 30 and 60 um. Liquid water effective radius, r.; (m), follows the parameterization of Martin et al.
(1994), with the concentration of cloud condensation nucleii over the ocean held constant at 50 cm~!, and
over the land constant at 900 cm~'. Typical values of the effective radius produced by the Martin et al. (1994)
parameterization are between 5 and 9 um for continental cloud and 8 and 15 pum for maritime cloud. Once the
profiles of extinction coefficient have been calculated, the lidar forward model can be run but it is important
that the forward model takes account of the cloud overlap scheme used within the ECMWF model. This is
discussed further in section 2h.

c. Lidar Ratio

One unknown variable within (1) is the value of the lidar ratio, s. This takes the values of around 18 sr for
liquid water (Pinnick et al. 1983; O’Connor et al. 2005) but can vary between 10 and 40 sr for ice particles
(Platt et al. 1999; Chen et al. 2002). In this experiment, we shall take the value of the lidar ratio to be 20 sr, as it
is close to the constant for liquid water, and is easy to test the sensitivity to the maximum and minimum values
by doubling and halving the value of 5. We shall examine the sensitivity of changing the lidar ratio between the
extreme values on the final result incorporated in the error estimates.
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Figure 1: Calculation of the backscatter that would be measured by ICESat in (a) a 4-km-thick ice cloud with an optical depth of
4, and (b) a 1-km-thick liquid cloud with an optical depth of 10. The black lines show the results of the Hogan and Battaglia (2008)
multiple-scattering model using the lidar characteristics given in Table 1 with two values of effective radius. The difference between
these two lines is predominantly due to the difference in scattering asymmetry factor, but is also affected by the difference in the width
of the forward-scattered lobe in the phase function. The gray solid line shows the approximation due to Platt (1973) withn = 0.5. Also
shown is the backscatter due to single-scattering alone (equivalent to Platt’s approximation withm = 1).

d. Calculation of the Multiple-Scattering Factor

An important consideration in (1) is the multiple-scattering factor 77, introduced by Platt (1973). This can vary
between 0.5 and 1 depending on the altitude of the satellite, the telescope field-of-view, the wavelength of the
radiation and the size of the particles the radiation encounters. A multiple-scattering factor of 1 is the single
scattering limit, often appropriate for ground-based lidar, where all the scattered photons are lost except for
those directly backscattered to the instrument. The value of 0.5 is the wide field-of-view limit, often more
appropriate for spaceborne lidars, where narrowly forward scattered photons remain within the telescope field-
of-view.

Figure 1 shows a comparison of the simple approximation of Platt (1973) using 11 = 0.5 with the sophisticated
(and computationally slower) multiple scattering model of Hogan and Battaglia (2008), for idealized ice and
liquid clouds. This model combines the Hogan (2006) treatment of small-angle scattering with a new method to
calculate the contribution from wide-angle scattering. It can be seen that for ice clouds the Platt approximation

4 Technical Memorandum No. 555



Comparisons of cloud fraction between the ICESat lidar and the ECMWF model cECMWF

Property Value
Orbit Altitude 600 km
Wavelength 532 nm
Sampling Frequency 5Hz
Latitude Range +86°
Repeat Orbit Cycle 8 days
Orbit Speed 7kms™!
Footprint Size 70 m
Min. Detectable Backscatter | 1.6 x107% sr=! m~!
Laser Divergence Angle 110 prad
Telescope field-of-view 170 prad
Range resolution 75 m

Table 1: ICESat characteristics relevant to this study, from Zwally et al. (2002)

performs very well; this is because the large particles lead to a narrow forward scattered lobe in the phase
function, and virtually all these forward-scattered photons remain within the large field-of-view of the lidar.
There is a small error at cloud base due to the neglect of the pulse stretching effect, although the associated
backscatter is below the sensitivity threshold of the lidar. In the case of liquid clouds, the pulse stretching effect
(Winker and Poole 1995) is significantly greater due to the higher optical depth. Even so, given that signals
below 107 m~! sr! at heights lower than 3 km tend to be rejected, the error in forward-modelled cloud

fraction will be small.

Given these results, the use of Platt’s simplified representation of multiple scattering is adequate, and the value
of n = 0.5 is used for all forward model calculations. Nonetheless, a sensitivity test to 77is included in the error
analysis in the next section. It should be noted that Platt’s representation is not very accurate when simulating
the molecular return beneath clouds; in this paper we do not attempt to forward model the molecular return,
and remove it from the observations before performing the comparison. However, any future lidar forward
models attempting to simulate the molecular return subject to multiple scattering would need to use a more
sophisticated model, such as that of Hogan and Battaglia (2008).

e. Lidar Forward Model Error Estimation

The results of (1) are sensitive to the values of the water contents (ice and liquid), the assumed effective radii
of liquid and ice particles, the lidar ratio and the multiple scattering factor. As mentioned earlier, the water
contents and effective radii are determined directly from the ECMWF model assumptions; as this study intends
to compare this model to ICESat, should the values of effective radius and water content be wrong, it is a
problem with the ECMWF model and not the lidar forward model. To determine the errors on the lidar forward
model, only the variation of lidar ratio and multiple-scattering factor are examined, although a sensitivity to
effective radius will be examined in section 4f.

