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1 Introduction

My job in the Anderson Group at Harvard is centered about esdgpr the Climate Absolute Radiance
and Refractivity Observatory (CLARREOQO), a climate missiso | must begin my talk with an apology,
that | won't say much if anything about numerical weatherdmton and instead focus on climate. |
think you will still find some interesting and very recogri concepts. In this talk | will give a brief
overview of climate benchmarking, how one can interpreetsaries of climate benchmarks by scalar
prediction, and how an objective method for formulatingsida accuracy requirements naturally falls
out. Then | will discuss what makes radio occultation a cten@aenchmark data type, how retrieval is
performed on radio occultation data, and the informatidma series of radio occultation data can yield
on the climate system. Next | will discuss the climate infation content of high spectral resolution
infrared spectra and what might be gained from consideaigroccultation data and infrared spectral
data jointly. Finally I will summarize.

The deployment of space-based climate benchmarks was dechag the recent decadal review of the
U.S. National Aeronautics and Space Administration (NA8AJ National Oceanographic and Atmo-
spheric Administration by the National Research Counniparticular, it recommended the CLARREO
mission:

CLARREO addresses three key societal objectives: 1) trengakresponsibility to present
and future generations to put in place a benchmark climatrdethat is global, accurate
in perpetuity, tested against independent strategiesdheal systematic errors, and pinned
to international standards; 2) the development of an ojoeat climate forecast that is
tested and trusted through a disciplined strategy usirig-sfathe-art observations with
mathematically-rigorous techniques to systematicallpgrione those forecasts to establish
credibility; and 3) disciplined decision structures thasiailate accurate data and fore-
casts into intelligible and specific products that promaternational commerce as well as
societal stability and security.

A bit of translation is in order. “Accurate in perpetuity” ot a requirement that the present and all
future generations of NASA engineers fly CLARREO satellives rather it is a requirement that the
data obtained by CLARREO be useful for measuring climateghldo all future generations of climate
scientists. “International standards” refers to S.I. egdlity, a metrological approach to instrument
design that assures an unbroken and testable chain ofataibto the international standards that define
the units of measurement. “Tested against independenégitea that reveal systematic error” simply
requires that climate benchmark instruments have thetabdiobtain its own error bars empirically.
Lastly, “mathematically rigorous techniques” refers toyBsian statistics (in which optimal detection
methods are implicit) to infer climate trends underlyingddime series of data. My particular specialty
is the last.
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2 Climate benchmarks

S.I. traceability is described ifhe International Vocabulary of Basic and General Terms etiglogy
(ISO 1993): “Traceability [is] a property of the result of aeasurement or the value of a standard
whereby it can be related to stated references, usuallgnator international standards, through an
unbroken chain of comparisons all having stated unceigaintin short, “S.I. traceability” is far more
than contemporary scientific marketplace jargon; insteadints toward the measurement practice we
learned in grade school that observations demand erronass based on the overall accuracy of our
observing apparatus. The only way error estimates can lainelbttis by a documented and reproducible
chain of comparisons back to the international standarddifnes the units of the observations. Two
organizations that maintain such standards are the BurealPdids et Mésures in Paris and the U.S.
National Institutes for Standards and Technology.

Climate benchmarks must be S.I. traceable. The great aay@ggined is that a climate benchmark can
be used for observing climate change even in the case of ardisaous time series of data. The com-
munity’s experience in constructing “climate data recbiidgm instruments whose calibrations were
deemed “stable” has not been good. Take, for example, tlhedgof microwave brightness temperature
constructed from measurements of the NOAA satellites’ Miave Sounding Units (MSU) and of total
solar irradiance (TSI). The time series can only be formeibg-correcting the records of individual
instruments so that they match the records of overlappiaggoling and succeeding instruments. These
efforts have failed because multiple versions of climata dacords based on the same data have yielded
different long term trends and because even a minor brealeitihe series of observations renders most
of the record useless. With S.I. traceability, the recordigas breaks in the time series of observations.
Moreover, independent efforts at obtaining long term teehdsed on S.I. traceable observations will
yield the same trends to within empirically determined erro

Others have written on the design of S.I. traceable instrtatien, and since it is not my specialty, |
will not do so here. For reference, seellock et al. (200)) Pollock et al. (200 One such design is
given byDykema and Anderson (2006

Not every known data type can be obtained by instrumentati&l. traceable design, but once we have
sorted out those that can be, itis interesting to find out whatbe learned about the climate system from
long term trends in those data typ&zcalar predictions one way to determine the information content
in S.I. traceable data types. The goal of any investigatfdnformation content in climate monitoring
must be the reduction of uncertainty in climate predictidfith credible time series of information-rich
data, one ought to be able to obtain improved accuracy armispme in climate projection. (I have used
“projection” to refer to prediction aided by intelligent @jcation of data.) A brief description of scalar
prediction follows.

