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1 Introduction

My job in the Anderson Group at Harvard is centered about support for the Climate Absolute Radiance
and Refractivity Observatory (CLARREO), a climate mission, so I must begin my talk with an apology,
that I won’t say much if anything about numerical weather prediction and instead focus on climate. I
think you will still find some interesting and very recognizable concepts. In this talk I will give a brief
overview of climate benchmarking, how one can interpret time series of climate benchmarks by scalar
prediction, and how an objective method for formulating mission accuracy requirements naturally falls
out. Then I will discuss what makes radio occultation a climate benchmark data type, how retrieval is
performed on radio occultation data, and the information a time series of radio occultation data can yield
on the climate system. Next I will discuss the climate information content of high spectral resolution
infrared spectra and what might be gained from considering radio occultation data and infrared spectral
data jointly. Finally I will summarize.

The deployment of space-based climate benchmarks was demanded by the recent decadal review of the
U.S. National Aeronautics and Space Administration (NASA)and National Oceanographic and Atmo-
spheric Administration by the National Research Council. In particular, it recommended the CLARREO
mission:

CLARREO addresses three key societal objectives: 1) the essential responsibility to present
and future generations to put in place a benchmark climate record that is global, accurate
in perpetuity, tested against independent strategies thatreveal systematic errors, and pinned
to international standards; 2) the development of an operational climate forecast that is
tested and trusted through a disciplined strategy using state-of-the-art observations with
mathematically-rigorous techniques to systematically improve those forecasts to establish
credibility; and 3) disciplined decision structures that assimilate accurate data and fore-
casts into intelligible and specific products that promote international commerce as well as
societal stability and security.

A bit of translation is in order. “Accurate in perpetuity” isnot a requirement that the present and all
future generations of NASA engineers fly CLARREO satellitesbut rather it is a requirement that the
data obtained by CLARREO be useful for measuring climate change to all future generations of climate
scientists. “International standards” refers to S.I. traceability, a metrological approach to instrument
design that assures an unbroken and testable chain of calibration to the international standards that define
the units of measurement. “Tested against independent strategies that reveal systematic error” simply
requires that climate benchmark instruments have the ability to obtain its own error bars empirically.
Lastly, “mathematically rigorous techniques” refers to Bayesian statistics (in which optimal detection
methods are implicit) to infer climate trends underlying long time series of data. My particular specialty
is the last.
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2 Climate benchmarks

S.I. traceability is described inThe International Vocabulary of Basic and General Terms in Metrology
(ISO 1993): “Traceability [is] a property of the result of a measurement or the value of a standard
whereby it can be related to stated references, usually national or international standards, through an
unbroken chain of comparisons all having stated uncertainties.” In short, “S.I. traceability” is far more
than contemporary scientific marketplace jargon; instead it points toward the measurement practice we
learned in grade school that observations demand error estimates based on the overall accuracy of our
observing apparatus. The only way error estimates can be obtained is by a documented and reproducible
chain of comparisons back to the international standard that defines the units of the observations. Two
organizations that maintain such standards are the Bureau des Poids et Mésures in Paris and the U.S.
National Institutes for Standards and Technology.

Climate benchmarks must be S.I. traceable. The great advantage gained is that a climate benchmark can
be used for observing climate change even in the case of a discontinuous time series of data. The com-
munity’s experience in constructing “climate data records” from instruments whose calibrations were
deemed “stable” has not been good. Take, for example, the records of microwave brightness temperature
constructed from measurements of the NOAA satellites’ Microwave Sounding Units (MSU) and of total
solar irradiance (TSI). The time series can only be formed bybias-correcting the records of individual
instruments so that they match the records of overlapping preceding and succeeding instruments. These
efforts have failed because multiple versions of climate data records based on the same data have yielded
different long term trends and because even a minor break in the time series of observations renders most
of the record useless. With S.I. traceability, the record survives breaks in the time series of observations.
Moreover, independent efforts at obtaining long term trends based on S.I. traceable observations will
yield the same trends to within empirically determined error.

Others have written on the design of S.I. traceable instrumentation, and since it is not my specialty, I
will not do so here. For reference, seePollock et al. (2000), Pollock et al. (2003). One such design is
given byDykema and Anderson (2006).

Not every known data type can be obtained by instrumentationof S.I. traceable design, but once we have
sorted out those that can be, it is interesting to find out whatcan be learned about the climate system from
long term trends in those data types.Scalar predictionis one way to determine the information content
in S.I. traceable data types. The goal of any investigation of information content in climate monitoring
must be the reduction of uncertainty in climate prediction.With credible time series of information-rich
data, one ought to be able to obtain improved accuracy and precision in climate projection. (I have used
“projection” to refer to prediction aided by intelligent application of data.) A brief description of scalar
prediction follows.