To examine the sensitivity of the model results to changes in the lidar ratio, s, three different values were used.
In the control case, a mid-range value of s of 20 sr was used. This is close to the value predicted for liquid
water (18 sr; Pinnick et al. 1983; O’Connor et al. 2005). However, studies (Platt et al. 1999; Chen et al. 2002)
have indicated that s can vary in ice between values of 10 sr and 40 sr, and due to the complex particle shapes,
tend not to be simple functions of particle size as might be expected from Mie theory. Hence these values were
used as the maximum extremes of the lidar ratio and were used in the calculation of the error bars.
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To examine the sensitivity of the multiple-scattering factor, this was also varied. However, the values of the
multiple-scattering factor are around the minimum value suggested by Platt (1973) and a value lower that 0.5
would be unphysical. So the multiple-scattering factor within these experiments was allowed to vary between
0.5 and 0.6.

Examining equation 1, it can be seen that a high value of the multiple-scattering factor causes the most atten-
uation and the smallest value of the attenuated backscatter and vice-versa. The highest value of the lidar ratio
causes the smallest value of attenuated backscatter and vice-versa. Hence to assess the errors on the lidar for-
ward model, three experiments were performed on one day of ECMWF model data (10 October 2003, chosen
as the ICESat latitude-altitude analysis showed cloud in many different regions of the globe and more so than
any other day). The first experiment was run with lidar ratio of 20 sr and multiple-scattering factor of 0.5 (as
the control experiment); the second had a value of lidar ratio to be 40 sr and multiple-scattering factor 0.6;
the third had lidar ratio of 10 sr and multiple-scattering factor 0.5. The differences between the results were
determined by percentage errors showing the difference between the three experiments and are included in the
results presented in section 4. The estimated error (typically around 10%, but varying with latitude and height)
for this one day contained a large data sample, which was assumed to be representative of the error over the
whole fifteen day study period.

f. Interpolation of Model Data on to the ICESat Height Grid

It should be noted that (1) can be inaccurate if discretized on too course a grid. This could potentially create
sharp changes in ice and liquid water contents, leading to increased extinction of the signal at a single point
in the forward modelled column. For this reason, the model water contents are interpolated on to the ICESat
height grid, which also has the advantage of showing where total extinction would occur within a model grid
box. However, in order to calculate extinction, it is important to show where the model sky is clear and where
it is cloudy. This is because if the grid box is assumed to be completely full, attenuation will be much greater
and the signal strength will be reduced. Hence, the raw model cloud fraction was interpolated using a nearest-
neighbor interpolation method. This avoids vertical sub-grid variability in the cloud fraction profile, which
would be unfaithful to the modeled cloud overlap assumptions.

However, this higher resolution is only used to run the lidar forward model. In section 2i we shall see how the
cloud fraction is recalculated on the model grid, allowing a direct comparison between the ICESat lidar and the
ECMWEF model before and after running of the lidar forward model.

g. Selecting Model Grid Points

The model grid points nearest (in time and space) to the ICESat track are extracted. The horizontal grid spacing
of the ECMWF model is roughly 40 km. To analyse one day of ICESat data, the time and location (latitude
and longitude) of the satellite are extracted from the orbit information. The ECMWEF analyses are available at
00 UTC and 12 UTC, while intervening forecasts are available at 3-hour intervals.

The ICESat track points are arranged into nine time groups corresponding to the closest ECMWF data avail-
able. ICESat points between 00 UTC and 0130 UTC are associated with the 00 UTC model analysis, and the
ICESat points between 0130 UTC and 0430 UTC are associated with the 03 UTC model forecast. This process
continues in three-hour groups, until 2230. The points between 2230 UTC and 00 UTC are associated with the
relevant 00 UTC analysis of the following day.

Once the ICESat points have been grouped in time, ECMWF model profiles closest to the ICESat ground track
are extracted, containing a vertical profile of the model variables cloud fraction, relative humidity, temperature,
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wind speed, ice and liquid water contents.

h. Cloud Overlap

An important factor in the lidar forward model calculations is the use of maximum-random overlap as currently
implemented in the ECMWF model (Morcrette and Jakob 2000). To achieve maximum-random overlap, each
model grid box is first divided into 10 sub-columns horizontally, with cloud fraction in each model grid box
rounded to the nearest 10%. In preliminary experiments, 10 sub-columns were found to provide a good balance
between computer run time and accuracy. The process is shown in figure 2. Once the details of the maximum-
random overlap are known and the values of all the variables in (1) are known, the lidar forward model can be
applied to calculate backscatter using the model variables interpolated on to the ICESat height grid.

i. Cloud Fraction Resampling

In order to compare the cloud fraction from the lidar forward model with cloud fraction from ICESat, the cloud
fraction data are ‘resampled’. At this stage, the lidar forward model is on a high-resolution grid with 10 sub-
columns to each model grid box in the horizontal and the ICESat height grid in the vertical. To resample the
cloud fraction, the model grid is superimposed on to the forward model attenuated backscatter, and the fraction
of points containing backscatter above the sensitivity threshold (minimum detectable backscatter of ICESat,
shown in in table 1) is calculated. Any points below the sensitivity threshold are ignored when subsequently
calculating the cloud fraction.