3 Scalar prediction

Scalar prediction is two levels of Bayesian inference aplio long term trends. It is closely re-
lated to linear multi-pattern regressiodgsselmann 1997Allen and Tett 1999 and optimal detection
(Bell 1986 Hasselmann 1993orth et al. 1995 Scalar prediction, or any method used to extract infor-
mation from long term trends in climate, requires a modetlierdata that is at least minimally credible
and must account for the natural inter-annual variatiortdiwfate as a source of error. One central tenant
of climate is that it responds approximately linearly totsilchanges in external forcing—the forcing
generally a perturbation to the radiative balance of théesyaot typically associated with a steady-
state climate—which cannot be observed directly becaiwsatthosphere-ocean-cryosphere-biosphere
system varies from year to year even in the absence of ektiemting. Information content studies
should seek to minimize the effects of these natural fluginatand count the residuals as uncertainty
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in the inference of “climate trends”.

In the first level of inference, that of optimal detectionedras a long term trend in dadd /dt which is
linearly related to a climate trertr /dt in some as yet unnamed (and arbitrary) variable

dd dgy da d
at = (ga)var * @ @)

in which g(x) is the model and data operator, a function of the atmospbezan-cryosphere-biosphere
statex, (dg/da); the total derivative of that model and data operator witpeesto arbitrary variable
a. Natural variability enters through the random inter-aadrfluctuationsdn and the statistically in-
significant trendgl(dn)/dt to which they give rise. In the first level of inference, theemiorg(x) is
considered linear and its derivatixe (dg/da); constant and certain while the climate treshal/dt is
completely unknown. The solution for the most likely valdehe climate trendla /dt is

da _ _ 1 ,dd
(Gp)m = (S Zgn/atS) S Zanja (50 @

wheres = (dg/da )i andZy, 4 is the covariance of the random quantitydn) /dt as determined from
a steady-state simulation of climate. The posterior uaggst in the determination afa /dt is

Gdza/dt = (SiT zanl/dtS)iy ©)
Equationsl, 2, and3 are those of optimal detection, the first level of Bayesiderance.

In the second level of inference, one must account for thste&xte in uncertainty in modeling. The
Jacobiardg/da;i, while minimally credible, is most definitely uncertain. i$lincertainty is factored in
by weighting each model in an ensemble of climate modelsrdowpto the quality of its fit to the data.
The final result for the most probable trefdtr /dt)mp and its uncertaintyy, /g is given by

da Tt 1. 1T_ .,dd
(H)mp = 'zl 'z l(a) (4)
Ogsat = (2797 ()
da
2 = Zgnjatt (a) ’S s (6)

The equations are the same as those of optimal detectiortheitxceptions thay, q; is replaced by
ands by s. Both of these new quantities are derived from an ensemhiéroate models, the quantity
S being the meais, of the ensemble of climate models, akgl the covariance 0ds = s — S over the
ensemble of models. The terfda /dt)? appearing in equatiof is only a prior best guess estimate of
the climate trend. Equatiorkthrough6 are those of scalar prediction.

There is a clear parallel between the equations of scalaighi@n and those of data assimilation in
NWP. If one substitutedd/dt with the observation incremedt—y, dg/da with the observation kernel
K, da/dt with the analysis incremerdx andX with the sum of the observation and background error
covariance® + B, one obtains the equations of variational data assimilatio

To see how scalar prediction works, | apply it to the probldralimate trends in Northern Europe. The
data space will be a map of Northern Hemisphere surfacerapeeature, sdd/dt will be a map of the
trend of Northern Hemisphere surface air temperaturegéxdwill be a forward operator that produces
maps of surface air temperature from a climate model givensthte variabl. | am interested in
the climate trend of surface air temperature in Northerropey so | am free to define the completely
general variabler as the surface air temperature over the region of Northerogeu That makedg/da

the rate of change of a map of Northern Hemisphere surfactemiperature divided by the rate of
change of Northern Europe area-averaged surface air taetnper The result is the dimensionless map
s and it depends on modelsed to simulate it. | use the model output of the World ClerResearch
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Figure 1: The optimal fingerprint for Northern European sacé air temperature climate trend es-
timation and its inner product with annual average Northétemispheric surface air temperature.
The plot on the left is the optimal fingerprintonstructed from the CMIP3 models for determination
of climate response of Northern European surface air terampee to SRES A1B forcing given the
data space of Northern Hemisphere surface air temperattifee dotted line is the zero-contour.
The plot on the left shows the record of Northern Hemisphertiase air temperature (thick curve),
the inner product of the optimal fingerprint and annual ayggaNorthern Hemisphere surface air
temperaturd ' d(t) for the same period (dashed curve), the one-sigma enveldpe best fit to the
latter curve (gray shaded region), and the future evoluttdNorthern European surface air tem-
perature (thin curve). Scalar prediction is a highly prexisstimate of climate trends as illustrated
by the narrowness of the shaded region.

