The ERA-CLIM data server

13th Workshop on Meteorological Operational Systems Cristian Codorean, 03 Nov 2011

The context

The ERA-CLIM project

- Next episode in the ERA series (FGGE,ERA-15,ERA-40,ERA-Interim)
- ERA-CLIM: European Reanalysis of Global Climate Observations
- A 3-year collaborative research project (2011 2013) towards:

Building observational datasets for the predictability of global atmospheric, oceanic and terrestrial processes using reanalysis techniques, with a focus on the past 100 years.

The ERA-CLIM project

Key objectives:

- Improvement of the observational record for the early 20th century
- Preparation of satellite observations, boundary conditions, and forcing data for a global atmospheric reanalysis of the 20th century
- Production of pilot case reanalyses and data quality information
- Development of an Observation Feedback Archive for reanalysis
- Assessment and reduction of data uncertainties

Additional goals:

- Improving access to climate data, data quality, and transparency
- Developing a sustainable capability for data recovery and reanalysis
- Meeting requirements for future GMES climate services

ERA-CLIM data recovery and digitisation

- RIHMI (Russian Research Institute for Hydrometeorological Information) will recover metadata for the stations in their own archive that cover the Former Soviet Union
- 50 000 tapes
- 2 356 000 paper documents for the period 1734-2006
- 719 000 satellite images for the years 1975-2002
- 288 ooo microfilms for the period 1881-1998

ECMWF and ERA-CLIM

- Development of an Observation Feedback Archive (OFA) A new web-based facility for access to raw input observations, including uncertainty estimates from reanalysis
- Production of pilot reanalyses and data quality information
 - Database facility for input observations with quality feedback from reanalyses
 - A series of long test reanalyses at various resolutions
 - All reanalysis products and input observations available via web services
- Assessment and reduction of data uncertainties
 - Homogenized in-situ data and bias correction techniques
 - Improved ocean observations for reanalysis
 - Tools for quality assessment of reanalysis products

The WREP project - Motivations

Web Re-Engineering Project

- New requirements exist that cannot easily be met
- Increasing use by our supporting states and many commercial customers of our web products
- Users request more tailored products
- Our web service was designed as state-of-the-art in 2001
 - The web has evolved and so have user expectations in usability ...
 - ... New web technologies have evolved to meet these demands
- Our web service cannot currently be relied upon operationally

The WREP project - Goals

- Redesign the web infrastructure so that the web service is highly available
- Provide on-demand plot production
- Provide more interactivity (e.g. zoom, pan, overlay parameters)
- Allow product customisation (e.g. control the event threshold on probability maps)
- Use open (OGC) standards so that ECMWF products can be embedded in users' own software
- Provide an infrastructure that would easily support current and future application

My role

Description of work (official)

- Developing an Observational Feedback Archive (OFA) for observations used in ERA-CLIM reanalyses, including a facility for storing metadata for the observations
- Developing a web-based data server for the OFA data server
- Developing simple visualisations methods for the OFA data server
- Preparing documentation on the web for the OFA data server
- Supporting other data services developments

Description of work (in short)

 Be sure we provide observations, feedback data and plots to users (mainly external) through a nice web interface

Requirements

- The need to start archiving observation data in MARS using ODB
- The need for a catalogue describing this data
- The need for a web interface (possibly reusing what's been done before in terms of web development at ECMWF) that displays the catalogue and allows retrieval of data

The work so far

Current status – data

- Observations can now be archived in MARS using the ODB format
- A first set of 'historical' observations has been archived in MARS.
- A catalogue has been generated for this data

Current status – user interface

- Web-based data servers already exist for different projects (ERA-40, ERA-Interim, TIGGE, DEMETER, ...), however ...
- The infrastructure they are based on is not very maintainable, flexible, modular, nor very scalable. It's also quite a few years old and it shows.
- There is the Web Reengineering Project (WREP)
- My tasks extended to migrating old data servers to the new infrastructure, work which also included migrating Webmars

Start date: 1979-01-01

Select date

ECMWF	15 Years	Re-Analysis
--------------	----------	-------------

Select a date range between 1979-01-01 and 1993-12-31:

End date: 1993-12-31

ERA 15's data portal

ECI	VIVVI	ГТ	3 I	ear	S K	e-/	AII	uys	515																																		
Sele	ect d	ate																																									
•	Sele	ect a	dat	e in	the	inte	erva	d 19	79-	-01-	-01	to 1	993	-12-	31											Sep Oct	Nov D	ec	<u>J</u> a	an <u>F</u> e	<u>eb №</u>	<u> 1ar A</u>	\pr !	May .	<u>Jun</u>	<u>Jul A</u>	ug Se	<u>ep O</u>	t Nov	<u>De c</u>			
Star	t date:	1979-	-01-01		E	nd da	ite: 19	993-12	2-31																			<u>19</u>	80														
_																												19	82														
0	Sele								_																				84														
							Jul	Aug	Sep		Nov					Mar /	Apr I	Мау	Jun	Jul	Aug	Sep			Dec				86		_ L												
	9 🗆												1980																88		_ L												
198	1 -												1982																90 92		_ L												
198	3 🗆												1984																32														
198	5												1986													Sep Oct			Já	an Fe	eb M	1ar A	Apr I	May .	Jun	Jul A	ug Se	ep Od	t Nov	Dec			
198	7												1988																											_			
198	9 🗆												1990																														
199	1 🗆												1992																														
199	3 🗆																																										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec		Jan	Feb	Mar /	Apr !	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec																		
Sele	ct All o	r Clea	r																																								
	ect p																																										
0	Pres s	ure	level	S																																							
		20	0 50	0 850	100	0																																					
Geo	potenti	al]																																							
Ten	peradu	re _]																																								
U	elocit	<u> </u>]]																																						
V	elocit	<u>v</u> _]]																					m etre V	/ wind	com	pone	ent [2	2 m e	etre	dew	poin	t tem	perat	ture	2	m etre	tem	peratu	ıre
Sele	ct All o	r Clea	r																																								
0	Surfa																																										
			Listin	40 W.T			10	matur.") Crosies	d co-] 2 m	nevo d	nielb c	int torre										nt data																	
-	2 me				onent			netre poteni		ia COM	iponer		•	etre u i Iperatt		int tem	perat	ure																									
-	Tota						Uve		cial .					locity	AI C																												
-							U 0C	.ocny					1 000	Joeny												de 17	,	7	4				-				1	V	V	Ę			
Cele	et All o	r Cie ai	v.																							mac I					A .			-			7						

TIGGE data portal

TIGGE Data Retrieval

Select date

Select a date range between 2006-10-01 and 2011-10-22:

Start date:	2006-10-01	End date:	2011-10-22

un Jul Aug Sep Oct Nov Dec

TIGGE Data Retrieval Select date Select a date in the interval 2006-10-01 to 2011-10-25 Start date: 2006-10-01 End date: 2011-10-25 Select a list of months Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Select All or Clear Select origin and time BOM CMA CMC CPTEC ECMWF JMA KMA Météo France NCEP UK Met Office 00:00:00 Select All or Clear Select step 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132 138 144 150 _ 156 _ 162 _ 168 _ 174 _ 180 _ 186 _ 192 _ 198 _ 204 _ 210 _ 216 _ 222 _ 228 _ 234 _ 240 _ 246 _ 252 _ 258 _ 264 _ 270 _ 276 _ 282 _ 288 _ 294 _ 300 _ 306 _ 312 _ 318 _ 324 _ 330 _ 336 _ 342 _ 348 _ 354 _ 360 _ 366 _ 372 _ 378 _ 384 Select All or Clear Select parameter 10 metre U wind component 10 metre V wind component 2 metre dewpoint temperature 2 metre temperature Convective available potential energy Convective inhibition Land-sea mask Maximum temperature at 2 metres since last 6 hours Mean sea level pressure Minimum temperature at 2 metres since last 6 hours Skin temperature Snow Depth water equivalent Snow Fall water equivalent Soil Moisture Sunshine duration Soil Temperature Surface latent heat flux Surface pressure Surface sensible heat flux Surface solar radiation Surface thermal radiation Top thermal radiation Total Cloud Cover Total Precipitation Total column water Wilting point

un	Jul Aug Ser	Oct Hov	<u>Dec</u> <u>Jan</u>	Feb Mar A	<u>pr May Jui</u>	n Jul Aug Sep Oc	t <u>Hov</u> Dec	
tin	ne							
<u>l</u> a)	CMC (Canada)	CPTEC (Brazil)	ECMWF (Europe)	JMA (Japan)	KMA (Korea)	MeteoFrance (France)	NCEP (USA)	UKMO (United Kingdom)
<u>l</u> a)	CMC (Canada)	CPTEC (Brazil)	ECMWF (Europe)	JMA (Japan)	KMA (Korea)	MeteoFrance (France)	(USA)	UKMO (United Kingdom)
_								
<u> </u>	18 🔲 24	30	36 4	2 48	54	□ 60 □ 66	72	78 84
<u> </u>	108 🔲 114	120	🔲 126 🔲 1	32 🔲 13	8 🔲 144	150 156	162	168 174
<u> </u>	198 🔲 204	210	216 2 2	22 🔲 22	8 🔲 234	240 246	252	258 264