Figure 2 shows detail of how the maximum-random overlap works for the lidar forward model. Between 7.5
and 10 km and —80 to —76°, a “ghost cloud ! is visible with low extinction coefficient in figure 2(a), which
corresponds to an ice water content of around 10> g m~>; only part of this cloud (that which is optically thick
enough to be detected) is present in figure 2(b). Between —78.5 and —74° and beneath 3 km, total extinction
of the lidar signal takes place. This can be seen by high values of extinction coefficient in figure 2(a), which do
not translate into a backscatter signal in figure 2(b).

Figure 3 shows the simulated attenuated lidar backscatter from the lidar forward model on the ECMWF model
grid, along with the raw ECMWF mean cloud fraction and the lidar forward model cloud fraction. From the
lidar forward model cloud fraction, it can be seen that the cloud fraction has been reduced both above around 9
km (where the model cloud would be too thin for the lidar to detect) and below around 6 km (where attenuation
would mean that there would be no cloud observed).

3. Processing of Lidar Data

Processing of the ICESat lidar data is carried out to remove any return that is not cloud and to map the obser-
vations on to the ECMWEF grid. The properties of the ICESat lidar as used in these experiments are shown in
table 1.

A term used to describe a cloud with very little or no ice water content in the model, yet significant cloud fraction. Due to its low
ice water content, such a cloud would not be detected by the lidar.
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Figure 2: (a) High-resolution simulation of extinction coefficient, o (m ), using ECMWEF variables and equation 2. (b) Corre-
sponding simulation of backscatter (st—' m~"), using the lidar forward model. The data are taken from 30 September 2003 from
approximately 0118 to 0121 UTC and from longitudes —52° to —63° on the right hand side. In both panels, the vertical black lines
show the model horizontal grid resolution. The influence of the maximum-random overlap can be seen in each plot. The rapid change
in o and B close to 4 km and between latitudes —78° and —74° is caused by a change in phase in the model from ice to liquid cloud.

a. Rejection of Unwanted (Non-Cloud) Signal

To clean molecular echoes and instrument noise from the data, the profiles are divided into 4-minute periods
(equivalent to 1680 km) and the mean backscatter above 15 km for this period is used to remove the molecular
noise from the lower levels for the whole 4 minutes. It is assumed that at this level, there is no cloud and all the
signal received is instrument noise. The mean and standard deviation of the linear backscatter at these heights
are obtained. This is used to set a noise threshold for the rest of the profile. The threshold at which a signal is
accepted to be a cloud signal rather than noise is 2 standard deviations above the mean, chosen empirically. If a
higher threshold is set, then the clouds start to be removed. With a lower threshold, obvious noise still remains
within the data. The threshold of 2 standard deviations is sufficient to remove most noise down to ground level.
A speckle filter is then used to remove any remaining isolated pixels. In addition, aerosol has to be removed
from the data. Since the highest values of aerosol have similar values of backscatter as thin ice cloud, aerosol
pixels would be above the noise threshold defined for the 4-minute period. Aerosol pixels tend to exist as small
groups of adjacent data points with backscatter high enough to allow them to exist after the single pixels have
been removed. It is therefore important that we ensure only aerosol (and not cloud) is removed from the data.

To remove the aerosol, the lowest 3 km of the data are divided into a series of grid boxes. As aerosol tends
to have relatively low backscatter values compared to liquid water cloud, all points within the box with low
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Figure 3: Demonstration of the processing of ECMWF model data from 30th September 2003, from 0117-0129 UTC, with longitudes
from —27° to —74°. This corresponds to a longer time series of the same data presented in figure 2, the location of which is shown
with black dashed lines. (a) Simulated lidar forward model backscatter (in st~ m™'), corrected for instrument sensitivity, on the model
grid. (b) ECMWF model cloud fraction in its raw state. (c) The ECMWF cloud fraction after the lidar forward model has been run.
The corresponding observations are shown in figure 4. Note the horizontal grid resolution in figure 2 is ten times higher than this figure
to show sub-grid scale cloud variability. The vertical grid resolution is also much less in this figure. Therefore, not all cloud features
match perfectly.

backscatter (values less than 5 x 107> m~! sr!) are located and the standard deviation of these points is
calculated. Since aerosol has a low standard deviation and cloud a higher standard deviation (backscatter
values increase sharply within clouds from the edges), the points with a very low standard deviation (less than
3 x 107° m~ ! sr!) are assumed to be aerosol, and removed.

