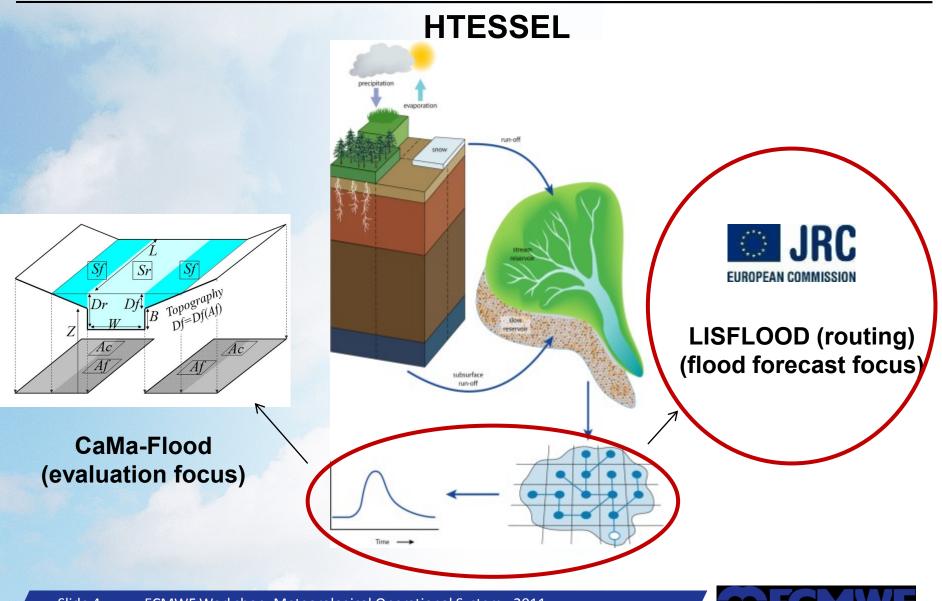
Floods, droughts and fires: Demonstrating the value of ECMWF forecasts in hydrology

Florian Pappenberger

Fredrik Wetterhall Emanuel Dutra

Objective: Demonstrate how ECMWF system can be used for 3 natural hazards: floods, droughts and fire on three examples:

- Global Flood Alert System experimental system which is developed in collaboration with the Joint Research Centre and is based on the European Flood Alert/Awareness System. This system is run in a pre-pre-operational mode since April 2011
- **Global Fire Risk Forecasting** experimental system which shows the potential of using ECMWF data for a global Fire Risk Forecast. Study is financed by the Joint Research Centre and is based on the European Forest Fire Information System
- **Droughts** Monitoring and forecasts droughts using ECMWF products on the example of the recent event on the Horn of Africa. Part of the DEWFORA (FP7) research project.



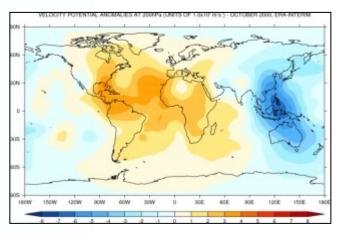
Jutta Thielen, Peter Burek, Konrad Bogner. Lorenzo Alferi (all JRC)

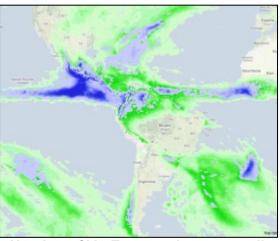
Global River Routing: Concept

Slide 4 ECMWF Workshop: Meteorological Operational System, 2011

Global Flood Alert System

Triggered by:

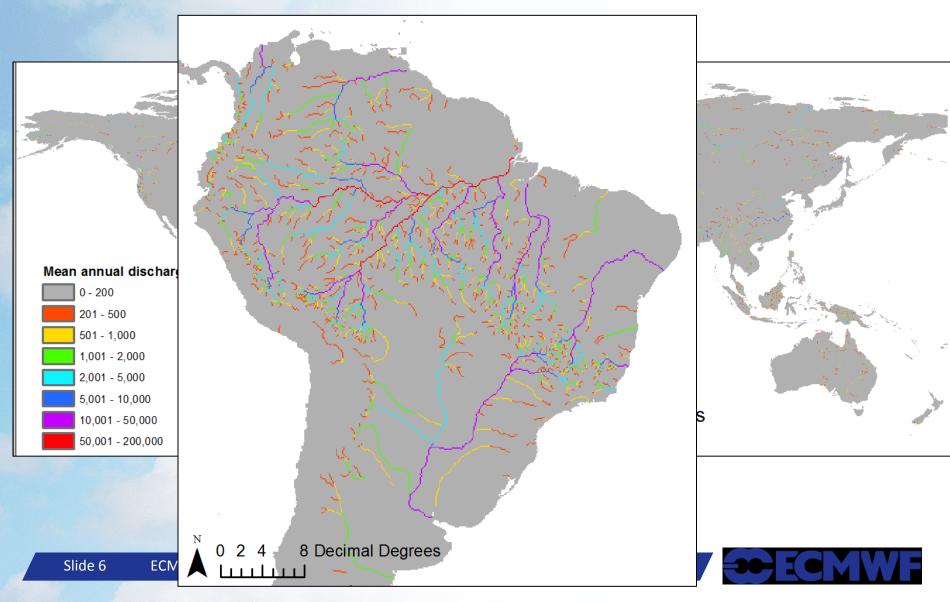

Long term run - Calibration ERA Interim (offline, corrected) (ECMWF)