3 Scalar prediction

Scalar prediction is two levels of Bayesian inference applied to long term trends. It is closely re-
lated to linear multi-pattern regression (Hasselmann 1997; Allen and Tett 1999) and optimal detection
(Bell 1986; Hasselmann 1993; North et al. 1995). Scalar prediction, or any method used to extract infor-
mation from long term trends in climate, requires a model forthe data that is at least minimally credible
and must account for the natural inter-annual variations ofclimate as a source of error. One central tenant
of climate is that it responds approximately linearly to subtle changes in external forcing—the forcing
generally a perturbation to the radiative balance of the system not typically associated with a steady-
state climate—which cannot be observed directly because the atmosphere-ocean-cryosphere-biosphere
system varies from year to year even in the absence of external forcing. Information content studies
should seek to minimize the effects of these natural fluctuations and count the residuals as uncertainty
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in the inference of “climate trends”.

In the first level of inference, that of optimal detection, one has a long term trend in datadd/dt which is
linearly related to a climate trenddα/dt in some as yet unnamed (and arbitrary) variableα :
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in which g(x) is the model and data operator, a function of the atmosphere-ocean-cryosphere-biosphere
statex, (dg/dα)i the total derivative of that model and data operator with respect to arbitrary variable
α . Natural variability enters through the random inter-annual fluctuationsdn and the statistically in-
significant trendsd(dn)/dt to which they give rise. In the first level of inference, the operatorg(x) is
considered linear and its derivativex, (dg/dα)i constant and certain while the climate trenddα/dt is
completely unknown. The solution for the most likely value of the climate trenddα/dt is
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wheresi = (dg/dα)i andΣdn/dt is the covariance of the random quantityd(dn)/dt as determined from
a steady-state simulation of climate. The posterior uncertainty in the determination ofdα/dt is

σ2
dα/dt = (sT

i Σ−1
dn/dtsi)

−1. (3)

Equations1, 2, and3 are those of optimal detection, the first level of Bayesian inference.

In the second level of inference, one must account for the existence in uncertainty in modeling. The
Jacobiandg/dαi , while minimally credible, is most definitely uncertain. This uncertainty is factored in
by weighting each model in an ensemble of climate models according to the quality of its fit to the data.
The final result for the most probable trend(dα/dt)mp and its uncertaintyσdα/dt is given by

(dα
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mp = (sTΣ−1s)−1sTΣ−1(dd
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)

(4)

σ2
dα/dt = (sTΣ−1s)−1 (5)

Σ ≡ Σdn/dt +
(dα

dt

)2Σδ s. (6)

The equations are the same as those of optimal detection withthe exceptions thatΣdn/dt is replaced byΣ
andsi by s. Both of these new quantities are derived from an ensemble ofclimate models, the quantity
s being the meansi of the ensemble of climate models, andΣδ s the covariance ofδ s = si − s over the
ensemble of models. The term(dα/dt)2 appearing in equation6 is only a prior best guess estimate of
the climate trend. Equations4 through6 are those of scalar prediction.

There is a clear parallel between the equations of scalar prediction and those of data assimilation in
NWP. If one substitutesdd/dt with the observation incrementd−y, dg/dα with the observation kernel
K, dα/dt with the analysis incrementδx andΣ with the sum of the observation and background error
covariancesO + B, one obtains the equations of variational data assimilation.

To see how scalar prediction works, I apply it to the problem of climate trends in Northern Europe. The
data space will be a map of Northern Hemisphere surface air temperature, sodd/dt will be a map of the
trend of Northern Hemisphere surface air temperature andg(x) will be a forward operator that produces
maps of surface air temperature from a climate model given the state variablex. I am interested in
the climate trend of surface air temperature in Northern Europe, so I am free to define the completely
general variableα as the surface air temperature over the region of Northern Europe. That makesdg/dα
the rate of change of a map of Northern Hemisphere surface airtemperature divided by the rate of
change of Northern Europe area-averaged surface air temperature. The result is the dimensionless map
si and it depends on modeli used to simulate it. I use the model output of the World Climate Research
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Figure 1: The optimal fingerprint for Northern European surface air temperature climate trend es-
timation and its inner product with annual average NorthernHemispheric surface air temperature.
The plot on the left is the optimal fingerprintf constructed from the CMIP3 models for determination
of climate response of Northern European surface air temperature to SRES A1B forcing given the
data space of Northern Hemisphere surface air temperature.The dotted line is the zero-contour.
The plot on the left shows the record of Northern Hemisphere surface air temperature (thick curve),
the inner product of the optimal fingerprint and annual average Northern Hemisphere surface air
temperaturefTd(t) for the same period (dashed curve), the one-sigma envelope of the best fit to the
latter curve (gray shaded region), and the future evolutionof Northern European surface air tem-
perature (thin curve). Scalar prediction is a highly precise estimate of climate trends as illustrated
by the narrowness of the shaded region.