Programme’s (WCRP’s) Coupled Model Intercomparison Rtgjaase 3 (CMIP3) multi-model dataset
to generate the margy and then computeand 5.

The optimal fingerprinf = =~ 15(s">~15)~1 is the vector/map by which to multiplgid /dt to obtain
the most probable tren@la /dt)m, of the Northern Europe temperature trend associated wirthate
change. We show the optimal fingerprint and its inner proeitit maps of Northern Hemisphere sur-
face air temperature produced by an independent climatelsatjected to SRES A1B external forcing
in Figurel. Astonishingly, scalar prediction is able to determinedlimate response of Northern Euro-
pean surface air temperature when subjected to SRES AllBdosad given a 20-year record of North-
ern Hemispheric surface air temperature to within 0.1 K dechwhen the actual Northern European
temperature record by itself shows a trend with uncertatyk decade!. From this example, one can
conclude that scalar prediction is a method of determiniingate response of any variable of the climate
system, including regional average quantities, from eahitdata sets. Sdeeroy and Anderson (2030
for a more in depth explanation.

4 Accuracy requirements

It is possible to derive an objective method for determirdanguracy requirements from the equations of
scalar prediction. In the above derivation, | have not abersid observation error, but it plainly belongs
as an extra ternzyps in the Z of equation6. A political goal of any climate benchmarking system
must be to delay as little as possible the positive detectfdrends or refinement of climate projection.
Already the natural variability of the climate system pkéawer bounds on detection times (because
of Zgn/qr)- It would be politically damaging to substantially incsesany time-to-detection by imposing
an observation erraXyps that is comparable in magnitude to natural variability. ekfaccounting for
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coherence times of natural variability and mission duratiomy,s, ONe arrives at the requirement that
2 2
Opbslobs K On Tp- (7)

Here | have definedi,ps as the one-sigma observation errag, the natural variability and, its coher-
ence time. Astonishingly, the requirements on overallreofca climate benchmarking instrument in
space depends on the lifetime of the mission! The error ob#rehmark is the root-sum-square of the
sampling error and instrument accuracy. §emy et al. (2008 for a more expansive derivation.

5 GNSSradio occultation

Radio occultation originated in the planetary scienceshascyenerated a large catalogue of temperature
profiles of planetary atmospheres, especially Venus's. ddoraccultation occurs when a planetary at-
mosphere occults a microwave radio beacon synchronizeud wtira-stable oscillator (USO) as viewed
by a receiver outside the occulting atmosphere. In plapetassions, the occulted transmitter is the
inter-planetary spacecraft (e.g., Pioneer Venus, MageWayager 1, Voyager 2, Mariner 10), the oc-
culting atmosphere that of the planet, and the receiver arieeEarth’s surface. The same can be done
for Earth’s atmosphere if one uses the transmitters of tieb&INavigation Satellite Systems (GNSS),
the Earth’s atmosphere, and one or more GNSS receivers it orbit (LEO). The lone GNSS
currently available is the Global Positioning System (GPS)

In radio occultation, the occulting atmosphere refractsr#tdio signal that transects the atmosphere, and
the bending of the signal shifts the frequency of the radjoai as obtained by the LEO receiver. The
dimension of the observable in radio occultation is invéirse. The demand of S.I. traceability in this
case is that the transmitter and receiver of the radio sigmahlibrated by a chain of comparison to the
international definition of the second, which is the timeuieed for 9,192,631,770 cycles the hyperfine
splitting of the ground state of the &8 atom. Traceability is established at the GNSS transmitter
by synchronizing the radio transmissions to an ensembleesiim-rubidium clocks. Traceability at
the receiver can be done by other synchronizing the rectivan on-board USO or by calibrating a
poorly calibrated receiver clock to non-occulted GNSSdmaitters’ signals. If the GNSS transmitters’
clocks themselves have questionable accuracy, they ircanrbe calibrated by observing their signals
with receivers on the ground synchronized to better calloralocks. This process is commonly called
“double differencing” Hardy et al. 199%and is illustrated in figure.