- global atmospheric reanalysis produced by the ECMWF
- covers the period from 1/1/1979 - 31/12/2010
- Resolution: ~ 79 km

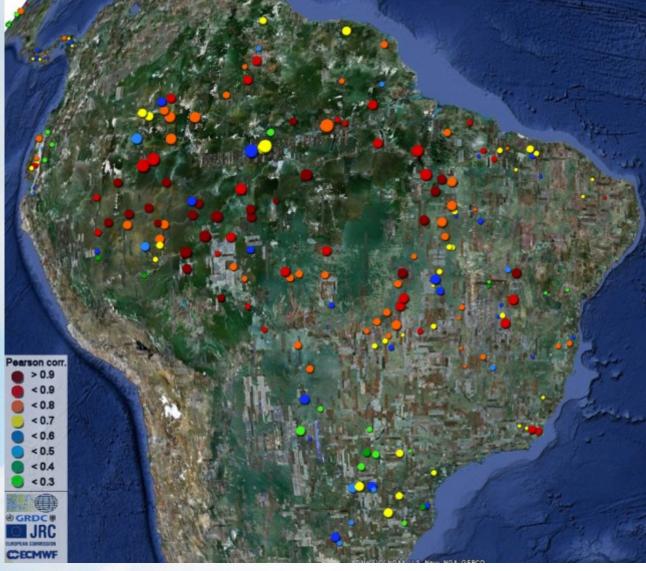
Forecast

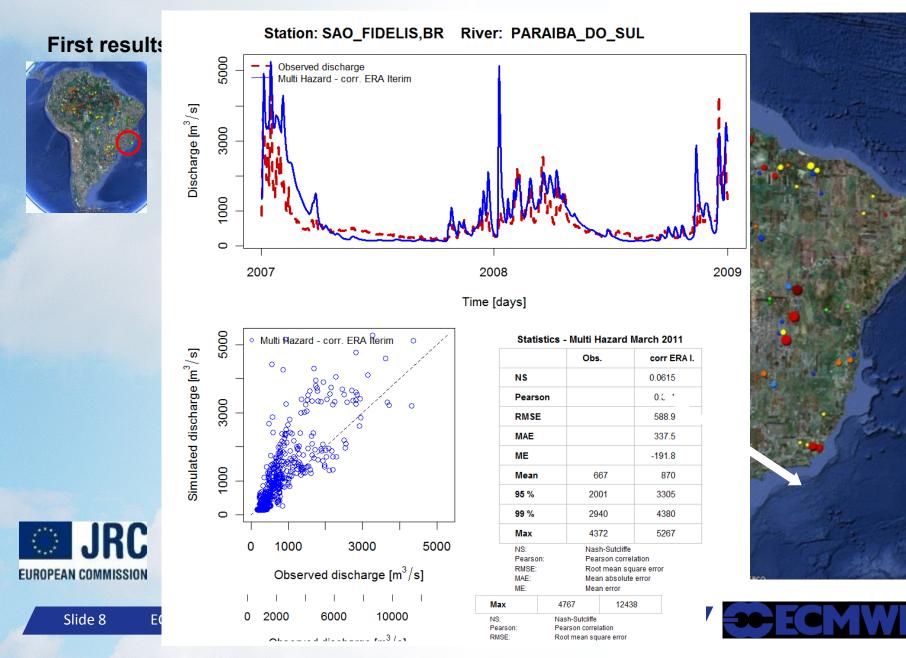
51 members of VarEPS (ECMWF)

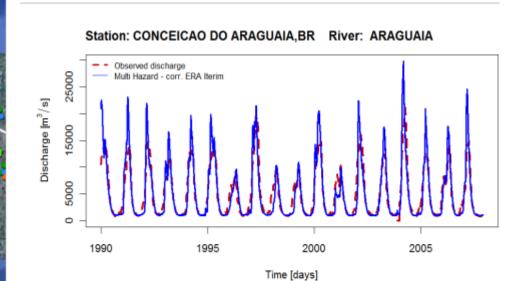
- Forecast of meteorological variables
- Resolution: ~ 32 km for the first 10 days, ~ 65 km from day 11 onward

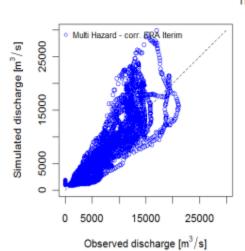


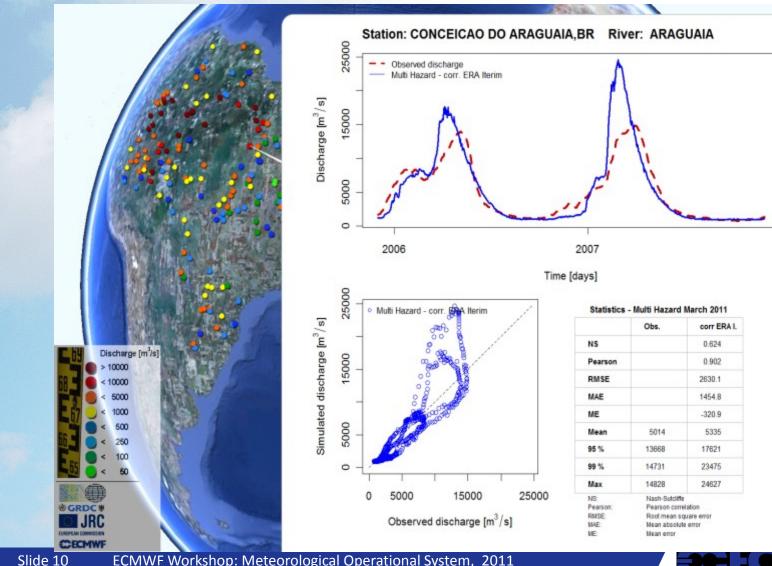
Number of VarEps members exceeding 50 mm (green) or 150 mm (blue) in 10 days on the 01/07/2011