Naturally, the choice of removal box size is important to the aerosol and low-altitude molecular removal process.
If the grid boxes are too large, as much as 20% low-backscatter ice cloud will be removed, but if the grid boxes
are too small then there will be insufficient data to provide a good sample of the variance of the low backscatter
used to remove the aerosol. The best results occurred when grid boxes of 50 pixels horizontally by 20 pixels
vertically were used, where one lidar pixel is 75 m in the vertical and 1.24 km in the horizontal. This gives
1000 data points in total in each grid box which is a large enough sample for variance calculation.

Another obvious issue with the aerosol removal method is the removal of any low-backscatter cloud data that
occurred in the same box as aerosol we were trying to remove. In some cases, the edges of the clouds were
actually removed from grid boxes containing data. However, upon closer examination, this would only lead
to the removal of a few points which we estimate would equate to less than a 4% error in the cloud fraction

Technical Memorandum No. 555 9



‘CECMWF Comparisons of cloud fraction between the ICESat lidar and the ECMWF model

15
E
< 10
(0]
©
2 5
<
15
E
=< 10
(O]
©
25
<

o

)
— —
o O

Altitude (km
(63}

o

)

—
o

Altitude (km
(6]

1w e
‘ Fam | - I

-70 -65 -60 -55 -50
Latitude (degrees)

o

Figure 4: Processing of ICESat lidar data for the same case as figure 3. (a) Attenuated backscatter m~ ! sr1); (b) after processing to
remove noise and aerosol; (c) when averaged on to the model grid and (d) cloud fraction calculated on the model grid.

calculated. A digital elevation map was used to remove the high backscatter return from the ground up to and
including 75 m above the surface.

b. Averaging of ICESat Backscatter Data

To compare backscatter from the ECMWF model and backscatter from the ICESat lidar, ICESat profiles which
correspond to the same ECMWF model grid box were averaged in the horizontal while maintaining the ICESat
vertical resolution. Figure 4 shows the processing of ICESat lidar data to remove noise and to average on to
the model grid to give mean backscatter and cloud fraction. The data corresponds to the same time period as
shown in figure 3.

The data were averaged on to the model grid selecting and averaging ICESat 5 Hz rays to the nearest ECMWF
model grid point. Occasionally observed is apparent horizontal stretching and squashing of the original data
as they are transformed on to the model horizontal grid. This phenomenon is due to the grouping of ICESat
5 Hz (1.2 km) rays to individual ECMWF model grid points. Some model grid points will be the average of
many ICESat 5 Hz rays while some will only be the average of a few. However, any model grid point that
corresponded to less than 5 ICESat 5 Hz rays (7 km of ground-track) was rejected from the analysis. The
largest boxes were 28 rays (35 km). The maximum distance between ICESat track and model grid points is
20 km. The maximum time difference between observations is 1.5 hours. Cloud fraction was then calculated
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on the model grid by using the same method as used for the lidar forward model cloud fraction resampling,
described in section 2i, with the number of ICESat profiles replacing the sub-columns used in the lidar forward
model.

4. Results

Fifteen days of ICESat observations, from 30 September 2003 to 14 October 2003 inclusive, have been com-
pared to the corresponding ECMWF model data after running the lidar forward model. This has generated a
dataset where the length of the ICESat track is over 9 million kilometers. This is equivalent to over 14 years
of observations at a mid-latitude ground-based station, assuming a mean wind over the station of 20 m s,
Although desirable to examine the seasonal variations in cloud climatology, this study is restricted to a short
data period only due to the availability of ICESat data at the time of processing that was of the same release
version and of good quality. Data were specifically selected from a period just after a new laser was switched

on, to avoid the problems caused by laser signal degradation.

a. The Effect of Running the Lidar Forward Model on ECMWF Clouds

As we saw in figure 3, there was a reduction of model cloud fraction due to the processing of the lidar forward
model. Cloud fraction is reduced at high altitudes due to the backscatter produced being lower than the sensi-
tivity of the ICESat lidar. Cloud fraction is also reduced at lower altitudes due to attenuation of the lidar beam
as it passes through thick cloud.

Figure 5 shows the effect of this processing on the ECMWF model mean cloud fraction. Comparing plots 5(a)
and 5(b), the following points are noted:

e There is a large reduction of model cloud fraction in the tropics, at heights above 10 km. This is also
notable in the mid-latitudes in the highest ice clouds. The cause of this reduction could be due to thin ice
cloud falling beneath the ICESat sensitivity threshold.

o In mid-latitudes and high-latitudes and at high altitudes, the cloud fraction taken from the lidar forward
model is close to the original ECMWEF cloud fraction.

o At the lowest altitudes, mean cloud fraction is reduced from around 0.1-0.3 to around 0.05-0.1 due to
attenuation of the lidar signal in the higher ice cloud. This is important for any comparisons between
model and lidar that are made; comparing the ICESat-derived cloud fraction directly with the ECMWF
model would wrongly indicate that the model had too much cloud.

b. Performance of ECMWF Model versus Latitude and Height

Figures 5(b) and 5(c) show that the ECMWF model has cloud in approximately the correct position at all lati-
tudes, but in places the cloud amounts are substantially higher than with the ICESat observations. In particular,
the mean cloud fraction in the ice cloud above the tropics and above the poles is too large by up to 10%. Inter-
estingly, the low cloud above the North Pole and above the Southern Ocean is up to 15% too large as well. It is
uncertain exactly why this may occur, but it could be due to incorrect parameterizations of supercooled liquid
water and ice within the model.