The relationship between Doppler shift and the arggiierough which the occulting atmosphere bends
the ray is
A AV = VepsCOS@sps+ VILEO COSPEO. (8)

The transmit and receive angl@sps @ eo, transmitter and receiver velocitiggps Vi go are illustrated

in Figure3; A is the vacuum carrier wavelength of the transmitted signdld the measured Doppler-
shift of the radio signal’'s frequency. An assumption of logpherical symmetry in the atmosphere
together with S.I. traceable knowledge of the positions\adcity of the transmit and receiver satellites
allows a determination of the bending anglas a function of impact parametpiduring a GNSS radio
occultation. With spherical symmetry, the impact parametehe radio signal is the same on both the
transmit and receive sides of the occultation. Inverskgal@bo et al. 197)Lof radio occultation obtains
vertical profile of the microwave index of refraction by wafyam Abelian transform:

-2 W ©)

where the independent coordinate- nr, r the distance from the atmosphere’s local center of cureatur
which to first order is the Earth’s radius. The index of refi@t is related to atmospheric density and
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Figure 2: Double differencing. The LEO to GPS1 link is thewtad link. A poorly calibrated LEO
clock can be corrected by a link to the “reference” non-odedisatellite GPS2. If the GPS clocks’
calibrations are questioned, both GPS1 and GPS2 can bere&dit) to a ground-based clock, in this
case located at NIST, which is calibrated by extremely aateuclocks. NIST in Boulder, Colorado,
USA, hosts a cesium fountain clock, accurate to'?@-second Allen variance.

@sps

VGPS

VLEO

Figure 3: The geometry of a GPS radio occultation. Doppléftsty of the radio signal is governed
by the angle between transmitter velocity and the direabitthe transmitted rayspsand the angle
between the received ray and the velocity of the LEO receivgs. They can be inferred from the
geometry of the occultation, the measured Doppler ghiftand an assumption of local spherical
symmetry of the atmosphere. The bending aagtee angles through which the occulting atmo-
sphere bends the ray, and the impact parameter p, the asyimptiss distance of the vacuum ray
paths from the center of curvature, can be calculated gixgss and @ o by simple trigopnometry.
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water vapor by an empirically determined relationship. s point, suffice it to say that the index of
refraction is simply a linear function of atmospheric dgngfiroughout the atmosphere and the contri-
bution of water vapor is a significant contributor only in floever troposphere when the temperature
exceedss 250 K.

To be sure, exercising the equations given above requi c@ihe integral of the inversion equa-
tion (9) to infinity is noisy and ill-determined. The fundamentalamerement equatior8) requires
relativistic corrections. For details, see, for examplajj et al. (2002. Moreover, the complex sig-
nal dynamics associated with diffraction and multipath laest undone by physical optics techniques
(Gorbunov et al. 2004 An authoritative description and error analysis of ragidcultation is given in
Kursinski et al. (199Y. Lastly, the independent coordinatean be converted to geopotential height—to
ease interpretation to atmospheric scientists—by agjgitaf a gravity modell(eroy 1997. The im-
portant points here are that GNSS radio occultation isi@detble by calibration against atomic clocks
and its observables are bending angle as a function of ingaaametee(p) or index of refraction as a
function of geopotential heighnt(h).

6 Verifying abenchmark

Implementing a climate benchmark offers the advantage girézal verification. There are two quali-
ties of a climate benchmark, reproducibility of standandd @eproducibility of trends, that can be tested
using its own observations. Reproducibility of standasd&é quality wherein the international standard
used to calibrate the observation can be reproduced angimenywhere. Reproducibility of trends
is the quality wherein trends of geophysical variables iobth by climate benchmarks can be obtained
accurately independent of the retrieval algorithm used.

The qualities of reproducibility of standards and of trestsuld apply to any climate benchmark, and
they can be checked using GNSS radio occultation data whiehdy exists. The quality of repro-
ducibility of standards for GNSS radio occultation has bebacked by comparing co-located data
obtained by different GNSS radio occultation missionsHgjj et al. (2004. For many co-located
soundings, a random component due to differing view gedeseaind times was found to dominate.
Most importantly, though, no bias was found in the ensembleodocated soundings throughout the
troposphere. In the stratosphere, however, an unexpeisdvias found which remains unexplained.
My view is that local multi-path or erroneous spacecrafitiate information in either one of the two
missions would create the bias pattern seen in Figure 22agjfet al. (2004. The quality of repro-
ducibility of trends can be checked by comparing inter-ahtitends in the index of refraction obtained
by independent retrieval algorithms. This was donkliet al. (2009. Four (semi-independent) algo-
rithms were used to process CHAMP data and retrieve thectefeaindex in the vertical region around
the tropopause. There was no statistically significanediffice in trends found over the lifetime of
CHAMP data, but only after an accounting for sampling ertoiGNSS radio occultation, though, sam-
pling error is problematic because there is no single obgcuality control method that can qualify
individual soundings. As a result, different subsets of GHAsoundings are retained by the different
algorithms thus resulting in different sampling errors j&akive quality control, therefore, must be given
careful attention when handling climate benchmark data.