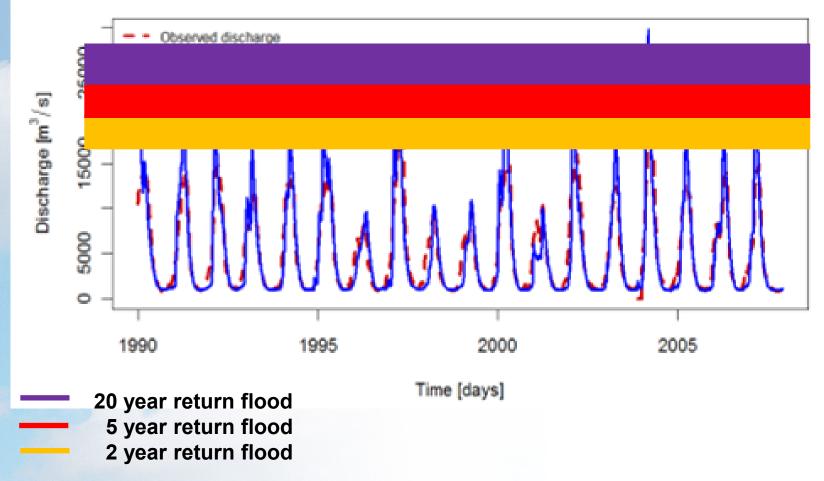

First results




Statistics - Multi Hazard March 2011

	Obs.	corr ERA I.
NS		0.735
Pearson		0.909
RMSE		2380.1
MAE		1385.1
ME		-37.5
Mean	5159	5184
95 %	13973	17565
99 %	18413	22252
Max	21076	29881
NB: Pearson: RMSE: MAE: ME:	Nash-Sutcliffe Pearson corre Root mean so Mean absolute Nean error	uare error

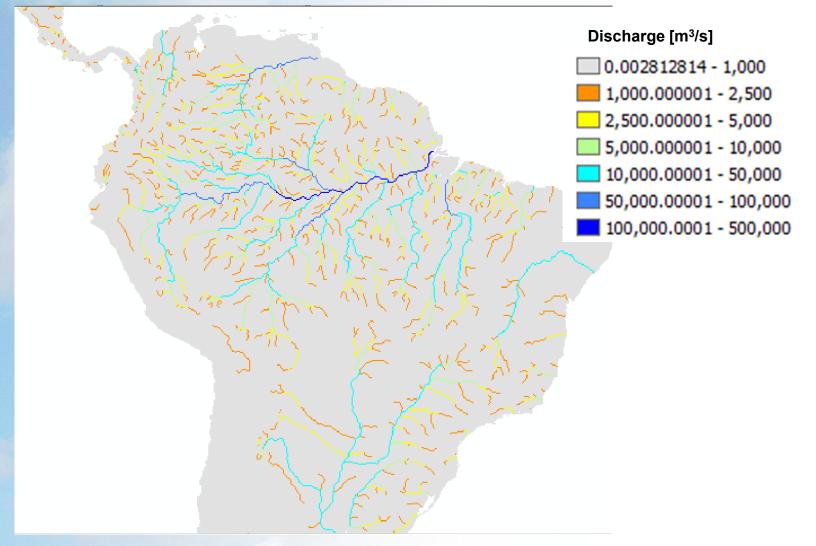
First results


ECMWF Workshop: Meteorological Operational System, 2011

Thresholds

Threshold calculation 1990-2010 2,5, 20 year return flood from long term simulation

Station: CONCEICAO DO ARAGUAIA, BR River: ARAGUAIA



5 year return flood 1990-2010

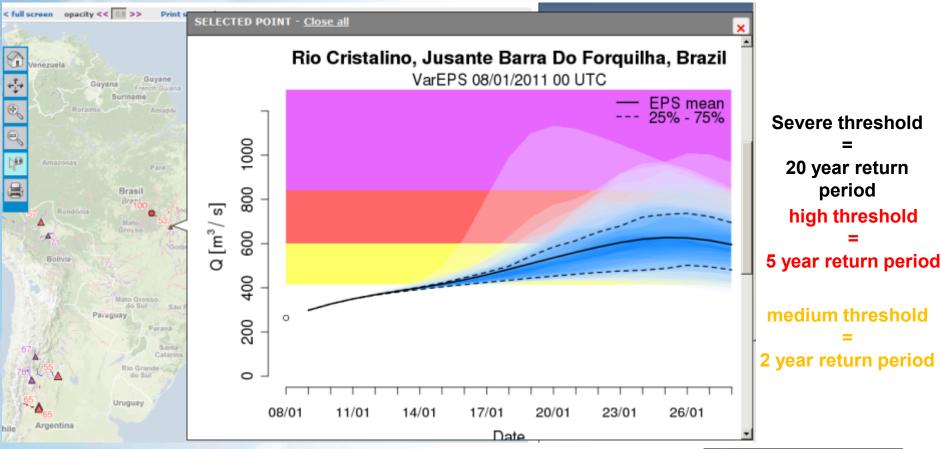
Threshold calculation 1979-2010 5 year return flood from long term simulation