Programme’s (WCRP’s) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset
to generate the manysi and then computes andΣδ s.

The optimal fingerprintf = Σ−1s(sTΣ−1s)−1 is the vector/map by which to multiplydd/dt to obtain
the most probable trend(dα/dt)mp of the Northern Europe temperature trend associated with climate
change. We show the optimal fingerprint and its inner productwith maps of Northern Hemisphere sur-
face air temperature produced by an independent climate model subjected to SRES A1B external forcing
in Figure1. Astonishingly, scalar prediction is able to determine theclimate response of Northern Euro-
pean surface air temperature when subjected to SRES A1B forcing and given a 20-year record of North-
ern Hemispheric surface air temperature to within 0.1 K decade−1 when the actual Northern European
temperature record by itself shows a trend with uncertainty0.7 K decade−1. From this example, one can
conclude that scalar prediction is a method of determining climate response of any variable of the climate
system, including regional average quantities, from arbitrary data sets. SeeLeroy and Anderson (2010)
for a more in depth explanation.

4 Accuracy requirements

It is possible to derive an objective method for determiningaccuracy requirements from the equations of
scalar prediction. In the above derivation, I have not considered observation error, but it plainly belongs
as an extra termΣobs in the Σ of equation6. A political goal of any climate benchmarking system
must be to delay as little as possible the positive detectionof trends or refinement of climate projection.
Already the natural variability of the climate system places lower bounds on detection times (because
of Σdn/dt). It would be politically damaging to substantially increase any time-to-detection by imposing
an observation errorΣobs that is comparable in magnitude to natural variability. After accounting for
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coherence times of natural variabilityτn and mission durationτobs, one arrives at the requirement that

σ2
obsτobs≪ σ2

n τn. (7)

Here I have definedσobs as the one-sigma observation error,σ2
n the natural variability andτn its coher-

ence time. Astonishingly, the requirements on overall error of a climate benchmarking instrument in
space depends on the lifetime of the mission! The error of thebenchmark is the root-sum-square of the
sampling error and instrument accuracy. SeeLeroy et al. (2008) for a more expansive derivation.

5 GNSS radio occultation

Radio occultation originated in the planetary sciences andhas generated a large catalogue of temperature
profiles of planetary atmospheres, especially Venus’s. A radio occultation occurs when a planetary at-
mosphere occults a microwave radio beacon synchronized to an ultra-stable oscillator (USO) as viewed
by a receiver outside the occulting atmosphere. In planetary missions, the occulted transmitter is the
inter-planetary spacecraft (e.g., Pioneer Venus, Magellan, Voyager 1, Voyager 2, Mariner 10), the oc-
culting atmosphere that of the planet, and the receiver one on the Earth’s surface. The same can be done
for Earth’s atmosphere if one uses the transmitters of the Global Navigation Satellite Systems (GNSS),
the Earth’s atmosphere, and one or more GNSS receivers in lowEarth orbit (LEO). The lone GNSS
currently available is the Global Positioning System (GPS).

In radio occultation, the occulting atmosphere refracts the radio signal that transects the atmosphere, and
the bending of the signal shifts the frequency of the radio signal as obtained by the LEO receiver. The
dimension of the observable in radio occultation is inversetime. The demand of S.I. traceability in this
case is that the transmitter and receiver of the radio signalbe calibrated by a chain of comparison to the
international definition of the second, which is the time required for 9,192,631,770 cycles the hyperfine
splitting of the ground state of the Cs133 atom. Traceability is established at the GNSS transmitter
by synchronizing the radio transmissions to an ensemble of cesium-rubidium clocks. Traceability at
the receiver can be done by other synchronizing the receiverto an on-board USO or by calibrating a
poorly calibrated receiver clock to non-occulted GNSS transmitters’ signals. If the GNSS transmitters’
clocks themselves have questionable accuracy, they in turncan be calibrated by observing their signals
with receivers on the ground synchronized to better calibrated clocks. This process is commonly called
“double differencing” (Hardy et al. 1994) and is illustrated in figure2.