288 ☐ 294 ☐ 300 ☐ 306 ☐ 312 ☐ 318 ☐ 324 ☐ 330 ☐ 336 ☐ 342 ☐ 348 ☐ 354

10 Meter V Velocity

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Potential Energy	Convective Inhibition
	Land Sea Mask
sure	Orography
	Snow Depth Water Equivalent
ıivalent	Soil Moisture
	Sunshine Duration
nt Temperature	Surface Air Maximum Temperature
Temperature	Surface Air Temperature
	■ Time Integrated Outgoing Long Wave Radiation
ace Latent Heat Flux	☐ Time Integrated Surface Net Solar Radiation
ace Net Thermal Radiation	☐ Time Integrated Surface Sensible Heat Flux
	☐ Total Column Water
	☐ Wilting Point

atch request

378 384

Slide 18

Webmars

00:00:00

(6	Stej 5 val		s) (Lev 25 va	vel alues)	Parameter (11 values)
	0	^		1	^	Divergence
	3			2		Geopotential
	6			3		Ozone mass mixing ratio
	9			5		Potential vorticity
	12			7		Relative humidity
	15			10		Specific humidity
	18			20		Temperature
	21			30		U velocity
	24			50		V velocity
	27	v		70	~	Vertical velocity

View node in the old webmars.

- Check for availability
- View the batch request
- Estimate request cost
- Retrieve the selection

Current selection:

time	00:00:00 , 12:00:00
date	2011-10-01,2011-10-02,2011-10-03,2,2011-10-10,2011-10-11,2011-10-12,2011-10-18,2011-10-19,2011-10-20,2
levtype	ml, pl, pt, pv, sfc
month	jan , feb , mar , apr , may , jun , jul , aug , sep
year	1985,1986,1987,1988,1989,1990,199 2003,2004,2005,2006,2007,2008,200
type	$\underline{4i}$, $\underline{4v}$, \underline{ab} , \underline{af} , \underline{ai} , \underline{an} , \underline{ea} , \underline{ef} , \underline{fb} , \underline{fc} , \underline{fg} , \underline{g}
expver	1,2,3,4,5,6,9,10,11,12,13,14,1 35,36,37,38,39,40,41,42,43,45,4 9005,9017,9022,9026,9032,9034,903 9641,9829,9901,9914,9915,9916,991
stream	amap, ammc, cher, cwao, dcda, dcww, edz ewhc, ewho, fgge, kwbc, lfpw, maed, maw mnfw, mnth, mofc, mofm, msmm, ocea, wamf, wamo, wasf, wave, wehs, weov, wm
class	at, atodb, cs, dm, dt, e4, ei, el, en, er, n

```
lat@hdr lon@hdr obsvalue@body
    47.279999
                  -88.529999
                              102270.000000
    47.279999
                 -88.529999
                              NULL
    41.389999
                 -87.089996
                              102880.007812
    41.389999
                 -87.089996
                              NULL
    -75.419998
                 -59.950012
                              98920.000000
    -75.419998
                 -59.950012
                              98410.000000
    -75.419998
                 -59.950012
                              NULL
 9
    -31.900000
                 116.000000
                              101330.000000
10
    -31.900000
                 116.000000
                              NULL
11
    -66.970001
                 -60.549988
                              99200.000000
12
    -66.970001
                 -60.549988
                              98760.000000
                              NULL
13
    -66.970001
                 -60.549988
14
    -71.330002
                 -68.350006
                              99140.000000
                              98360.000000
15
    -71.330002
                 -68.350006
16
    -71.330002
                 -68.350006
                              NULL
17
    62.400002
                 -114.500000
                              100010.000000
18
    62.400002
                 -114.500000 NULL
                              102540.000000
19
    46.790001
                 -91.390015
20
    46.790001
                 -91.390015
                              NULL
21
    47.270000
                 -91.250000
                              102469.992188
22
    47.270000
                 -91.250000
                              NULL
23
    41.400002
                 -82.549988
                              102340.000000
24
    41.400002
                 -82.549988
                              NULL
25
                 -85.260010
                              102070.000000
    46.049999
26
    46.049999
                 -85.260010
                              NULL
27
                              102540.000000
    46.560001
                 -90.440002
    46.560001
                 -90.440002
                              NULL
28
29
    41.860001
                 -80.970001
                              102030.000000
    41.860001
                 -80.970001
                              NULL
31
    42.090000
                 -86.489990
                              102740.000000
32
                              NULL
    42.090000
                 -86.489990
33
    42.470001
                 -82.880005
                              102200.000000
34
    42.470001
                 -82.880005
                              NULL
35
    42.590000
                 -87.809998
                              102810.000000
36
    42.590000
                 -87.809998
                              NULL
                              101660.000000
37
    43.250000
                 -77.589996
```

```
itional archive > Atmospheric model > 1 > Forecast > 2011 > October >
ameter
values)
mixing ratio
ticity
nidity
nidity
9
city
or NetCDF (experimental)
```

B, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

jul, aug, sep, oct

89, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 02, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,

b, fc, fg, go, ia, im, ob, oi, oldim, sim, tf

, <u>13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, </u> 6, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 5012, 5013, 04, 9005, 9017, 9022, 9026, 9032, 9034, 9035, 9041, 47, 9133, 9233, 9641, 9829, 9901, 9914, 9915, 9916,

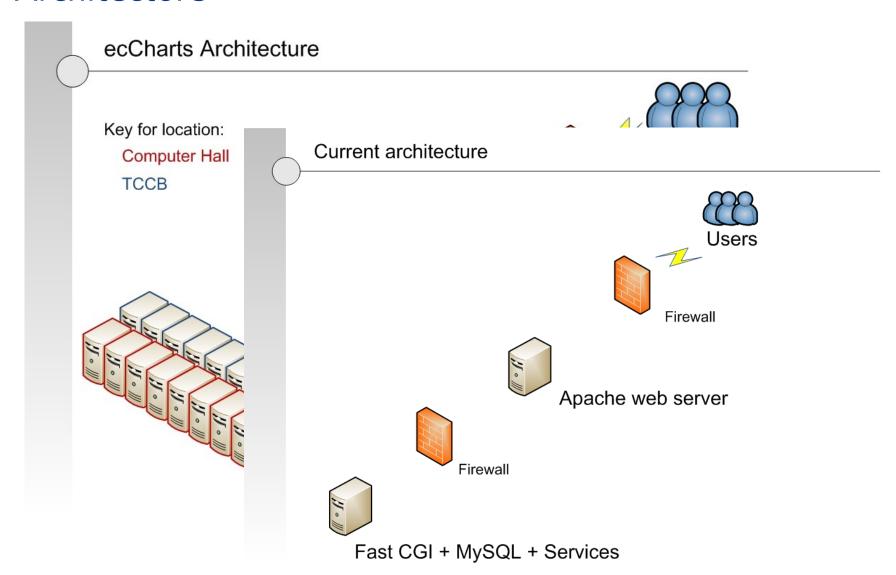
32, 9933, 9934, 9935, 9941, 9942, 9943,

da, dowy, edzw, efho, efho, efhs, efov, egrr, ehmm, enda, da, ewhc, ewho, fgge, kwbc, lfpw, maed, mawv, mfam, nmsa, mmsf, mnfc, mnfh, mnfm, mnfw, mnth, mofc, mofm, a, scwv, seas, sens, sfmm, smma, supd, swmm, toga, ve wehs weov wmfm

ie, it, nl, no, pt, rd, se, te, tr, uk, cs, dm, dt, e4, ei, el, en, ms, ti

ERA4o/Interim

ISPD (International Surface Pressure Databank)



There is more to it than meets the eye

Architecture

Architecture

WREP

Current

- High availability
- Reliability
- Load balancing
- Decoupling of responsibilities
- Scalability
- Extensibility
- Supports more users
- Better performance

Simpler

The software

WREP

- Python
- Django
- Jquery
- Template system
- Broker / worker architecture

Current

- Perl
- Fast CGI

Where it's going

- 100 years of observation and feedback data in MARS (ODB)
- Catalogue this data and make it available through the web interface for download for the ERA-CLIM project
- Fully migrate Webmars and all other web data servers to the new web infrastructure
- Later, make some statistics available and some nice plots

References

- Webmars: http://www.ecmwf.int/services/archive/d/catalog
- Data servers: http://data-portal.ecmwf.int/
- ECMWF ERA activities: http://www.ecmwf.int/research/era/do/get/index
- ERA-CLIM: http://era-clim.eu/

Thank you!