Example of a forecast plot:

Forecast 8th January 2011 – Jusante Barra do Forquilha – Rio Cristalino

- max. half of the EPS member exceeds high alert level in more than 10 days

Select layers	EFAS forecasting 🕖		Forecas	ts available from 2009-01-01 to 2	011-07-0	04 (00 U	тс)										
		SELECTE	D POINT - <u>Cl</u>	ose all													
O Hydrological layers (0/7)		Report an	Report an error														
O Meterological layers (0/6)	Venezuela Guya		Point Information														
Background layers (1/7)	Guyana Guyana French G	olana		AL 11													
S Flash flood layers (0/8)	Rotama	Country	Basin	Station	Lat	Lon	Upstream area (LDD)	(GRDC)									
EU-FLOOD-GIS layers (0/2)	Q	BRAZIL	RIO CRISTALINO	JUSANTE BARRA DO FORQUILHA	-51 -13		6,500	8,000									
Global layers (4/5)	Amazonas Para	Point Fore	cast														
Medium alert - T>2 years 🕜	Brasil	Forecast	Date Point No.	max. EPS > threshold	Alert		Probability tendency	Peak forecasted									
✓ High alert - T>5 years	Breiton	2011-0		[%]	Teve	2	rendency	> 10 days									
Severe alert - T>20 years	Mato Grosse	00:0		100/ 55/ 12		1	~	> 10 days									
 High alert - T>5 years Severe alert - T>20 years 	Bolivie	>>Open/Cl	ose EFAS Forec	ast images													



Example of a forecast plot:

Forecast 8th January 2011 – Jusante Barra do Forquilha – Rio Cristalino

- half of the EPS member exceeds high alert level in more than 10 days

Persistence Plot

High Alast Loval

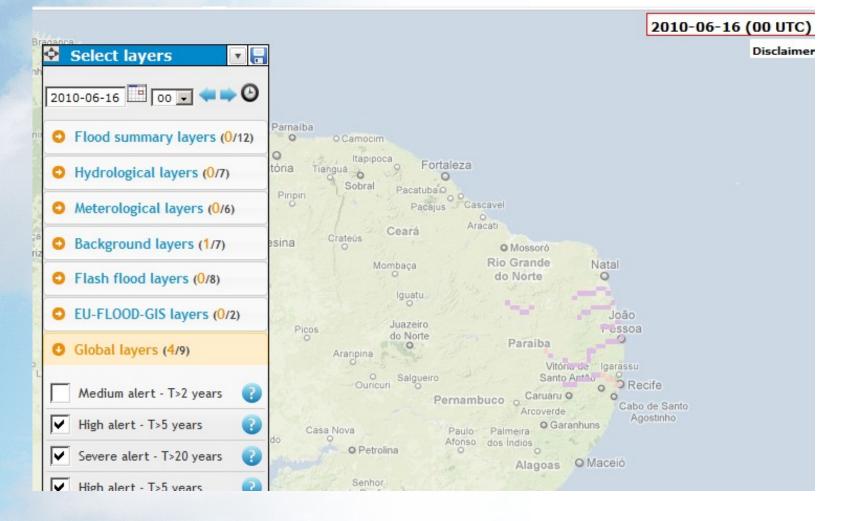
High alert = exceeding 5 year return period

Forecasted days in January 2011

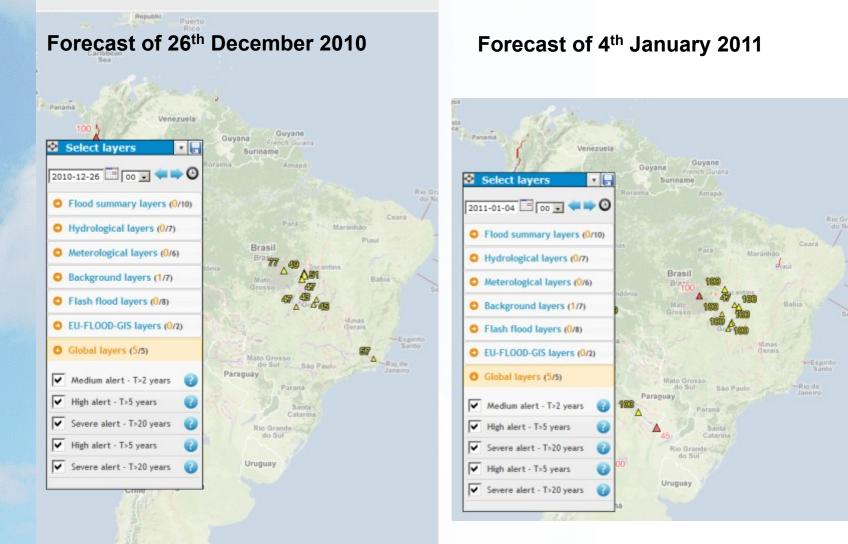
High Alert Leve	51						_	_	_	_	_					_	_						_	
Forecast Day	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
04/01/2011													4	6	8	8	10	14	18	16				
05/01/2011															4	6	14	20	25	25	24			
06/01/2011											2	2	2	4	10	14	18	24	27	27	27	24		
07/01/2011				Flo	bod	for	ecas	ted	with	15 d	ays (of lea	ad tir	165	10	25	33	39	->>	41	47	43	39	
08/01/2011												2	2	4	8	25	33	41	47	51	55	55	43	41