The relationship between Doppler shift and the angleε through which the occulting atmosphere bends
the ray is

λ ∆ν = vGPScosφGPS+vLEOcosφLEO. (8)

The transmit and receive anglesφGPS,φLEO, transmitter and receiver velocitiesvGPS,vLEO are illustrated
in Figure3; λ is the vacuum carrier wavelength of the transmitted signal and ∆ν the measured Doppler-
shift of the radio signal’s frequency. An assumption of local spherical symmetry in the atmosphere
together with S.I. traceable knowledge of the positions andvelocity of the transmit and receiver satellites
allows a determination of the bending angleε as a function of impact parameterp during a GNSS radio
occultation. With spherical symmetry, the impact parameter of the radio signal is the same on both the
transmit and receive sides of the occultation. Inversion (Fjeldbo et al. 1971) of radio occultation obtains
vertical profile of the microwave index of refraction by way of an Abelian transform:

n(p) =
1
π

∫ ∞

p

ε(p′)dp′
√

p′2− p2
(9)

where the independent coordinatep= nr, r the distance from the atmosphere’s local center of curvature,
which to first order is the Earth’s radius. The index of refraction is related to atmospheric density and
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Figure 2: Double differencing. The LEO to GPS1 link is the occulted link. A poorly calibrated LEO
clock can be corrected by a link to the “reference” non-occulted satellite GPS2. If the GPS clocks’
calibrations are questioned, both GPS1 and GPS2 can be calibrated to a ground-based clock, in this
case located at NIST, which is calibrated by extremely accurate clocks. NIST in Boulder, Colorado,
USA, hosts a cesium fountain clock, accurate to 10−15 1-second Allen variance.

vGPS

φGPS

p

vLEO

φLEO

p

ε

Figure 3: The geometry of a GPS radio occultation. Doppler shifting of the radio signal is governed
by the angle between transmitter velocity and the directionof the transmitted rayφGPSand the angle
between the received ray and the velocity of the LEO receiverφLEO. They can be inferred from the
geometry of the occultation, the measured Doppler shift∆ν, and an assumption of local spherical
symmetry of the atmosphere. The bending angleε, the angleε through which the occulting atmo-
sphere bends the ray, and the impact parameter p, the asymptotic miss distance of the vacuum ray
paths from the center of curvature, can be calculated givenφGPSandφLEO by simple trigonometry.
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water vapor by an empirically determined relationship. At this point, suffice it to say that the index of
refraction is simply a linear function of atmospheric density throughout the atmosphere and the contri-
bution of water vapor is a significant contributor only in thelower troposphere when the temperature
exceeds≈ 250 K.

To be sure, exercising the equations given above require care. The integral of the inversion equa-
tion (9) to infinity is noisy and ill-determined. The fundamental measurement equation (8) requires
relativistic corrections. For details, see, for example,Hajj et al. (2002). Moreover, the complex sig-
nal dynamics associated with diffraction and multipath arebest undone by physical optics techniques
(Gorbunov et al. 2004). An authoritative description and error analysis of radiooccultation is given in
Kursinski et al. (1997). Lastly, the independent coordinater can be converted to geopotential height—to
ease interpretation to atmospheric scientists—by application of a gravity model (Leroy 1997). The im-
portant points here are that GNSS radio occultation is S.I. traceable by calibration against atomic clocks
and its observables are bending angle as a function of impactparameterε(p) or index of refraction as a
function of geopotential heightn(h).

6 Verifying a benchmark

Implementing a climate benchmark offers the advantage of empirical verification. There are two quali-
ties of a climate benchmark, reproducibility of standards and reproducibility of trends, that can be tested
using its own observations. Reproducibility of standards is the quality wherein the international standard
used to calibrate the observation can be reproduced anytimeand anywhere. Reproducibility of trends
is the quality wherein trends of geophysical variables obtained by climate benchmarks can be obtained
accurately independent of the retrieval algorithm used.

