
1
1

The CEDA Web Processing Service
for rapid deployment of

earth system data services

Stephen Pascoe
Ag Stephens
Phil Kershaw
Centre of Environmental Data Archival

2
2

Overview of CEDA-WPS

● History – first implementation and deployment
● Architecture
● Generalising first implementation
● Test Beds
● Operational Services

3
3

History
UKCIP09 User Interface

Requirements

● Map and non-map plots

● Interactive and configurable

● Long-running tasks

● Large data extractions

● Secondary simulations
(Weather Generator)

● Resilliant to variable load

Service Orientated Architecture

4
4

History
OGC Web Services at CEDA

● CEDA has developed web portals
based on OGC Web Services since
2006

● WMS clients and servers

● WCS/WFS for complex GML
features (CSML)

● NERC Data Grid

● NERC Portals Project

● ISIC Visualisation

5
5

Architecture:
OGC Web Processing Service

● GET DescribeProcess resource
to discover process arguments

● POST to create a process
execution resource (unique
URL)

● GET to poll status of process
execution

● Navigate to outputs when
available

6
6

Architecture

HTTP Server

Pa
st

e

Pylons

Middleware

Web
Application

COWS

WMS WCS W*S

Data Model

WSGI

WSGI

Apache + mod_python,
FastCGI, Python HTTPD

e.g. Authentication

Library
Standard Interface
Application code

CEDA OGC Web Services Framework: COWS
http://cows.badc.rl.ac.uk/

http://cows.badc.rl.ac.uk/

7
7

Architecture

cows.model

OWS-Common model
implementation

cows.model

OWS-Common model
implementation

cows.service

Stub service
implementations

WMS, WCS,
WFS, W*S

cows.service

Stub service
implementations

WMS, WCS,
WFS, W*S

cows.pylons

XML templates
Stub server

cows.pylons

XML templates
Stub server

cows

OWS operation controllers
KVP encoding and exception handling

cows

OWS operation controllers
KVP encoding and exception handling

COWS library

cows.csmlbackend

Data back-end for Climate
Science Markup Language
(CSML)

cows.csmlbackend

Data back-end for Climate
Science Markup Language
(CSML)

cowsserver

WMS/WCS server component

cowsserver

WMS/WCS server component

cowsclient

WMS/WCS web-application

cowsclient

WMS/WCS web-application
cows-wps

WPS server

cows-wps

WPS server

COWS Server Implementations

CEDA OGC Web Services Framework: COWS
http://cows.badc.rl.ac.uk/

http://cows.badc.rl.ac.uk/

8
8

Architecture
Process Modules

● Implement a process as a
Python module

● Configuration file defines

● Inputs / outputs

● Synchronous / Asynchronous

● Caching

● Workflow

9
9

UKCP09 Deployment

ddp-ps1 ddp-ps2 ddp-ps3

ddp-ps5

ddp-ui1

ddp-app1

ddp-store1

archive

ddp-u2i

ddp-app2

ddp-store2

archive

ddp-ui3

UI (php)
geoserver (tomcat)
spatialdb (postgres)

ddp-app3

ddp-store3

archive

ddp-ui6

ddp-app6

ddp-ps6

ddp-ui9

ddp-app9

ddp-ps9

ddp-ui7

ddp-app7

ddp-ps7

ddp-ui8

ddp-app8

ddp-ps8

ddp-ui10

ddp-app10

ddp-ps10

ddp-ui11

ddp-app11

ddp-ps11

ddp-admin1

cache

acache
1

acache
2

acache
3

Master server

Physical servers

Virtual Machines

Temporary servers for high-demand launch period

Service Layer
 (WPS, WMS)

Job Execution Layer

User Interface Layer

10
10

Generalised Service
CEDA-WPS

WPS 1.0.0 Features

● A web service interface, using
POST or GET.

● Asynchronous reporting and
control of jobs.

● A defined XML interface for
responses, including
exceptions.

● A common format for passing
arguments to the server.

● Job status interrogation.