A forecast for each day

Percentage of EPS exceeding the high alert level



< full screen opacity << 0.9 >> Print s																_										
< full screen opacity << 0.9 >> Print s	SELECTED P	011	NT -	- <u>C</u>	los	<u>e a</u>																				×
Contraction of the second	Medium Aleri L	eve	_	_	_	_	_	_	_	_	_		_	_					_	_	_	_	_			
Venezuela	Forecast Day	4	5 (6	7 8	3	9 1	LO 1	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	
Cuyana Guyane	04/01/2011								4	12	22	29	39	55	61	61	59	61	55	49	41					
Suriname	05/01/2011									4	20	51	65	75	86	88	86	88	90	84	80	75				
🕀 Amapá	06/01/2011								2	4	22	53	82	90	92	94	92	90	88	84	78	75	69			
	07/01/2011					_					18	41	88	96	98	98	98	98	98	98	98	94	92	90		
	08/01/2011										12	45	71	92	100	100	100	100	100	100	98	96	94	92	92	
Amazonas Pará																										
Brasil	High Alert Leve	el I	_	_	_	_	_	_	_	_	_	_		_	_		_	_	_							
Brazil 100	Forecast Day	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	
57 Rondonia Mato 53	04/01/2011			_		_								4	6	8	8	10	14	18	16					
drosso //	05/01/2011			_		_										4	6	14	20	25	25	24				
Goià	06/01/2011			_		_						2	2	2	4	10	14	18	24	27	27	27	24			
	07/01/2011				_	_								4	6	16	25	33	39	39	41	47	43	39		
	08/01/2011												2	2	4	8	25	33	41	47	51	55	55	43	41	
Mato Grosso do Sul Paraguay																										
Paraná	Severe Alert Lo			_	_	_	_					_	_													
67 Santa	Forecast Day	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	
Catarina 701 //55 Rio Grande	04/01/2011															2	2	4	4	4	4					
	05/01/2011																									
65 Uruguay	06/01/2011												2	2	2	2	2	2	4	4	4	4	2			
65	07/01/2011																4	4	10	10	10	10	6	2		
hile Argentina	08/01/2011														2	2	2	2	4	8	10	12	10	12	4	
																_										



Forecast of 16th June 2010

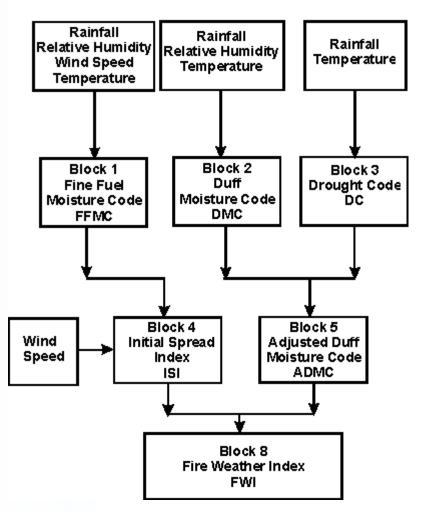
Forecast of 12th January 2011

Forecast of 20th January 2011

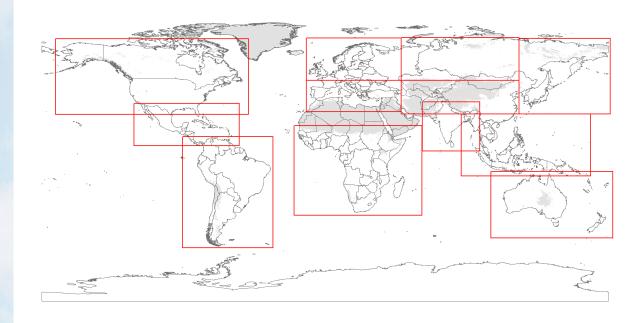
http://efas-is.jrc.ec.europa.eu

Slide 19 ECMWF Workshop: Meteorological Operational System, 2011

Fire

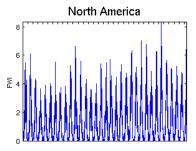

Contributions by: Johannes Kaiser Jutta Thielen* Andrea Camia* Jesus San Miguel* *(JRC)

The Canadian Fire Weather Index

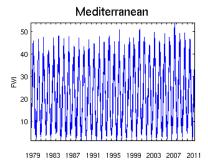

- All analysis is based on the Canadian Fire Weather Index
- Aim is to use ECMWF products (reanalysis, EPS forecasts)
- Verification against Satellite

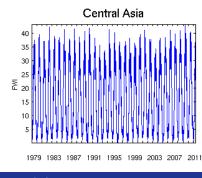
Determination of Canadian Fire Weather Index