The qualities of reproducibility of standards and of trendsshould apply to any climate benchmark, and
they can be checked using GNSS radio occultation data which already exists. The quality of repro-
ducibility of standards for GNSS radio occultation has beenchecked by comparing co-located data
obtained by different GNSS radio occultation missions byHajj et al. (2004). For many co-located
soundings, a random component due to differing view geometries and times was found to dominate.
Most importantly, though, no bias was found in the ensemble of co-located soundings throughout the
troposphere. In the stratosphere, however, an unexpected bias was found which remains unexplained.
My view is that local multi-path or erroneous spacecraft attitude information in either one of the two
missions would create the bias pattern seen in Figure 22 ofHajj et al. (2004). The quality of repro-
ducibility of trends can be checked by comparing inter-annual trends in the index of refraction obtained
by independent retrieval algorithms. This was done inHo et al. (2009). Four (semi-independent) algo-
rithms were used to process CHAMP data and retrieve the refractive index in the vertical region around
the tropopause. There was no statistically significant difference in trends found over the lifetime of
CHAMP data, but only after an accounting for sampling error.In GNSS radio occultation, though, sam-
pling error is problematic because there is no single objective quality control method that can qualify
individual soundings. As a result, different subsets of CHAMP soundings are retained by the different
algorithms thus resulting in different sampling errors. Objective quality control, therefore, must be given
careful attention when handling climate benchmark data.

7 Information in GNSS radio occultation

A climate benchmark requires S.I. traceable data types; GNSS radio occultation is S.I. traceable; GNSS
radio occultation is a climate benchmark data type, and two empirical tests have demonstrated as much.
What information does a decadal scale time series of radio occultation have on the climate system? First
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I will show what statistically significant signal will emerge first in a long time series and then how radio
occultation is useful in constraining global surface air temperature trends.

I predict the first statistically significant climate signalusing optimal detection, the first inference in
scalar prediction described earlier. The first inference demands only one climate model to determine the
signals = dg/dα . Consequently, the statistical significance of(dα/dt)ml with a time series of length
∆t is independent of the definition ofα . The optimal fingerprint determined using optimal detection,
then, is the pattern of climate change that will be first detected significantly. This was done for radio
occultation inLeroy et al. (2006), and I will synopsize the results here.

In Earth radio occultation, it is common to speak in terms of “refractivity” rather than “index of refrac-
tion”. The refractivityN is related to the index of refractionn throughN = (n−1)×106, the index of
refraction less one in parts per million. The refractivity is related to pressurep, temperatureT, and wa-
ter vapor partial pressurepw throughN = (77.6 K hPa−1)(p/T)+(3.73×105 K2 hPa−1)(pw/T2). The
radio occultation research community has minted new meteorological variables, “dry pressure” among
them. It is a convenient quantity to use in climate signal detection studies because it is easily inter-
preted. Dry pressure is the downward integral of refractivity in height multiplied by a constant factor. If
water vapor did not contribute at all to refractivity—hencedry pressure—this integral would simply be
pressure. Precisely, dry pressurepN is

pN = p+(7730 K)

∫ p

0

q(p′)dp′

T(p′)
(10)

whereq is specific humidity. Dry pressurepN is the same as pressurep except where the second term
on the right of equation10 is large. Trends in the log of dry pressure are simply interpreted because,
above the lower troposphere, variability in its global average is the same as variability in tropospheric
thickness. A positive trend in dry pressure near the tropopause is thermal expansion of the troposphere.

Figure4 shows the trends in log-dry pressure as simulated by twelve CMIP3 models. The dominant
signal is a broad maximum centered at approximately 20 km stretching across the low to mid-latitudes.
Much of the maximum can be explained as thermal expansion of the tropical troposphere, but not all.
Extension of the maximum into mid-latitudes can only be explained by something like expansion of the
tropics and a general poleward migration of baroclinic zones. The covariance matrixΣdn/dt appearing in
the equations of optimal detection,2 and3, is difficult to invert because it is ill-conditioned. Instead, one
must compute a “pseudo-inverse” by truncating the data space to those of the dominant eigenvectors of
Σdn/dt. The eigenvectors ofΣdn/dt are typically called empirical orthogonal functions (EOF). It turns out
that the EOFs that contribute most dominantly to optimal detection are those that correspond to poleward
migration of baroclinic zones and thermal expansion of the tropical troposphere. The former is probably
closely associated with poleward migration of the jet stream and the latter with the El Niño-Southern
Oscillation (ENSO). It is independent of the CMIP3 model used to determine the signal and the model
used to approximate natural variability. Given SRES A1B forcing in reality, it should take only 7 to 13
years to detect human influence with 95% confidence. This level of confidence is obtained with≃ 7 m
of thermal expansion of the troposphere.