7 Information in GNSSradio occultation

A climate benchmark requires S.I. traceable data types;®fd8io occultation is S.I. traceable; GNSS
radio occultation is a climate benchmark data type, and twpikcal tests have demonstrated as much.
What information does a decadal scale time series of radiolation have on the climate system? First
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I will show what statistically significant signal will emegdirst in a long time series and then how radio
occultation is useful in constraining global surface amperature trends.

| predict the first statistically significant climate signading optimal detection, the first inference in
scalar prediction described earlier. The first inferengaateds only one climate model to determine the
signals = dg/da. Consequently, the statistical significance(d# /dt),, with a time series of length
At is independent of the definition @f. The optimal fingerprint determined using optimal detagttio
then, is the pattern of climate change that will be first designificantly. This was done for radio
occultation inLeroy et al. (2005, and | will synopsize the results here.

In Earth radio occultation, it is common to speak in termsrefractivity” rather than “index of refrac-
tion”. The refractivityN is related to the index of refractiamthroughN = (n— 1) x 10°, the index of
refraction less one in parts per million. The refractivisyrélated to pressung temperaturd’, and wa-
ter vapor partial pressung, throughN = (77.6 K hPa 1)(p/T) + (3.73x 10° K2 hPa 1)(p,/T?). The
radio occultation research community has minted new melegical variables, “dry pressure” among
them. It is a convenient quantity to use in climate signakdiébn studies because it is easily inter-
preted. Dry pressure is the downward integral of refrastivi height multiplied by a constant factor. If
water vapor did not contribute at all to refractivity—herdry pressure—this integral would simply be
pressure. Precisely, dry pressiyngis

= p-+ (77301 [*AEIEE (10

whereq is specific humidity. Dry pressurgy is the same as pressupeexcept where the second term
on the right of equatiordO is large. Trends in the log of dry pressure are simply inttga because,

above the lower troposphere, variability in its global aggr is the same as variability in tropospheric
thickness. A positive trend in dry pressure near the tropspas thermal expansion of the troposphere.

Figure 4 shows the trends in log-dry pressure as simulated by tweM&P@ models. The dominant
signal is a broad maximum centered at approximately 20 ketcéting across the low to mid-latitudes.
Much of the maximum can be explained as thermal expansioheofrbpical troposphere, but not all.
Extension of the maximum into mid-latitudes can only be akpd by something like expansion of the
tropics and a general poleward migration of baroclinic zoffghe covariance matriy, 4 appearing in
the equations of optimal detectiadand3, is difficult to invert because it is ill-conditioned. Insid one
must compute a “pseudo-inverse” by truncating the dataesfmthose of the dominant eigenvectors of
Z4n/dt- The eigenvectors &gy g are typically called empirical orthogonal functions (EOEjurns out
that the EOFs that contribute most dominantly to optimadckin are those that correspond to poleward
migration of baroclinic zones and thermal expansion of tbgital troposphere. The former is probably
closely associated with poleward migration of the jet stremd the latter with the El Niflo-Southern
Oscillation (ENSO). It is independent of the CMIP3 modeldusedetermine the signal and the model
used to approximate natural variability. Given SRES AlRifag in reality, it should take only 7 to 13
years to detect human influence with 95% confidence. This éfhv@nfidence is obtained witty 7 m

of thermal expansion of the troposphere.

In the application of scalar prediction to radio occultataata, | choose to use trends in zonal average
log-dry pressure to determine the optimal fingerprint ofngjeain global average surface air temperature
associated with SRES A1B forcing. To do so, | apply equatibtizrough6, defininga to be global
average surface air temperature @ be the zonal average log-dry pressure. For each mptied
fingerprints is computed by dividing the 40-yr trend in zonal averagedogpressuredg/dt) by the
40-yr trend in surface air temperatuiha(/dt) to gets= dg/da. The optimal fingerprint is shown in
Figure5. It clearly looks for poleward migration of the jet streanmslancreasing boundary layer water
vapor in the tropics. It is the optimal weighting for infergi global average surface air temperature
trends from radio occultation trends.