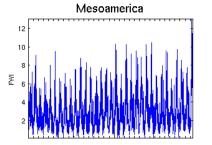
Analysis

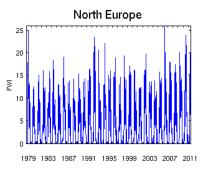


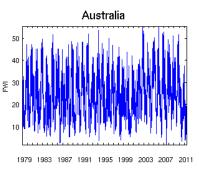
 Analysis performed on "World regions of the UN International Strategy for Disaster Reduction". These regions reflect a mix of socio-eco-political and fire regime criteria

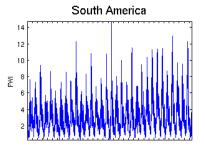


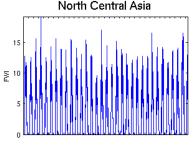

ERA-Interim

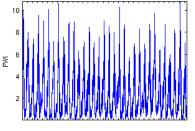

Temporal evolvement from 1979 to 2010 of the Fire Weather index using ERA Interim reanalysis data as forcing for 15 world regions


1979 1983 1987 1991 1995 1999 2003 2007 2011

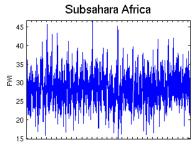




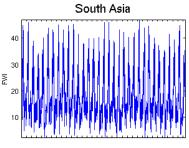

1979 1983 1987 1991 1995 1999 2003 2007 2011



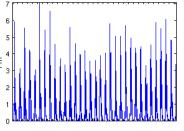
1979 1983 1987 1991 1995 1999 2003 2007 2011



1979 1983 1987 1991 1995 1999 2003 2007 2011



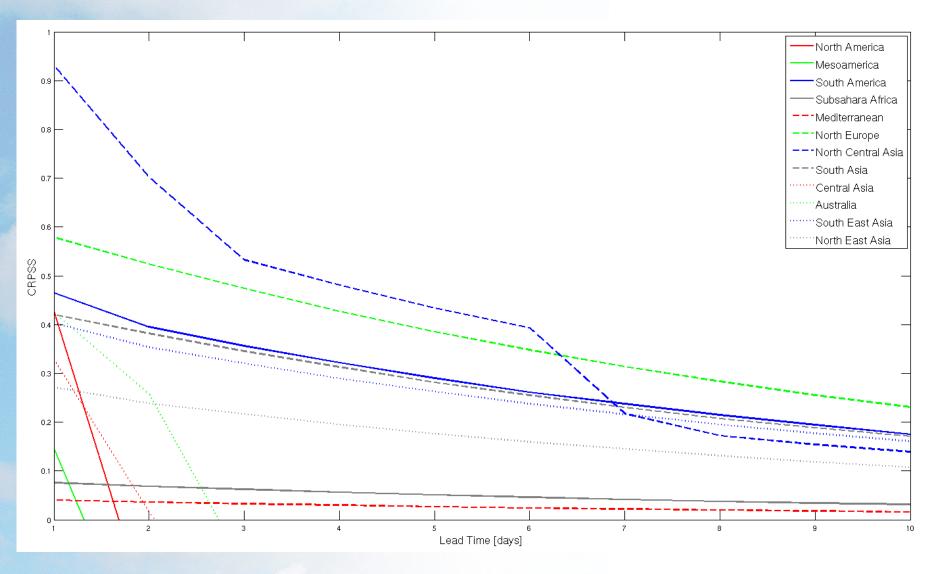
1979 1983 1987 1991 1995 1999 2003 2007 2011



1979 1983 1987 1991 1995 1999 2003 2007 201

1979 1983 1987 1991 1995 1999 2003 2007 201

North East Asia



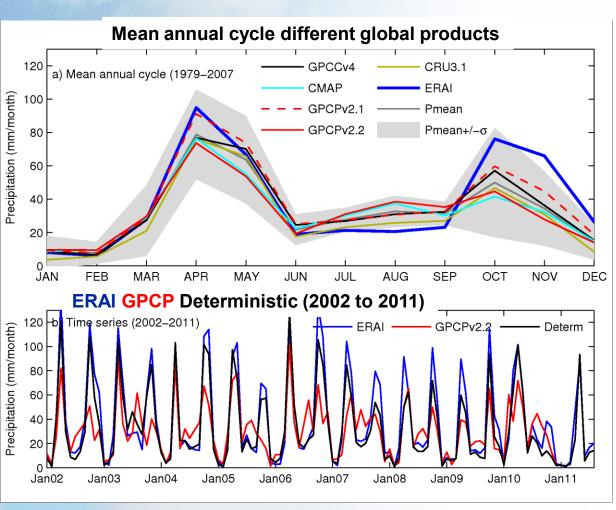
1979 1983 1987 1991 1995 1999 2003 2007 201

ECMWF Workshop: Meteorological Operational System, 2011

CRPSS for domains

Example of using the EFI for the 18th of August 2008 for lead times of 1, 3, 5 and 10 days (regions)

Slide 25 ECMWF Workshop: Meteorological Operational System, 2011



DROUGHT The 2010/11 drought in the Horn of Africa: Monitoring and forecasts using ECMWF products