In the application of scalar prediction to radio occultation data, I choose to use trends in zonal average
log-dry pressure to determine the optimal fingerprint of change in global average surface air temperature
associated with SRES A1B forcing. To do so, I apply equations4 through6, definingα to be global
average surface air temperature andg to be the zonal average log-dry pressure. For each modeli, the
fingerprintsi is computed by dividing the 40-yr trend in zonal average log-dry pressure (dg/dt) by the
40-yr trend in surface air temperature (dα/dt) to gets = dg/dα . The optimal fingerprintf is shown in
Figure5. It clearly looks for poleward migration of the jet streams and increasing boundary layer water
vapor in the tropics. It is the optimal weighting for inferring global average surface air temperature
trends from radio occultation trends.

Figure5 also shows time series offTd(t) with the datad(t) taken from an independent climate model.
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Figure 4: Trends in zonal average log-dry pressure as simulated by CMIP3 models. The zonal
average log-dry pressure was computed using equation10 for the named models subjected to SRES
A1B forcing. The trend was determined by linear regression of the first 40 yrs of output. The
ordinate is geopotential height (km), and the abscissa is latitude from north to south. Taken from
Leroy et al. (2006).
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Figure 5: Scalar prediction for surface air temperature trends using radio occultation zonal average
log-dry pressure trends. The top plot shows the optimal fingerprint for global surface air tempera-
ture change in the space of zonal average log-dry pressure. The lower plot shows the inner product
of the optimal fingerprint on annual and zonal average log-dry pressure as a function of timefTd(t)
with datad(t) produced by an independent climate model subjected to SRES A1B forcing (red). It
directly represents global average surface air temperature to within an additive constant (black).
The red shaded region is the±1σ extrapolation of d(fTd)/dt into the future, and the gray curve the
evolution of global average surface air temperature.
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Interestingly, the productfTd(t) almost exactly recreates the inter-annual fluctuations of global average
surface air temperature without optimization. This can only come about if most of the variance in upper
air meteorological quantities is explained by global average surface air temperature. While jet stream
migration itself can be positively detected sooner than global warming, monitoring upper air temperature
gives no additional information on surface air temperatureresponse to anthropogenic forcing than just
the global average surface air temperature by itself.

One interesting consequence of climate benchmarks is that,while retrieved quantities are not themselves
necessarily S.I. traceable, change in those quantities canbe trusted. For that reason, in radio occulta-
tion, a change in a retrieved quantity such as dry pressure can be trusted even though it is traceable
to no international standard. Moreover, detection times obtained by optimal methods should be inde-
pendent of the variable used, either the calibrated observed quantity or a retrieved one. Just above are
the results for optimal detection and scalar prediction using a retrieved quantity of radio occultation.
Ringer and Healy (2008) performed a sensitivity study for radio occultation working in the space of
bending angleε , a quantity more closely linked to the calibrated observed quantity than dry pressure.
As expected, they found detection times very similar to those found inLeroy et al. (2006).

8 Information in infrared spectra

The infrared spectrum is rich in information content—a prime motivator for deployment of the op-
erational Atmospheric Infrared Sounder and Infrared Atmospheric Sounding Interferometer (IASI)—
but until recently has not been traceable to an infrared standard with accuracy sufficient for climate
monitoring. Recent improvements in the standard for infrared radiance, including phase-change black-
bodies for calibrating temperature and quantum cascade lasers for calibrating blackbody emissivity,
have demonstrated a standard that is accurate to 0.03 K in brightness temperature at room temperature
(Gero et al. 2008; Gero et al. 2009).

Infrared retrieval is common for operational sounders, butwhat can be learned from trends in the in-
frared spectrum over decadal time scales? I apply scalar prediction to the infrared spectrum as the data
type. To narrow the selection of the scalarα , I note that the infrared spectrum is a special case for
climate monitoring because it observes in the space of outgoing longwave radiation (OLR), one of the
fundamental quantities for radiative balance of the climate system. Climate’s response to radiative forc-
ing is uncertain in part because the radiative feedbacks of the climate system are so difficult to constrain.
Because of its richness of information content, however, monitoring the infrared spectrum ought to yield
strong constraints on the longwave feedbacks of the climatesystem. So I have chosen to apply scalar
prediction to the infrared spectrum with the scalars of interest being the longwave feedbacks.