In order to examine the performance of the ECMWF model over several different latitude bands and differ-
ent altitudes, each hemisphere was divided into three latitude regions. In each region, following the work of
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Figure 5: (a) Latitude and height variation of mean ECMWF model cloud fraction for 15 days from 30 September 2003 00 UTC to
14 October 2003 2359 UTC under the ICESat track. (b) Cloud fraction from the ECMWF model from the same time period as (a) but
after the lidar forward model had been run and the cloud fraction resampled. (c) ICESat cloud fraction data for the same period as (a)
and (b). The assumed lidar ratio for the forward model is 20 sr.

Hogan et al. (2001) the mean frequency of cloud occurrence and mean cloud amount when present was calcu-
lated for altitudes up to 15 km; above this level the comparison is not robust due to the assumption made earlier
that all the signal received at ICESat is purely noise. Frequency of occurrence is the fraction of time that a
cloud occurs within the model or observations at these latitudes. It is related to the dynamics of the model and
humidity— the processes that actually determine whether cloud is present or not. Amount when present is the
mean cloud fraction over the grid boxes within the latitude band when cloud is detected. It is more related to the
performance of the cloud scheme. Cloud is deemed to be detected when the cloud fraction threshold exceeds a
threshold value of 0.05.

Figure 6 can be used to show how the model performs over the 15-day period. By comparing the thick solid
line (ICESat observations) with the thin solid line (processed ECMWF model), we note the following:

o In the tropics, the model mean cloud fraction at altitudes above 10 km is too large by up to 0.1. Through-
out the rest of the profile, the tropical mean cloud fraction is very low, but agrees with the ICESat
observations.

e Similarly, the tropical frequency of occurrence is too large by as much as 0.15 above 8 km and the
amount when present in the tropics is too large by as much as 0.15 above 12 km. Beneath 7 km, the
topical frequency of occurrence is too low, by as much as 0.1.

o In the mid-latitudes, a similar picture emerges. Mean cloud fraction is too high by up to 0.1 between the
altitudes of 5 and 10 km, but agrees with the ICESat observations otherwise. Frequency of occurrence is
too large by up to 0.05 between 3 and 12 km, but agrees with the observations at other altitudes. Amount
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Figure 6: Mean cloud fraction (top row), mean frequency of cloud occurrence (middle row) and mean amount when present (bottom
row) for the tropics, mid-latitudes and polar regions in each hemisphere. The thick solid line indicates the ICESat lidar measurements,
the thin solid line shows the results of the lidar forward model applied to the ECMWF model and the dashed line shows the raw
ECMWEF model cloud fraction. The gray area shows the errors likely on the lidar forward model, determined by the method in section
2e. The latitude bands to which each column of plots are referring is given at the top of each column.

when present is too large by up to 0.05 between 3 and 12 km. At other altitudes, it agrees with the
observations, apart from in the Southern hemisphere mid-latitude band, where above 11 km, the amount
when present is too low by as much as 0.2.

In the polar regions, mean cloud fraction is too large by up to 0.1, at altitudes beneath 10 km. In the same
height range, frequency of occurrence is too large by up to 0.05 and amount when present is too large by
up to 0.1.

The most likely explanation for this behavior is a problem with the ice scheme within the model. It has been
noted before that the main anvil outflow in the tropics is not immediately beneath the cold-point tropopause at
around 18 km, but several kilometers lower at the base of the “tropical tropopause layer”, a transition region
between troposphere and stratosphere (Gettelman et al. 2004). This explains our finding a peak in mean cloud
fraction at around 12 km in the tropics, which is in agreement with ground-based observations (e.g. Mace et al.
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2006). By contrast, upper tropospheric cirrus in mid-latitude and polar regions often does extend up to the
tropopause, which typically lies between around 8 and 12 km.

Most of the regions where the mean cloud fraction is too high are regions in which we would expect to find
ice clouds. Mace et al. (1998) in the Southern US, Beesley et al. (2000) in the polar regions and Hogan et al.
(2001) in the mid-latitudes noticed on average that the ECMWF model had too much ice cloud. There is often
too much ice present within the higher altitudes. This is most clearly seen by the higher amount when present
in the mid-latitudes above 7 km.

Although the frequency of occurrence and amount when present are accurate to within 0.05 for most of the
lower troposphere beneath 5 km, in the tropics the amount when present is often slightly underestimated by
the ECMWF model. This could be due to one of two reasons: either the model underestimates the amount of
low cloud in the tropics or that the large amount of ice cloud is attenuating the lidar forward model backscatter
sufficiently that some of the lowest clouds are not detectable according to the lidar forward model. Forward
modeling of attenuation has the advantage that it is fair to the model, yet conversely, it can sometimes be more
difficult to work out what is wrong when differences occur. Hence, although the error estimate for the frequency
of occurrence is rather low, the results must be interpreted with caution for these regions of the globe. For high-
altitude ice clouds where there is little or no attenuation in the regions between the cloud and the satellite, we
can be confident that the ECMWF model has a genuine overestimate. However, in regions where the attenuation
is much greater, we cannot be certain.