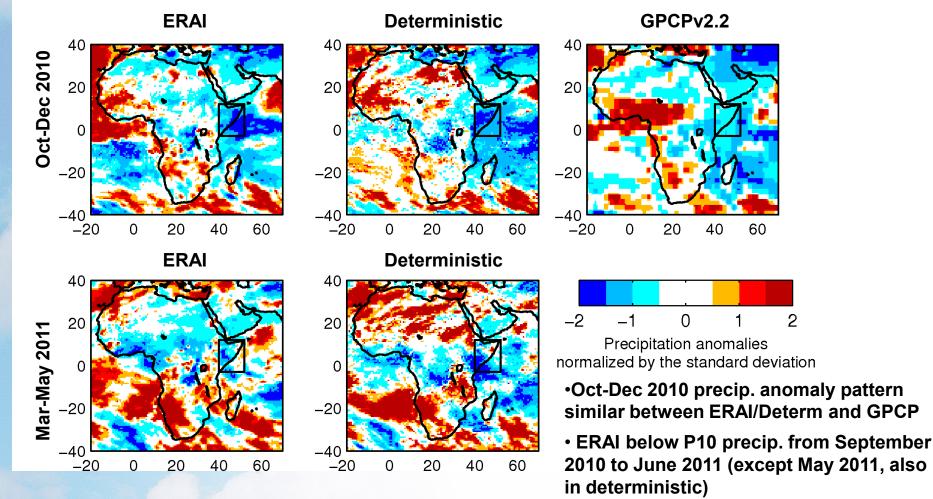
Contributions by: Emanuel Dutra Fredrik Wetterhall Souhail Boussetta Gianpaolo Balsamo Linus Magnusson

Comparison of precipitation products in the HoA

Large uncertainty between products;
Significant differences between GPCPv2.1 and GPCPv2.2

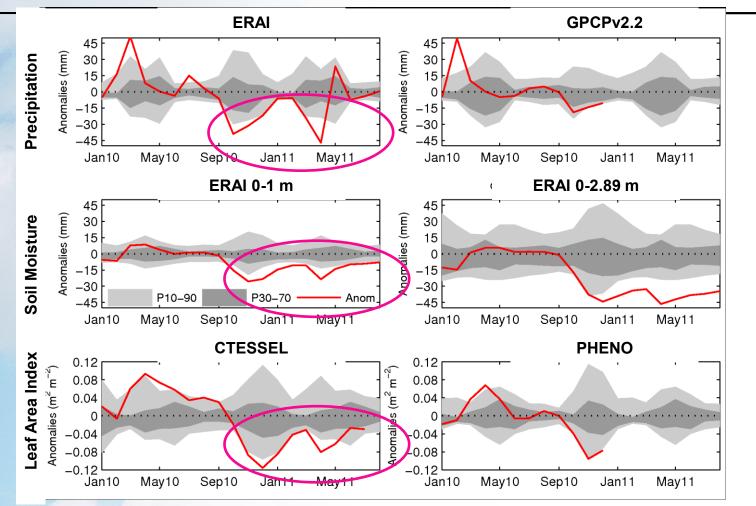
 Two rainy seasons (March-June high; October-December –low);

•ERA-Interim seems to "overestimate" the peck rainfall during the rainy seasons


•Good agreement between ERAI and deterministic, but determ. Is closer to GPCPv2.2

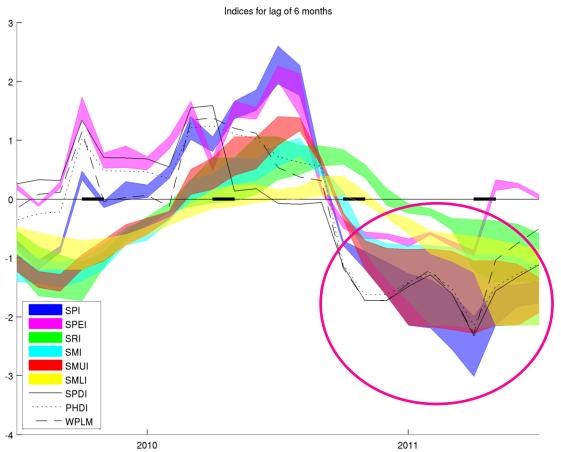
•Stronger Oct-Dec 2010 anomaly in determ. Than in ERAI

•What should be used as ground truth ?


ERA-Interim/deterministic forecasts monitoring (precipitation)

•2010/2011 accumulated precipitation (Aug– Jul) was the lowest in the 32 years record of ERAI.

ERA-Interim monitoring (soil moisture, LAI)


•Precipitation anomalies are followed by soil moisture

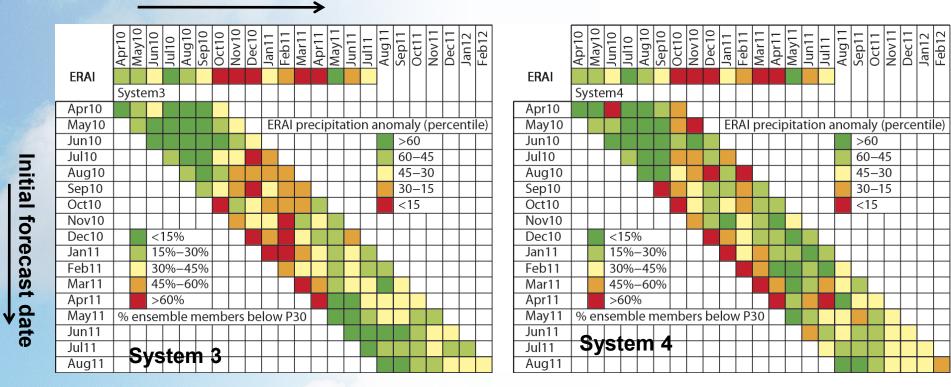
- •LAI anomalies follow the reduced water availability
- Soil moisture and LAI anomalies are consistent with long recover (memory effect)