Figure5 also shows time series 6fd(t) with the datad(t) taken from an independent climate model.
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Figure 4: Trends in zonal average log-dry pressure as sit@addy CMIP3 models. The zonal
average log-dry pressure was computed using equdtidior the named models subjected to SRES
A1B forcing. The trend was determined by linear regressibthe first 40 yrs of output. The
ordinate is geopotential height (km), and the abscissatitulde from north to south. Taken from
Leroy et al. (200%
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Figure 5: Scalar prediction for surface air temperaturends using radio occultation zonal average
log-dry pressure trends. The top plot shows the optimal fiprgy@ for global surface air tempera-
ture change in the space of zonal average log-dry pressure.ldwer plot shows the inner product
of the optimal fingerprint on annual and zonal average log-oiressure as a function of tiniéd(t)
with datad(t) produced by an independent climate model subjected to SRBSofcing (red). It
directly represents global average surface air tempemtiar within an additive constant (black).
The red shaded region is thelo extrapolation of df"d)/dt into the future, and the gray curve the
evolution of global average surface air temperature.
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Interestingly, the produdt d(t) almost exactly recreates the inter-annual fluctuationsaifay average
surface air temperature without optimization. This caryaame about if most of the variance in upper
air meteorological quantities is explained by global ageraurface air temperature. While jet stream
migration itself can be positively detected sooner thabalavarming, monitoring upper air temperature
gives no additional information on surface air temperatesponse to anthropogenic forcing than just
the global average surface air temperature by itself.

One interesting consequence of climate benchmarks isthdg retrieved quantities are not themselves
necessarily S.I. traceable, change in those quantitiebedrusted. For that reason, in radio occulta-
tion, a change in a retrieved quantity such as dry pressurebedrusted even though it is traceable
to no international standard. Moreover, detection timesiobd by optimal methods should be inde-
pendent of the variable used, either the calibrated obdequantity or a retrieved one. Just above are
the results for optimal detection and scalar predictiomgisi retrieved quantity of radio occultation.
Ringer and Healy (2008performed a sensitivity study for radio occultation waidiin the space of
bending angle, a quantity more closely linked to the calibrated observeandjty than dry pressure.
As expected, they found detection times very similar toehfosind inLeroy et al. (2008

8 Information ininfrared spectra

The infrared spectrum is rich in information content—a mimotivator for deployment of the op-
erational Atmospheric Infrared Sounder and Infrared Afphesic Sounding Interferometer (IAS))—
but until recently has not been traceable to an infrareddstahwith accuracy sufficient for climate
monitoring. Recent improvements in the standard for ieflaradiance, including phase-change black-
bodies for calibrating temperature and quantum cascaaesldsr calibrating blackbody emissivity,
have demonstrated a standard that is accurate to 0.03 Kghtbess temperature at room temperature
(Gero et al. 2008Gero et al. 200P

Infrared retrieval is common for operational sounders, idoat can be learned from trends in the in-
frared spectrum over decadal time scales? | apply scaldrqtion to the infrared spectrum as the data
type. To narrow the selection of the scatay | note that the infrared spectrum is a special case for
climate monitoring because it observes in the space of mgdongwave radiation (OLR), one of the
fundamental quantities for radiative balance of the clamaistem. Climate’s response to radiative forc-
ing is uncertain in part because the radiative feedbackseafltmate system are so difficult to constrain.
Because of its richness of information content, howevenitodng the infrared spectrum ought to yield
strong constraints on the longwave feedbacks of the climgtem. So | have chosen to apply scalar
prediction to the infrared spectrum with the scalars ofregebeing the longwave feedbacks.

The spectral signal associated with each longwave feeatmtke determined by partial radiative per-
turbation Wetherald and Manabe 1988&artial radiative perturbation (PRP) has been used tidise
the feedbacks inherent in climate models in a broadbancegBuasy et al. 2006 There is no reason
that PRP cannot also be applied in the spectral sense aslwaidly(et al. 2008Huang et al. 2010 In
PRP, a climate model is run twice, once subjected to ragidtixcing (the “forced” run) and once not
(the “control” run). The outoging infrared spectrum is carted for both runs, the difference being the
response of the climate system to radiative forcing as se#teiinfrared spectrum. One can obtain the
spectral response corresponding to an individual feedbgauppressing the change corresponding to
the variable designated by the feedback. For example, &rotlie water vapor feedback, | simulate
the change in the infrared spectrum from the forced run bt thie output of water vapor taken from
the control run. The difference between this spectrum aadsiimulation for the forced run gives the
spectral change corresponding to the longwave-water \fapdback.