¢. Land and Sea Comparisons

The performance of the model over the land and the sea surface can be examined by dividing model grid boxes
into those that are mostly over the land surface and those that are mostly above the sea surface, using a digital
elevation map. Results from performing the analysis over the land surface are shown in figure 7 and over the
sea in figure 8, revealing that:

e The model has cloud in roughly the right places above the land and sea surface. Exceptions are the cloud
top of the tropical ice cloud, which is approximately 1 km too high. The cloud top over Antartica is up
to 2 km lower in the model than in the observations over the land, and as much as 1 km lower over the
sea. The model is more able to accurately represent the locations of boundary layer cloud over the sea.

e The mean cloud fraction in the model is too high by as much as 0.1 throughout the cloud shown in figure
7(d). Cloud is only present in very small quantities in the model beneath 8 km and in the tropics. The
mean cloud fraction in the tropical boundary layer is rather poorly represented over the land. Over the
sea, the mean cloud fraction in the highest clouds in the model is too large by as much as 0.2. This is also
true for the higher mid-latitudes and the poles.

e The frequency of occurrence in the highest cloud at each latitude is too high by up to 0.15 over the land
surface. The area of the largest frequency of occurrence, in the tropical ice cloud above 10 km, is slightly
larger than in the observations over the land. The frequency of occurrence over the land in the clouds
polewards of 50 degrees is too large by roughly 0.15. Over the sea, in the high cloud the frequency of
occurrence is too large by up to 0.3, reducing over the poles to 0.2. The frequency of boundary layer
cloud is roughly correct in the model.

e The amount when present above the land surface is only slightly too large (by up to 0.1) in the majority
of the modeled atmosphere, but is too large by up to 0.2 in the polar ice clouds and Southern hemisphere
ice clouds. Over the sea, the modeled cloud amount when present is generally too large by up to 0.2
across all latitudes and altitudes. However, the amount when present difference is greatest in the ice
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Figure 8: As for figure 7, but for grid points over the sea only.

clouds above the poles and the ice clouds in the tropics. In the tropical mid-troposphere, between 2 and
8 km, the amount when present is too low, by up to 0.2.

Comparing figures 7 and 8, we note that over the land, the highest tropical clouds (above 10 km) have a cloud
fraction between 0.1 and 0.2; whereas over the sea, mean cloud fraction here is never more than 0.1. It appears
that is due to the cloud over land being much more frequently observed than over sea, by a factor of 2. The
ITCZ over land appears to be constrained to a small area between 10 and 15 km and just North of the equator,
while over the sea the high cloud spreads out between 0 and 20 N, with the thickest cloud between 10 and 12
km. The model gets these different relations in cloud over the land and the sea in the right places, but with too
high cloud fraction and frequency of occurrence. It appears that in general, the high-altitude ice clouds over the
sea are much more poorly represented than over the land.

Most of the low cloud that was observed at all latitudes in figure 6 can be seen in figure 8 to occur over the sea
surface. This is most likely marine stratocumulus, found in the Eastern extremes of ocean basins.
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d. Comparisons of Attenuated Backscatter

The analysis can be extended to see how well the ECMWF model predicts the attenuated backscatter that is
observed by ICESat. This can be done by comparing the mean attenuated backscatter over time for different
locations around the globe. In addition, a new variable, ‘backscatter when present’ (represented by the symbol
PBWP) can be derived. This is analogous to the amount when present variable used earlier; the backscatter when
present variable consists of the mean attenuated backscatter of all the detected cloud pixels (those above the
minimum sensitivity left after any noise removal), while the mean backscatter includes all pixels, including
those that have no cloud. Hence, for this reason, it should be noted that mean backscatter can drop beneath the
ICESat sensitivity threshold, but BWP will remain above the sensitivity threshold.

Analysis of the mean attenuated backscatter and BWP has been carried out for same the 15-day study period
as the cloud fraction climatology analysis. The results have been binned into six latitude bands as before and
are shown in figure 9. Errors on the lidar forward model, as determined from section 4e have been included on
the plots. In general, the ECMWF-simulated mean backscatter is well within the experimental error, but there
are a couple of exceptions. In the tropics above 10 km, the mean attenuated backscatter is too high by a factor
of three, and the BWP is too high by a factor of two, although the latter just within the bounds of experimental
error. These results correspond to the high cloud fraction and frequency of occurrence noted in the tropics in
figure 6.

The BWP beneath 5 km in the tropics is also too high, which could be mean that the clouds in the boundary-
layer are too optically thick. This would not necessarily show up in the mean backscatter plots as the backscatter
when present includes only points where there is cloud and does not average in any clear sky regions. As we
have seen in Fig. 6, the global cloud-fraction amount when present in the tropical lower troposphere is actually
underestimated, so this result could be due to an error in the effective radius in the model for these clouds.
The sensitivity to effective radius will be examined later in section 4f. In other regions, the mean attenuated
backscatter and backscatter when present are in reasonably good agreement with the observations. The assumed
value of the lidar ratio will directly scale the ECMWEF backscatter values; however, the effect on cloud fraction
of a change in lidar ratio is much smaller as it only affects clouds relative to the sensitivity threshold chosen.