ERA-Interim monitoring (drought indices)

Drought indices calculated from ERAI 2010/2011

•All indices identify an anomalous situation;

Different onset-intensity;


•Large uncertainty;

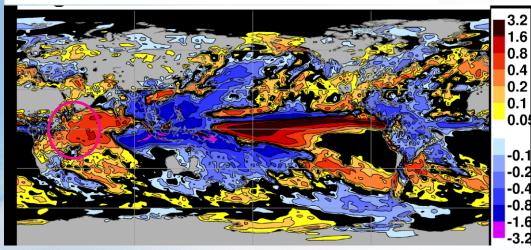
•Would this be helpful for decisions makers ?

Seasonal forecasts: April 2010 to August 2011

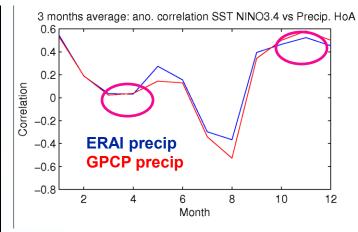
Verification date

•Good in the first month of forecasts (S4 better)

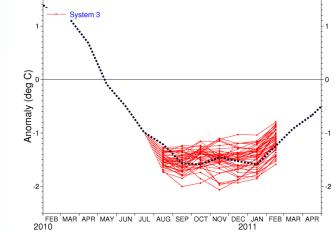
Forecasts of dry conditions for Oct-Dec 2010 since July 2010


•March-April 2011 very noisy, no consistency in the forecast

•Why the difference in skill between Oct-Dec / March-May (in both systems) ?

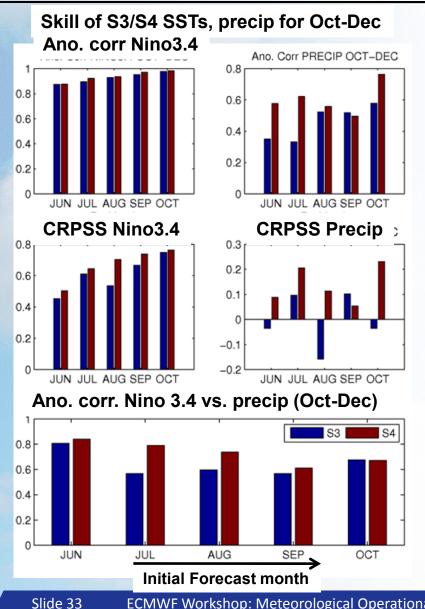


Precipitation anomalies and link with ENSO


Regression ERAI Nino3.4 SST Sep-Nov. precip

Anom. correlation SST Nino3.4 precip HoA

S3 Nino3.4 forecast Aug 2010



•Oct-Dec precipitation anomalies (both ERAI and GPCP) connected with Nino3.4 : Some predictability in S3/S4 ? Associated with the Indian Ocean dipole

•Main rainy season March-June no relation with Nino3.4 (difficult for S3/S4 ?), mainly driven by ITCZ

•2010 strong La Niña (2th strongest since 1979)

Seasonal forecasts S3/S4 skill

•Both S3/S4 show a good skill for Nino3.4 (Oct-Dec) 4 months in advance.;

•S3 skill for precipitation is very low (CRPSS<0 Jun, Aug, Oct).;

•S4 shows some skill in predicting precipitation in the HoA region;

 The teleconnection between Nino3.4 and precip is present in both S3 and S4 up to 4 months in advance.

•Precip scores for Mar-May are very low in both S3/S4 (especially for Apr)

Seasonal forecasts 2010/11

From July 2010 onwards S3 > 50% (below percentile 30) and >20% (below percentile 10), persistent;
S4 similar S3 but predicting normal situation in September (only 15 ensemble members, S3 has 41);
Mar-May 2011 forecasts from Nov to Feb indicated normal conditions, only the March forecasts pointed to a dry situation;

•Would this information be useful to the population ? Decision makers ?

•How to process / deliver these forecasts to users ?

Overview

ERA-Interim monitoring

- ERAI precipitation comparable with other global datasets (large uncertainty)
- 2010/11 anomaly of precipitation well captured by ERAI, with a consistent signal in soil moisture and LAI anomalies
- Ongoing analysis with more drought indexes. The results point to the feasibility of using ERA-Interim as a monitoring tool for drought conditions (near-real time update very important)

Seasonal Forecasts

- October to December precipitation anomalies in 2010 were predicted from July onwards, due to the strong La Niña situation;
- S4 outperforms S3 in the prediction of precipitation and nino3.4 (S4 is penalized in the 2010/11 case study hindcast period: 15 ensemble members);
- October-December 2011 forecasts point to normal situation;

Ongoing:

- Further analysis of the ENSO-Indian Ocean-Precipitation (HoA);
- Drought indices based on ERAI, more case studies (Russia 2010), extend drought indices from monitoring to seasonal forecasts.
- Disseminate these results as possible applications of ERAI and seasonal forecasts to end users.