Exensions in CEDA-WPS

● Add new processes as Python
modules.

● Web-client to auto-generate process
submission forms and interrogate
current and previous jobs.

● Connection to a parallelised
processing back-end.

● Output caching

● Inform users via e-mail when a job
has completed (or failed).

● Integration with CEDA Security
middleware.

● Estimate the job size and duration.

● Zip up output files

11
11

CEDA-WPS Web Client

The UI automatically
generates submission
forms for each process.
This includes bounding
box, date/time, float,
integer and string types.

12
12

Test Beds:
Service Chaining WCS

● COWS WPS UI generates a form for the
“WCSWrapper” process.

● User can view the WCSEndPoint options.

● User clicks the “Update form” button to
load the available “Coverages”

● The Coverages are extracted from a call to
“GetCapabilities” at the WCSEndPoint.

● Further options are loaded.

● Once all selections have been made the
user can click “Submit” to make a request
to the WPS.

● The WPS calls the WCS “GetCoverage”
method at the WCSEndPoint

13
13

Test Beds: MashMyData

● Proof-of-concept web portal

● Scientists will be able to
simultaneously visualize data
from many sources, including
their own uploaded data

● Scientists will be able to
perform simple quantitative
comparison calculations

● Data access will require
Authentication and
Authorisation

14
14

Test Beds: NDGSecurity

● Single sign-on with OpenID
and PKI credentials

● WSGI filters for Authentication
and Authorisation

● Centralised authorisation policy
described by XACML (Oasis
Standard)

● XACML policy generated from
COWS-WPS configuration

HTTP Server

Pa
st

e

Pylons

Middleware

Web
Application

COWS

WMS WCS W*S

Data Model

WSGI

WSGI

15
15

Test Beds: MashMyData

16
16

Test Beds: OPeNDAP

● WPS NetCDF Outputs
available over OpeNDAP

● Implemented via an
embedded PyDap server

● Interrogate NetCDF
Metadata and Subset
outputs

● Secured with NDGSecurity

17
17

Operational Service
MIDAS

● New Service at BADC (beta)

● UK Met Office MIDAS database

● Land surface observations data
from the Met Office station
network

● daily and hourly weather
measurements

● Extract by UK county of
bounding box

● CSV output

18
18

Future

● CDO Operators available as WPS Processes
(ExArch Project)

● Run WPS Processes on the CMIP5 Archive
● Porting process execution backend to other

schedulers (TORQUE)
● Improved WPS-1.0.0 compliance

19
19

Lessons Learned

● OGC Standards provide a useful blueprint for
implementing operational SOA

● Slavish adherance to the standards can lead to limited
payback for NWP/atmospheric science community
● Process is slow
● Premature standardisation
● Focus is GIS not atmospheric science

● Our approach is to comply with commonly deployed
versions whilst staying within striking distance of the
latest standards

20
20

http://ceda-wps.badc.rl.ac.uk
http://cows.badc.rl.ac.uk/cows_wps.html

Thanks

Stephen Pascoe, Ag Stephens, Phil Kershaw

http://ceda-wps.badc.rl.ac.uk/
http://cows.badc.rl.ac.uk/cows_wps.html

21
21

Architecture: COWS-WPS

GridEngine

Execute host

GridEngine

Execute host

cows-wps

Library

cows-wps

Library
Pylons

Service Container

Pylons

Service Container

WPS ServiceWPS Service Process Module
Process Module

Process Module
Process Module

Process Module
Process Module

GridEngine

Execute host

GridEngine

Execute host
GridEngine

Execute host

GridEngine

Execute host

22
22

CEDA-WPS Workflow

B

A
(A) “cost-only” call.
(B) poll to update the job status.
(C) retrieve job details and
outputs (D) Previous jobs can be
displayed
(E) outputs can be downloaded.

23
23

CEDA-WPS Workflow

C

DE

(A) “cost-only” call.
(B) poll to update the job status.
(C) retrieve job details and
outputs (D) Previous jobs can be
displayed
(E) outputs can be downloaded.