The spectral signal associated with each longwave feecbackcan be determined by partial radiative per-
turbation (Wetherald and Manabe 1988). Partial radiative perturbation (PRP) has been used to diagnose
the feedbacks inherent in climate models in a broadband sense (Bony et al. 2006). There is no reason
that PRP cannot also be applied in the spectral sense as well (Leroy et al. 2008; Huang et al. 2010). In
PRP, a climate model is run twice, once subjected to radiative forcing (the “forced” run) and once not
(the “control” run). The outoging infrared spectrum is computed for both runs, the difference being the
response of the climate system to radiative forcing as seen in the infrared spectrum. One can obtain the
spectral response corresponding to an individual feedbackby suppressing the change corresponding to
the variable designated by the feedback. For example, to obtain the water vapor feedback, I simulate
the change in the infrared spectrum from the forced run but with the output of water vapor taken from
the control run. The difference between this spectrum and the simulation for the forced run gives the
spectral change corresponding to the longwave-water vaporfeedback.

Figure6 shows the spectral radiance fingerprints for clear-sky radiance simulations integrated over the
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Figure 6: Clear-sky spectral infrared fingerprints. The topplot shows the intermediate results of
partial radiative perturbation: “full signal” is the complete spectral response of the tropics (in
clear skies) to SRES A1B forcing, and, for example, “CO2-fixed” is the spectral response of the
tropics with the exception of CO2 being held constant. The lower plot shows the fingerprint radiance
signals after subtracting the PRP signals from the full signal. The lower signals are used in scalar
prediction. Taken fromLeroy et al. (2008).

tropics using the CMIP3 ensemble of climate models. Even though the water vapor and upper air tem-
perature spectral fingerprints look similar if opposite in sign, when model uncertainty in the spectral
fingerprints is taken into consideration, they are still unique enough to separate the water vapor and
lapse rate longwave feedbacks. When cloudy skies are considered, though, over decadal timescales
some of the cloud signals are not easily distinguished from upper air temperature and water vapor sig-
nals (Huang et al. 2010). The reason for the ambiguities is that the radiance signals take substantially
different forms depending on the background climate in which they appear. For example, a mid-latitude
cloud signal can look markedly different than a tropical cloud feedback, and so the uncertainty in the
fingerprint is quite large. This certainly inhibits the formulation of a single optimal fingerprintf for
mapping that cloud feedback.

Scalar prediction is a powerful methodology, though, so theresults of the all-sky detection problem
performed inHuang et al. (2010) can be improved with the addition of a data type that is independent of
clouds. We call it joint fingerprinting because multiple data types can be considered jointly in the data
vectord of equation4. Joint fingerprinting succeeds in resolving most of the cloud ambiguities with two
exceptions: it cannot resolve mid-tropospheric and high clouds unambiguously nor surface temperature
and low clouds. Figure7 shows the true upper cloud-longwave feedback and what mightbe obtained
from infrared-only scalar prediction and from joint scalarprediction after a doubling of CO2. Joint
scalar prediction resolves problems with ambiguity especially in polar regions and to a lesser degree in
the tropics.

Regarding the information content in infrared spectra, much more work needs to be done. The data
type is inherently complex because its dimensionality is both spectral and spatial. Work so far has
addressed the spectral dimension, and because there is little to no variability in the spectral dimension
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Figure 7: Mapping the upper cloud-longwave feedback. The left plot shows a map of the OLR per-
turbation associated with the upper cloud-longwave feedback after a doubling of CO2, as diagnosed
from the output of a model of the Cloud Feedback Model Intercomparison Project. The center shows
the upper cloud-longwave feedback as would be obtained by monitoring only the infrared spectrum
and applying scalar prediction. The right shows the upper cloud-longwave feedback as would be ob-
tained by considering the infrared spectrum and radio occultation dry pressure and applying scalar
prediction.

associated with a process other than the feedbacks being sought, there is little optimization to be had.
On the other hand, the spatial dimension is likely to behave quite differently because there is a lot of
variability in longwave fluctuations in the spatial coordinate associated with processes other than long-
term trends. The problem, though, is that the prior on the spatial structure of some of the feedbacks is
frighteningly weak. Optimal detection and scalar prediction require some moderate prior knowledge of
the form of the signal in the chosen dimension to be of use. Theinformation ought to be sufficient to
distinguish between different signals in the multi-pattern problem or to distinguish between the signal
and the gravest modes of natural variability. In the case of the cloud feedbacks, it is unclear the degree to
which models can be used to prescribe their patterns in space. Moreover, that climate models typically
do not generate the output necessary to simulate all-sky radiances just complicates matters. In the end,
though, an information content study must answer the question, at least to first order, of how long a
climate monitoring data set of the infrared spectrum must bebefore climate models can be tested.