Figure6 shows the spectral radiance fingerprints for clear-skyaraz# simulations integrated over the

ECMWF Seminar on Diagnosis of Forecasting and Data AssiimiieSystems, 7—10 September 2009 311



LEROY, S.S.ET AL.: RADIO OCCULTATION AND CLIMATE FINGERPRINTING

s,

'_'E 0 b \u""’,f'/‘»,,whwpmu-"'fl-""‘"‘N' A S
F’ 50 Full signal E
= . CO, fixed ]
g -10F CO,, T fixed -
o r CO,, Ty fixed ]
£ -151 CO,, g fixed E
= . :
SR f“h«” e E
g 0 - -, J
S CO, Signal E
g E l‘ | k Tyop Signal ]
é -10f “l | A{ Tstrqt Signal ]
T : Ii l\\ q Signal ]
g -15- | | ]

500 1000 1500 2000

Frequency [crm]

Figure 6: Clear-sky spectral infrared fingerprints. The tpjpt shows the intermediate results of
partial radiative perturbation: “full signal” is the compgte spectral response of the tropics (in
clear skies) to SRES A1B forcing, and, for example, 58ied” is the spectral response of the
tropics with the exception of Ceing held constant. The lower plot shows the fingerprintaace
signals after subtracting the PRP signals from the full sigihe lower signals are used in scalar
prediction. Taken fromheroy et al. (2008

tropics using the CMIP3 ensemble of climate models. Evenghdhe water vapor and upper air tem-
perature spectral fingerprints look similar if opposite igns when model uncertainty in the spectral
fingerprints is taken into consideration, they are stillqus enough to separate the water vapor and
lapse rate longwave feedbacks. When cloudy skies are @sesidthough, over decadal timescales
some of the cloud signals are not easily distinguished frppeuair temperature and water vapor sig-
nals Huang et al. 2010 The reason for the ambiguities is that the radiance sigtadde substantially
different forms depending on the background climate in Wity appear. For example, a mid-latitude
cloud signal can look markedly different than a tropicalucldeedback, and so the uncertainty in the
fingerprint is quite large. This certainly inhibits the farfation of a single optimal fingerpririt for
mapping that cloud feedback.

Scalar prediction is a powerful methodology, though, sordwults of the all-sky detection problem
performed ifHuang et al. (201)0can be improved with the addition of a data type that is ietelent of
clouds. We call it joint fingerprinting because multiple al&tpes can be considered jointly in the data
vectord of equationd. Joint fingerprinting succeeds in resolving most of the dlambiguities with two
exceptions: it cannot resolve mid-tropospheric and highad$ unambiguously nor surface temperature
and low clouds. Figur& shows the true upper cloud-longwave feedback and what rbiglubtained
from infrared-only scalar prediction and from joint scafaediction after a doubling of C£ Joint
scalar prediction resolves problems with ambiguity esgbcin polar regions and to a lesser degree in
the tropics.

Regarding the information content in infrared spectra, Imomore work needs to be done. The data
type is inherently complex because its dimensionality ighspectral and spatial. Work so far has
addressed the spectral dimension, and because theréeigditio variability in the spectral dimension
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Figure 7: Mapping the upper cloud-longwave feedback. Theplet shows a map of the OLR per-
turbation associated with the upper cloud-longwave fee#lladter a doubling of Cg as diagnosed
from the output of a model of the Cloud Feedback Model Intearison Project. The center shows
the upper cloud-longwave feedback as would be obtained Injtonimg only the infrared spectrum
and applying scalar prediction. The right shows the uppeud-Hongwave feedback as would be ob-
tained by considering the infrared spectrum and radio otatidn dry pressure and applying scalar
prediction.

associated with a process other than the feedbacks beightsalere is little optimization to be had.
On the other hand, the spatial dimension is likely to behavte glifferently because there is a lot of
variability in longwave fluctuations in the spatial coorafi@ associated with processes other than long-
term trends. The problem, though, is that the prior on théiapstructure of some of the feedbacks is
frighteningly weak. Optimal detection and scalar preditctiequire some moderate prior knowledge of
the form of the signal in the chosen dimension to be of use. ififaemation ought to be sufficient to
distinguish between different signals in the multi-pattproblem or to distinguish between the signal
and the gravest modes of natural variability. In the cashettoud feedbacks, it is unclear the degree to
which models can be used to prescribe their patterns in sphoover, that climate models typically
do not generate the output necessary to simulate all-sksiregs just complicates matters. In the end,
though, an information content study must answer the questit least to first order, of how long a
climate monitoring data set of the infrared spectrum mudidiere climate models can be tested.