Polewards of —60°, it appears that the lidar forward model model is underestimating the backscatter from
ICESat above 10 km by a factor of three. This corresponds to the lower cloud top seen in figure 5.

e. Skill Scores

The comparisons so far have evaluated the ability of the model to reproduce the climatological distribution of
clouds at a give latitude and height. Skill scores can be introduced to examine the performance of the forecast in
terms of whether the clouds occur at the right time and space. This is done by comparing each model grid box
of cloud fraction (after running the lidar forward model) to that derived from ICESat. Using a cloud fraction
threshold of 0.05, the forecast at each grid box can then be determined as a “hit”, a “false alarm”, a “miss” or
a “correct rejection” as denoted a—d in table 2. Points where there is total extinction are neglected from the
score.

Many different skill scores have been developed for cloud fraction evaluation within models. For example,
Mace et al. (1998) and Miller et al. (1999) used hit rate, threat score, false alarm rate and probability of detec-
tion. However, a good skill score should have a low dependence on the frequency of occurrence, and a random
(no skill) forecast should always get a low score, close to zero. Hence, this study will concentrate on two of the
more useful skill scores, the equitable threat score, (ETS), used by Illingworth et al. (2007) and the odds ratio,
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Figure 9: Mean backscatter (top row) and backscatter when present (bottom row) taken from ICESat and the ECMWF model over the
15-day study period. The latitude region of each profile is denoted at the top of the plots in the top row.

ICESat grid point contains cloud

ICESat grid point is cloud free

Model grid point contains cloud Hit False Alarm
(@) (b)
Model grid point is cloud free Miss Correct Rejection

()

()

Table 2: Definition of skill score parameters, the letters denote the symbols used to represent these variables in the skill score equations.

An extra variable, n, is the sum of a, b, c and

d.

(0; Stephenson 2000), defined as follows:

a—(a+b)(a+c)/n

ETS:a+b+c—(a—|—b)(a—|—c)/n’ )
ad
6" @)

Both scores are dimensionless. The equitable threat score gives values of zero for a random forecast up to a
maximum of 1 (a perfect forecast). It is designed so that it will equal zero if the total number of correct forecasts
(a+ d) equals the total number of incorrect forecasts (b + c¢). Forecasts that are worse than a random guess will
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Figure 10: The latitude (grouped into bands of 30° width) and height variation of equitable threat scores (top row) and the log of odds
ratio (bottom row) for the ECMWF model, after the lidar forward model has been run.

score a weakly negative value. The minimum for the equitable threat score is — % The odds ratio provides
similar information, but it is common to take the natural log of the odds ratio (LOR) for each point, as the odds
ratio can vary over several orders of magnitude. For a random forecast, LOR is zero, but for a good forecast it
will be unbounded. The odds ratio tends to break down in regions where the event being tested is rare, so the
equitable threat score should be more reliable at quantifying model performance in areas of low mean cloud
fraction.

In our analysis, points where total extinction occurs have been set to undefined values and hence, are not
included in the results. Figure 10 shows both skill scores for the different latitude regions. It can be seen that:

e Both sets of scores show an increase in skill as we progress from the surface to around 5-10 km. This
is most likely due to the model being able to successfully produce higher cloud, which is generally
associated with large-scale features, but having difficulty in resolving the small-scale boundary-layer
cloud.

e The results from both skill scores show that the ECMWF model is most skillful within the southern
hemisphere mid-latitude storm tracks and is least skillful within the tropical lower atmosphere. This is
presumably because the precise location of tropical convection is difficult to get correct in the model.

e The equitable threat score tends to fall above 10 km. Skill scores are generally low within the tropics
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Figure 11: Global mean variation of cloud statistics and lidar simulations with changing effective radius in the lidar forward model:
(a) mean cloud fraction; (b) frequency of occurrence; (c) amount when present; (d) mean attenuated backscatter; (e) backscatter when
present.

above 12.5 km and for polar clouds tend to drop off sharply above 10 km. However, due to the smaller
number of points included within the study from these regions, these results are less robust.