Colman (2003) andBony et al. (2006) have diagnosed the radiative feedbacks of various ensembles of
climate models, the latter having diagnosed those of the CMIP3 ensemble contributed to the IPCC Fourth
Assessment Report. In order to test such ensembles, it will be necessary to use trend data to estimate the
actual radiative feedbacks empirically. Above, I have shown the first steps of a methodological pathway
that can be used to do so.

9 Summary

First, the implementation of climate benchmarks as the foundation of a climate observing systems is
necessary to prevent sensitivity to breaks in time series ofdata. The hallmark of a climate benchmark
is S.I. traceability, a chain of calibration with demonstrable accuracy to the international standard that
defines the units of the fundamental observable. There are two necessary tests that prove the bona fides
of a climate benchmark system: reproducibility of standards and reproducibility of trends.

Second, an application of Bayesian inference can be appliedin theoretical studies to learn how a climate
benchmark data type can be used to test climate models. Scalar prediction, a second level of Bayesian
inference built upon the commonly used method of optimal detection, serves this purpose. Scalar pre-
diction can be applied to any potential climate benchmark data type to learn about any arbitrarily chosen
quantity (or prediction) of the climate. The outcome is thatthe quantity is either ambiguously or unam-
biguously constrained, unambiguously if the data type is sufficiently senstive to the quantity in question.
In that case, another outcome of scalar prediction is the duration of the time series necessary to gain
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precise knowledge of the quantity in question.

Third, radio occultation using the Global Navigation Satellite Systems (GNSS) is, in fact, a climate
benchmark data type, and its observable can be used to measure thermal expansion of the troposphere
caused by global warming, poleward migration of mid-latitude baroclinic zones, and to infer global
surface air temperature trends. GNSS radio occultation is S.I. traceable by virtue of calibration of its
observable, frequency shifts, to the international definition of the second, realized by atomic clocks.
Nonexistent bias in the troposphere between co-located soundings of independent GNSS radio occulta-
tion missions has shown that GNSS radio occultation can successfully reproduce its traceable interna-
tional standard. Also, nonexistent difference between thetrends derived by different retrieval algorithms
has shown that GNSS radio occultation yields a data type thatenables reproducibility in trends. Both
tests validate GNSS radio occultation as a climate benchmark data type. The most obvious climate sig-
nal in GNSS radio occultation data is thermal expansion of the troposphere, and the first signal to be
significantly detected should be poleward migration of baroclinic zones, including poleward shifts of the
mid-latitude jet streams. The detection should be 95% confident in 7 to 13 years. Scalar prediction has
shown that GNSS radio occultation can be used to infer trendsin global average surface air temperature
almost perfectly but without optimization.

Fourth, measurement of the outgoing thermal infrared spectrum can be a climate benchmark data type,
and it can be used to constrain the longwave radiative feedbacks of the climate system. Improvements
in the development of an infrared radiance standard have enabled measurement of the thermal infrared
spectrum from space as a climate benchmark. The spectrum itself is a decomposition of outgoing long-
wave radiation, which is itself a primary regulator of the radiative balance of the climate system. Feed-
backs in radiation govern the sensitivity of the climate system, and the spectrum of outgoing lognwave
radiation can be expected to contain information to resolvethe different climate feedbacks. Scalar pre-
diction has been used to show that this is in fact the case withthe exception of cloud feedbacks which
tend to be ambiguous with upper air and surface temperature.GNSS radio occultation, though, is in-
sensitive to clouds and thus is useful for resolving the ambiguities inherent to the infrared spectrum as a
climate benchmark data type. By considering a retrieved quantity of GNSS radio occultation jointly with
the infrared spectrum in scalar prediction, it indeed is possible to resolve most of the cloud-longwave
feedbacks. The only exceptions are the ambiguity between mid- and upper tropospheric cloud feedbacks
and the ambiguity between low cloud-longwave feedback and surface temperature response.

The theoretical studies presented here are useful for inferring the information content of climate bench-
mark data types, yet I have little expectation that scalar prediction will be used when suitably long time
series of climate benchmark data becomes available. It is probably much more likely that atmospheric
reanalysis systems will become sophisticated enough to take full advantage of the unprecedented accu-
racy of these data to gain truly accurate reconstructions ofthe state of the climate system. Impressive
steps have already been taken here at ECMWF in this direction, and we in the CLARREO project are
excited to see this and encourage its further development. With accurate reanalyses enabled by climate
benchmarks, I fully expect that the output of these reanalyses will be perfectly well suited to the testing
of climate models by trend analysis. Thank you.
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