Colman (2003 andBony et al. (200% have diagnosed the radiative feedbacks of various enssnal
climate models, the latter having diagnosed those of theR3¢hsemble contributed to the IPCC Fourth
Assessment Report. In order to test such ensembles, itewilEloessary to use trend data to estimate the
actual radiative feedbacks empirically. Above, | have shtve first steps of a methodological pathway
that can be used to do so.

9 Summary

First, the implementation of climate benchmarks as the dation of a climate observing systems is
necessary to prevent sensitivity to breaks in time serietatd. The hallmark of a climate benchmark
is S.I. traceability, a chain of calibration with demonbteaaccuracy to the international standard that
defines the units of the fundamental observable. There are¢sessary tests that prove the bona fides
of a climate benchmark system: reproducibility of standadd reproducibility of trends.

Second, an application of Bayesian inference can be appligb@oretical studies to learn how a climate
benchmark data type can be used to test climate models.r$catiiction, a second level of Bayesian
inference built upon the commonly used method of optimadct&in, serves this purpose. Scalar pre-
diction can be applied to any potential climate benchmat& tgoe to learn about any arbitrarily chosen
quantity (or prediction) of the climate. The outcome is it quantity is either ambiguously or unam-
biguously constrained, unambiguously if the data typefiscsently senstive to the quantity in question.
In that case, another outcome of scalar prediction is thatur of the time series necessary to gain
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precise knowledge of the quantity in question.

Third, radio occultation using the Global Navigation SliISystems (GNSS) is, in fact, a climate
benchmark data type, and its observable can be used to raghsamal expansion of the troposphere
caused by global warming, poleward migration of mid-latéubaroclinic zones, and to infer global
surface air temperature trends. GNSS radio occultationligr&ceable by virtue of calibration of its
observable, frequency shifts, to the international dedinibf the second, realized by atomic clocks.
Nonexistent bias in the troposphere between co-locateadsogs of independent GNSS radio occulta-
tion missions has shown that GNSS radio occultation canesstally reproduce its traceable interna-
tional standard. Also, nonexistent difference betweenréreds derived by different retrieval algorithms
has shown that GNSS radio occultation yields a data typeethables reproducibility in trends. Both
tests validate GNSS radio occultation as a climate bendhdeta type. The most obvious climate sig-
nal in GNSS radio occultation data is thermal expansion efttbposphere, and the first signal to be
significantly detected should be poleward migration of bl zones, including poleward shifts of the
mid-latitude jet streams. The detection should be 95% cenfith 7 to 13 years. Scalar prediction has
shown that GNSS radio occultation can be used to infer treandi®bal average surface air temperature
almost perfectly but without optimization.

Fourth, measurement of the outgoing thermal infrared spectan be a climate benchmark data type,
and it can be used to constrain the longwave radiative fexkdbaf the climate system. Improvements
in the development of an infrared radiance standard haveleshaneasurement of the thermal infrared
spectrum from space as a climate benchmark. The spectreliista decomposition of outgoing long-
wave radiation, which is itself a primary regulator of theiedgive balance of the climate system. Feed-
backs in radiation govern the sensitivity of the climateteys and the spectrum of outgoing lognwave
radiation can be expected to contain information to resthileedifferent climate feedbacks. Scalar pre-
diction has been used to show that this is in fact the casettdttexception of cloud feedbacks which
tend to be ambiguous with upper air and surface tempera@GINSS radio occultation, though, is in-
sensitive to clouds and thus is useful for resolving the guoibies inherent to the infrared spectrum as a
climate benchmark data type. By considering a retrieveatiyaof GNSS radio occultation jointly with
the infrared spectrum in scalar prediction, it indeed issfis to resolve most of the cloud-longwave
feedbacks. The only exceptions are the ambiguity betwednanid upper tropospheric cloud feedbacks
and the ambiguity between low cloud-longwave feedback anfdse temperature response.

The theoretical studies presented here are useful foriindethe information content of climate bench-
mark data types, yet | have little expectation that scaladigtion will be used when suitably long time
series of climate benchmark data becomes available. Ibisgily much more likely that atmospheric
reanalysis systems will become sophisticated enough &ftdkadvantage of the unprecedented accu-
racy of these data to gain truly accurate reconstructiontheobtate of the climate system. Impressive
steps have already been taken here at ECMWF in this direcimh we in the CLARREO project are
excited to see this and encourage its further developmeith atlcurate reanalyses enabled by climate
benchmarks, | fully expect that the output of these rearalysill be perfectly well suited to the testing
of climate models by trend analysis. Thank you.
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