f. Sensitivity to Effective Radius

In section 4e it was noted that effective radius was predefined by the ECMWF model and hence was not be
included within the error bars of the lidar forward model. In order to test the lidar forward model response to
changes in effective radius, two experiments were performed: one with both liquid and ice effective radius dou-
bled and the other with effective radius halved. Figure 11 shows the resulting changes to mean cloud fraction,
frequency of occurrence, amount when present, mean backscatter and backscatter when present averaged over
the globe. Examining (2), we see that a doubling in effective radius is also equivalent to a halving of ice and
liquid water contents and hence, these results also indicate the sensitivity to changing of cloud water contents.
Changing the effective radius tends to change the ice phase in a different way to the liquid phase in the lidar
forward model. In (1), we can see that o appears twice, both within the exponential reducing the apparent
backscatter and outside the exponential increasing the apparent backscatter. At the top of ice clouds, the atten-
uation term is small when compared to the attenuation by liquid clouds and the terms outside the exponential.
In the case of liquid clouds, « is large with respect to ice and the exponential term will tend to dominate.
Referring to equations 1 and 2, it can be seen that a decrease in effective radius will lead to more attenuation
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and a smaller backscatter, meaning less cloud is detected. Hence the sensitivity lines in each plot cross at some
altitude within the profile. This does not have to be the same altitude in each profile. For the cloud fraction
statistics, the cross-over generally occurs in the mid-troposphere. For the backscatter statistics, the crossover
point occurs in the lower troposphere, as this is where the most optically thick clouds lie.

For ice clouds, the attenuation part of (1) will tend to be small. This is due to small values of & within these
clouds and due to the fact that the lidar signal has not met many clouds in order to cause extinction. Hence, the
main contribution to the backscatter will be from the visible extinction coefficient outside of the exponential
and then doubling and halving the effective radius will tend to double and halve the attenuated backscatter and
backscatter when present shown in figures 11(d) and 11(e).

When considering mean cloud fraction (figure 11(a)) and amount when present (figure 11(c)), the higher cloud
amounts vary by up to 0.04 in response to the change in effective radius. This is due to more (or less) cloud
falling within the ICESat sensitivity threshold. Frequency of occurrence does not change by more than 0.02.
This is because for there to be a large change in frequency of occurrence, cloud has to appear in a large number
of model grid boxes which were free of cloud in the control run, yet cloudy in the raw ECMWF model cloud
fraction. In most cases, changing the effective radius simply changes the cloud amount in a grid box where
cloud was already present in the control run.

At lower altitudes in each profile, the situation is not as simple. Changing the effective radius for liquid clouds
allows more or less attenuation to take place, but since the attenuation term is dominant for liquid clouds, a
decrease in effective radius can increase the extinction coefficient and act to reduce the cloud fraction in a grid
box. The sensitivity of the mean backscatter and backscatter when present at altitudes beneath 5 km is very
small, and the change that is present is probably due to increased attenuation.

5. Conclusions and Future Work

This study has evaluated a forward modelling technique to compare lidar observations with an operational
weather model. Forward modelling is useful for radar and lidar observations, as it allows a fair comparison
with the model, accounting for attenuation of the signal due to cloud. However, when differences arise between
the observed and simulated cloud fraction statistics, it can be difficult to pinpoint the cause of the difference.

Comparison has been made between the ECMWF model and observations from the ICESat lidar over a 15 day
period. It has been shown that the model has a tendency to produce too much ice cloud within the model, which
will affect the formation of precipitation and the way the model interacts with incoming and outgoing radiation.
Tests have also shown that the forward model has a 10% error due to the largest unknowns within the lidar
forward model: the lidar ratio (varied by a factor of 2) and the multiple-scattering factor (varied by 20%). In
addition, the doubling or halving effective radius results in up to 0.05 change in cloud fraction, although this is
not strictly an error in the forward model.

Comparing the results to those of Palm et al. (2005), we find agreement in the verdict on the performance of
the ECMWF model at high altitudes, but a different assessment at low altitudes where attenuation is impor-
tant. Palm et al. (2005) noted a higher frequency of ice cloud within the model than observed, with the largest
overestimate above 12 km, which agrees with the tropical ice cloud overestimate shown in Fig. 6. Other exper-
iments also show that the ECMWF model produces too much ice cloud. The results obtained from this study
for the 30-60° latitude region agree very well with Hogan et al. (2001), although the large model overestimate
in amount when present in clouds above 8 km that was observed by Hogan et al. (2001) is not as large in this
study.

Comparison of the ECMWEF model to lidar observations via a forward model is an essential precursor to systems
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involving the data assimilation of lidar data into a forecast model. In this case, the forecast model would be
used to predict backscatter from the lidar, followed by changes to the water content to reduce the difference
between the backscatter signals in a least-squares sense. This method could also be used for testing new model
schemes.

Although this study has shown the value of active remote sensing from space, it has concentrated on only a
few days data. Longer periods of lidar data are now available from the CALIPSO lidar, which is part of the
A-Train of satellites (Vaughan et al. 2004). So far, these data do not suffer from the laser degradation problems
that have affected long-term measurements with the ICESat satellite. However, due to the strong attenuation of
liquid water clouds from the lidar, measurements by radar from space, such as CloudSat will be more suited to
model evaluation for thicker clouds. Indeed, a CloudSat Simulator has been developed by Haynes et al. (2007),
which enables the same forward modeling approach taken in this paper to be applied to radar. Nonetheless,
lidars are very important to sense optically thin ice clouds. By combining radar and lidar (Hogan et al. 2006;
Delanoé and Hogan 2008), the vast majority of clouds within the atmosphere can be detected and characterized,
allowing for fairer evaluation of models of the earth’s climate system.
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